CHAPTER 3
OSCILLATION CRITERIA FOR
SECOND-ORDER NONLINEAR NEUTRAL
DELAY DIFFERENTIAL EQUATIONS

In the general, the theory of neutral delay differential equations is more
complicated than the theory of delay differential equations without neutral terms.
In this chapter, we will present some results in the oscillation theory of second order
neutral delay differential cquations, and consequently this will be a useful source
for researchers in this field. The study of oscillation for second order ordinary
differential equations, we divided into 3 sections. In section 3.1, we shall establish
some new oscillation criteria for second order nonlinear neutral delay differential
equations. In section 3.2, we provide some sufficient conditions for second order
nonlinear neutral delay differential equations by using Philos’s class function idea.
In section 3.3, we exemplify oscillation of second order nonlinear neutral delay
differential equations.

Before we show detail of oscillation criteria for second order nonlinear
neutral delay differential equations, let us state two sets of conditions commonly

used in the literature which we rely on.

(S1) [ is a nondecreasing function and [’(u) exists such that
!
S (uz_l -
|f(u)]"=

for some positive constant .

(5, S

|u|a—1u

> 3 > 0 for some positive constant 3.

3.1 Some New Oscillation Criteria

In order to prove our theorems we use the following well-known inequality

which is due to Hardy, Littlewood, and Polya.
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Lemma 3.1.1 ([7]) If X and Y are nonnegative, then
XA+ A=1DY*=2XYM1 >0 for A>1,

where the equality holds «f and only if X =Y .

Lemma 3.1.2 [f u(t) is an eventually positive solution of Fq.(E), let
z(t) = u(t) + p(t)u(r(t)), (3.1)
then z(t)z'(t) is an eventually positive.

Proof. Suppose that () is an eventually positive solution of Eq.(E) such that
u(l) > 0, u(r(t)) >0 and u(a(l)) > 0 on [T, co0) for some sufficiently large T > 1.

Then z(t) > u(t) > 0 and moreover, Eq.(E) can be rewritten as
(rOw )= 12 @) + et (u(o (1)) = 0. (3.2)
for t > T. Tt follows from (H,) and (Hs) that
(re @@l @12 0) = a0 f (o) <o,

for ¢ > T. Hence. the function r(¢)y(u(t))|2'(t)|**2(t) is decreasing and 2'(t) is

eventually of one sign. We claim that
2(t) > 0, (3.3)

for t > T. Suppose that z'(t) < 0 for ¢ > T. Then there is a positive constant N
such that

r(E)h(u(t))| 2" (|22 () < r(T)(u(T))|2(T)|* 22/ (T) = =N <0,

for t > T. That is
—r(tyw(u(t))( - £(t))* < =N,

for t > T. From (H,), we have

0= ~(m) <) ()"
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for £ > T. Integrating the above inequality from T to ¢, we obtain

2(T) — (%)_fT (;(%) ds = 2(T) — (;)%(R(t) — R(T)).

Letting ¢ — oo in the above inequality, we get z(l) — —oo. This contradiction

z(t)

IA

prove that (3.3) holds. Therefore. z(¢t)z’(t) is an eventually positive. O
Now, the following theorems provide sufficient conditions for oscillation of

all solutions of Eq.(E) with respect to properties of the function f(u).

Theorem 3.1.1 Let (H;) — (Hs) and (S1) be satisfied. Suppose that there exists a
constant p such that 0 < p(t) <p< 1. If

_/ H{rewn - () GR)" mpmem e 69

where p* = 1 — P, then Eq.(E) is oscillatory.

Proof. Suppose on the contrary that there is a nonoscillatory solution wu(t) of
Eq.(E). Without loss of generality, we may assume that u(t) > 0, u(7(¢)) > 0 and
u(c(t)) > 0 on [T, 00) for some sufficiently large T' > #5. From (3.1), by Lemma
3.1.2, we obtain

z(t) >0 and Z'(t) >0,
for ¢t > T'. Since r(t)y(u(t))|2'(t)|*~'2(t) is decreasing function and o(t) < ¢,
r®)e(u®)(Z'(t))* < r(o(@)w(u(e(t)(z' (o(t))* < Mr(a(t))(2'(a())).
That is

(o) > z'(t)(%’fﬁ‘%)? (3.5)

for t > T. Since z(t) > u(t) and z'(#) > 0, from (3.1) we have
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for t > T, where p> =1 — p. From ( Sy) and (3.6), we have

Flula(t)) = f(p"2(a(t)))

and then (3.2) implies

(rOw) 0)) + )] @ 2(e(e) <o, (3.7)
for t > T. Define ( )
r(O9(() (1)
= R” . 8
=B s e (3.8)
(

aa’(t)

<
= R(e@)r(a(t))
=P’ () R(a (1))

B ad’(t) L g

ECOREED MY

) (o)) "L ' 0) " 2
MYeR(a(t))ri/=(a(t)) (H ) f(p2(a(t)) )

rOvut) ()" L s r()u(u(t)\
z /(e 2a(W)] (jv[r(cr(t)) )

_ aco’(t) wlt) — R (o B vp*a'(t) ax1
" Ry~ F 0 - srpcm ) )

. 27 (1) 9 80 w ] _pe a

= Ry =0 (1) [w(2) — 7 (W) | = R(o(0)a(t). (3.9)

for t > T. Set

" - M/ e é , a y+ 1
X:(ﬂ,’—) "w(t), y=:(a ) ‘( - ) ,had =" g
aM/e yp* a+1 o

From Lemma 3.1.1, we then obtain for t > T

a+l

g/ (. -(t))%l( (a+1 1)[(0111{1/"):’12—1( a )"’]T
adi/a\Y Sk ~p a+ 1

- ﬁf(’yp) ((!il)aﬂ-
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Hence, (3.9) implies for t > T

- a e/ a \o+l a'(t) ”
wit) < M(@?) (o) Ry ~ 1 @),

Integrating the above inequality from T to ¢ , we have

w(t) < w(T) — /Tt {R“(U(- ))a(s) — M(ﬁm )&(n j_ l)“*l R(o( 'r]/a }ds

Letting t — oo in the above inequality, we get w(t) — —oco. This contradiction

completes the proof of Theorem 3.1.1. U

From Theorem 3.1.1, we get the following Corollaries.

Corollary 3.1.1 Let (H,) — (Hs) and (S)) be satisfied. Suppose that there exists a
constant p such that 0 < p(t) < p < 1. If there exists a number T > t, such that

tllr?cmflnR(la(”)/ R (o(s))q(s)ds > M (= % )“(a;‘f_l)m, (3.10)

where p” = 1 — p, then Eq.(E) is oscillatory.

Proof. It is easy to see that (3.10) yields the existence ¢ > 0 such that for suffi-

ciently large .

which follows that

JC t R"(a(s))q(s)ds—M(:’YC;‘)Q( = )"“ In R(c(t)) > eln R(o(t)).

Next, we consider

In R(o(t)) = / d(In R(o(s)))

B t 0_.'(5) i
= / Rle()ra(a(a) "

B /Tz R(J(s)a)r;lia d5+f0 Rl Ua il ))d:s

_ t O_I(S) | "
‘/T e T R d S
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That is

/T (B tosats) - M (=) (755) R(a(s;xl(a(s)))ds

> eIn R(o()) + M(%)“(a : I)H InR(e(T)). (3.11)

Simple calculation shows that (3.11) implies (3.4) and the statement follows from

Theorem 3.1.1. D

Corollary 3.1.2 Let (Hy) — (Hs) and (S;) be satisfied. Suppose that there exists a
constant § such that 0 < p(t) < p < 1 and o’(t) > 0. If there exists a number
T > tg such that

1/ax atli o @ o a+1
b L (S8 g

where p* = 1 — p, then Eq.(E) is oscillatory.

Proof. It is easy to see that (3.12) yields the existence ¢ > 0 such that for sufli-

ciently large t,

1o ( g a+1( (1 = ok
() = (t?,ﬁ) (@) 211!(;;*) (ail) .

o' (1)
7o () R(o(0)

5 a N2/ a \etl a'(t) o’ (t)
w0 -1(2) (55) Tremmem 2 @R
(3.13)

Multiplying on both side of the above inequality. we obtain

Simple calculation shows that (3.13) implies (3.4) and the statement follows from

Theorem 3.1.1. O

Theorem 3.1.2 Let (H,) — (Hs) and (S2) be satisfied. If

/ ” (ﬁ’R“(cr(t))Q(f-) - M (a i JM R(a(t)c)rr(ltf)ﬂ(o(t))

where Q(t) = q(t)(1 — p(a(t)))", then Eq.(E) is oscillatory.

)dt = (e, (3.14)
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Proof. On the contrary, we may assume that u(t) is an eventually positive solution
of Eq.(E). From the proof of Theorem 3.1.1, we conclude that u(t) > z(t)(1—p(t)),
Z'(L) > 0 and r(L)y:(u(l))]='(¢)|*12'(1) is decreasing function on [T, o0) for some

sufficiently large T > ty. From Eq.(E). we have
(r(®)e(u(t) (/1)) + 8Q(t)2" (o (1)) <0, (3.15)

where Q(1) = q(1)(1 — p(a(t)))”. Define

_ Re(o () M) (= ®)7
w(t) = R*(a(t)) ) Y 3y (3.16)

then w(t) > 0. Using (3.5), (3.15) and (3.16), we get

(
r(e)(u(t)) (2/(1)* )
(2(o(t))"

w(0) = 3 (R(o(0)

O | Re(ofe) (rovEw)7)

_ ac’ ()R (o () m(t)w(u(t)) (2/(2)
(o (1)) ( ()" (2(e()))*
— R ot {4 (Z’ ) )
(o(1)) ( O
2Tl t) - BRR(o(1)QL)
= Rlo(t)ri(a(t)
PN A A )w( () rep)y:
R(o(1))- D) ( Mr(o(t)) )
i aal(t) W) £ o
= Rlerrete) ) T A0
- ad'(t) (o) mLLE N(E(®)" )“
MeR(a(t))r/>(o(t)) \ (2(e(®))”

_ ao’(t) - o’ (t) (w( t))
= Ry ~ A0 - Ry m)

4 aa'(t) 14 w(t) |22 )1
~ R(o(t))r/=(o(t)) [w(l’) ‘[Ml/cam) ] BR*(a(t)Q(1), (3.17)

fort > T. Set

1 sims ) o o\« a+1
X = (—-—) H ). == AIF( ) d )\ = % 1
M g Y 1 a+1 & ¥

From Lemma 3.1.1. we then obtain for t > T

a+l

- (o)™ s (S ()T

_M( « )‘“‘1
T a a+1 .
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Hence. (3.17) implies for t > T

o )ﬂ*l a'(t)
a+1 R(a(t))r/e(a(t))

w(t) < M( — BR*(a(1))Q(1).

Integrating the above inequality from 7 to ¢ , we have

{ﬁf{a(a(S))Q(s) L M(a :"_ 1)‘“1 R(U(S)a)r;{jl(g(s)) }ds.

Letting ¢ — oo , we get w(t) — —oo. This contradiction completes the proof of

w(v) < w(T) - |

i

Theorem 3.1.2. O

Theorem 3.1.2 provides the following Corollaries.

Corollary 3.1.3 Let (H,) — (Hs) and (Sa2) be satisfied. Assume that there ezists a

number T' > ty such that

. n 1 b ST ; . . ; o] a+1
tlir&mfm/_r BR(0(5))O(s)ds > M(a+ 1) . (3.18)

Then Eq.(E) is oscillatory.

Proof. It is easy to see that (3.18) yields the existence ¢ > 0 such that for suffi-

ciently large ¢,

o 1
In R(o(t))

/Tt BR(a(5))Q(s)ds > M(Qj_ 1)0“ Q.

which follows that

«
a+1

/T GR*(0(5))Q(s)ds — M )““ In R(c(£)) > eln R(o(t)).

That is

o a'(s)

/; (ﬁRa(”(‘*))Q(S) - M(a B 1)a+1 R(J(S))rl/ﬂ(a(s)))ds
> el R(o(t)) + M(=2 1)““1113((7(5”)). (3.19)

Simple calculation shows that (3.19) implies (3.14) and the statement follows from

Theorem 3.1.2. ad
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Corollary 3.1.4 Let (H,) — (H;) and (S,) be satisfied. Assume that o'(t) > 0 and

there exists a number T > ty such that

o O ity

lim inf ¢
e Bext) a’(t) o+ 1

(3.20)
Then Eq.(E) is oscillatory.

Proof. It is easy to see that (3.20) yields the existence ¢ > 0 such that for suffi-

ciently large t,

il o) otV S S

Q) et (L] -+ 1

a'(t)
ri/e(a(t))R(o(t))

Multiplying on both side of the above inequality, we obtain

a'(t) L ea'(t)

BR*(o(t))Q(t) — M(Q . 1) ri/a(a()R(a(t)) = vV (a(t))R(a (1))

(3.21)

Simple calculation shows that (3.21) implies (3.14) and the statement follows from

Theorem 3.1.2. O

3.2 Philos’s Type Oscillation Criteria

We present some oscillation results for Eq.(E), by using integral averages
condition of Philos-type. Following Philos [12], we introduce a class of function P.
Let

Do={(l,8):L>s>t} and D={(t,s):t>s >t}

The function IT € C(D,R) is said to belongs to the class P if
(z) H(t,t) =0 for t >ty and H(t,s) > 0 for (t,s) € Dy,
(12) H has a continuous nonpositive partial derivative on Dy with respect to

the second variable such that

%ng=4m@JH@g for (¢, 5) € Dy (3.22)

where h is a nonnegative and continuous function on D.
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Theorem 3.2.1 Let (H,) — (Hs) and (S)) be satisfied. Suppose that there exists a
constant p such that 0 < p(t) < p < 1. If there exist function H € P and positive
function p € C*([ty, 0);R*) such that

lim sup E(i 7 / f {H(e.9ps)q05) - w(—==)"" (=) 6t ) s = oo

then Eq.(E) is oscillatory, where p* = 1 — p and

(s)r(a(s)) o'(s) a+l
G(t,s) = il —— (h(t,s) + H(t, _
) (o'(s))* (VH(t, 5)) ( (t:5) p(s) ( 3))

Proof. Suppose on contrary that there exists a nonoscillatory solution u(t) of

Eq.(E). Without loss of generality, we may assume that u(t) > 0,u(7(t)) > 0, and
u(c(t)) > 0 on [T, oc) for some sufficiently large T > t5. From Lemma 3.1.2 and

Theorem 3.1.1, we get for t > T

Z'(a(t)) > z'(t)( JE\J)T‘(( (S;))g and (r(t)w(u(t))(z’(t))a)f—i—q(t)f(p*zr(or(f,))) < 0.

Define the function

= p(t) () ( (t))(zl( VU dde D (3.24)

Then w(t) > 0 and

r(t)w(u(t)) (2(t) (r(t)z!f(u(t))(z”(t))a)’

O o) YT o)
_ oy OO FO) F (o) (o)1)

| P e 0))
gi—gw(nm o))

. rtyp(u®) (Z@) . o=t 7 (t)e(u(t))\ &
=W R e — e = (G
Bl __wd'() r(Dw(u(t)) (2'(6)"\ =
= O P~ T PO F @) )

B p*a’(t) afl
p(t) ) (ﬁ/l;)(t)r(a(t)))l/u (w(®) =
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Consequently, we have

/T H(t,s)p(s)q(s)ds < -—/1: H(t.s)w’(s}ds—l—/:; H(t,s)'c’:((ss))w(s)ds

ypra'(s) -
w(s)) = ds.
(M/)(-s)r(a(;,-)))l/ﬂ( (s)) = ds

t

H(t,s)

S—

Since
t

CH(t sy (s)ds — _ 4
/;n H(t,s)w'(s)ds = —H(t, T)w(T) fT w(s)as

and in view of (3.22), the previous inequality becomes

H(t, s)ds

t

]; H(t, )p(s)q(s)ds

< B Tw(m) + [ wls L

P, 5 0 _—(w(s))* ds
T (MM)MDW( )

=H(,T)w(T) - ] w(s)h(t,s)\/H(L,s db+/ HiY, S),o’((s) w(s)ds

)
P S)
H ,8) "‘ds

Ht9d5+/H1‘s) :)) o(s)ds

< H(t,T)w(T —I—j w( Dh(t,s)/ H(t,s) ds+/ H(t,s) 'w (s)ds
H( 1P (5) 5)) " ds
/ X Mo (a(s)))”“( ()
= H(t, T)w( T)-t—-/ [ (t s)\/H(t,s)+H(t,s)i'((:))]w(s)ds
H(t LA s 3.25
/ M’p(e)r(a )))”"( = s

In Lemma 3.1.1, we let

_oa+l _ (Lo (9HE ) \am
Viriant™ *bi Mp(s)r(o(s)) )"Tu)

and

¥ = (57) e T+ e B0 (e )™
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From Lemma 3.1.1, we then obtain for t > s > T

[t )G+ (8 5) 2 ) = 1,5 2T )

pls (Mp(s)r(a(s))) " ‘
((H_ )“(h(t,s)\/T(t:eﬂ-H(t ) f’(")) (( Mpls)r (U{'s)},)a)m}T

p(s) vp*a’(s)H (t. s)

1

<5l 5

21 ik "(s)ye+t  Mp(s)r(a(s))
“E( +) (hi';\/_l',b)'}'Hﬂbz(:)) (Afp(f(é) I

_ (_1__)0-*1( o )ﬂ( /)) ()T(J(b)) ( 0 5)+’U,(5

]
1A

H{t,
) a+1
\aF1 VH( ) p(S)\/E(t 9))
_ M(__._l_._)a-H( q*)aG(t?S).

\a+1 Yp

Hence, (3.25) implies for t > s > T

fT t {H(t, s)p(s)q(s) — M( Jlr l)a“ (%)QG(@ s)}ds

(L, T)w(T) (3.26)
H(t, to)w(T).

Thereby, including (ii), we conclude that for ¢ > ¢,

[{H(t, 5} oM} 2 M(—I—)‘Hl( 2)"G(t,5) bas

a+1 yp*

/ {H t,s)p(s)q(s) — (a+ l)aﬂ(%)aG(t,s)}ds
+/T {H(t,s)p(s)q(s) — M(a -11- l)a 1(%)06’(15, s)}ds

Accordingly, we obtain

H_UI_ET [ {H(t,9)p(s)ats) ~ M (- Jlr 1)““ (%JQG(t,s)}dS

T
< [ plshats)ds + w(T) < oc

for ¢t > ty. Taking the limit superior as t — oo in the above inequality, we obtain

a contradiction to (3.23), which completes the proof. d
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As immediate consequences of Theorem 3.2.1, we obtain the following

Corollaries.

Corollary 3.2.1 Let (H,)—(Hs) and (Sy) be satisfied. If there ezist function H € P
and positive function p € C*([ty, 00); R™) such that

lim sup—— / H(t,s)p(s)g(s)ds =

1 t 1 a+1 o o
M ) ( ) Clts)ds < oo,
H(t.to)/m (a-i—l P R < oo

then Eq.(I7) is oscillatory, where p* =1 — p and

A S)T (O‘( )) ,o'(,s) a+1
G(L,s) = & —_(h(t,5) + H(ts)) .
9= TG V)

and

lim sup
t—oc

Corollary 3.2.2 Let (H,) — (H;) and (S1) be satisfied and let p(t) = 1. Suppose
that there exists a constant p such that 0 < p(t) < p < 1. If there exists function
H € P such that

tlirglcsup H(tl ) ft {H(t,s)q(s) — M(a——ll-l)o+l(7p ) G(t, s)} =50,

then Eq.(E) is oscillatory, where p* =1 —p and

r(a(s)) (h(t, s)) " |
(a’(s))a( HiL s))m_l

Gl s) ™

Corollary 3.2.3 Let (H;) — (Hs) and (S1) be satisfied and let p(t) = 1 and a = 1.
Suppose that there exists a constant p such that 0 < p(t) < p < 1. If there exists
function H € P such that

[ {meona - o UGOICTD)S PR

vp* a'(s)

li —
=" F H(L,to)

then Eq.(E) is oscillatory, where p* =1— 7
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With an appropriate choice of the functions H and h, we can derive from
Theorem 3.2.1 a number of oscillation criteria for Eq.(E). Let us consider, for

example, the function H(¢,s) defined by
H(t,s) =(t—5)*, for (t,s) €D,

where A > « is a constant. Clearly, I7 belongs to the class P. Furthermore, the

function

49, i (4 oAl
) = ZEdad) X Al I
Vv H(t,s) (t—s)2

is continuous on [ty,00) and satisfies condition (3.22). Then, by Theorem 3.2.1,

= - A2 __for (Bag) gol),

we obtain the following oscillation criteria.

Corollary 3.2.4 Let (H,) — (Hs) and (S1) be satisfied. Suppose that there exists
a constant p such that 0 < p(t) < p < 1. If there exists a positive function

p € C'([to,00); RT) such that

hm Sup -y ./:: {(t — $)q(s)p(s) — M (%ﬂ)uﬂ( a*)aG(t, s)}ds = go,

t—oco 7P

then Eq.(E) is oscillatory, where p* =1 — p and
p(s)r(a(s))(t — s)* ! pls),,  \er
O~ 2

Proof. The proof follows from Theorem 3.2.1 such that

ps)r(a(s)) A2 p(s) A\ ol
G(t,s) = X [t 5) (t—s)2
(0'(s))" (t - 5) ~— ( p(s) )
(C”(S))
_ (e =Pt o ps) Gy
a (U’(S)‘)a (/\ Ea p(s) (¢ )) '

GiNe\=

Corollary 3.2.5 Let (H,) — (Hs) and (S)) be satisfied. Suppose that there ezists
a constant § such that 0 < p(t) < p < 1. If there exists a positive function
pE Cl([to,oo);R‘*) and ¢ € C([tg,0); RT) such that for some A > 1,

1

tll.’E:, sup @W / {(C(t)—C(s))Aq(s)p(s)—M'(a i I)QH( a*)aG(t, s)}ds = 6%,
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4

then Eq.(E) is oscillatory, where p* =1 —p, C(t) = / c(s)ds and
to

p(s)r(a(s))(C(t) - C(s )"‘_“—1
(a’(5))"

Gt s) = ()\c(s) + ”'(“f") (C(t) - c‘(s)))‘”l.

Proof. Let us put
H(t,s) = (C(t) — C(s))*,  for (t,s) € D.
Then with the choice
h(t,s) = Ae(s)(C(t) - C(s)) 2%, for (t,5) € D,
the conclusion follows directly from Theorem 3.2.1. O

Theorem 3.2.2 Let (H)) — (Hs) and (S)) be satisfied. Suppose that there ezists a

constant p such that 0 < p(t) < p < 1 and there exists function H € P such that

0 < inf [ lim inf H(t,s)] &«

T
s>tg Lt—oc Hr(f to) (3 )

and there ezists a positive function p € C*([tg, 00); RT) such that

/t: M('_IE)G-H( a*)aG(t, <. "

o+ 1 yp

’ 1
imo DL, to)

If there exists a function ¢ € C([to. c>o)) such that for every T > tg

hm sup - /t {H(t, s)p(s)q(s) — M( - )QH( a*)aG(t, s)}'ds > o(T),

tmoo  H(t,T) a+1 P
(3.29)
/ 70 1 ohd B = L4 (3.30)
o (p(s)r(o(s)*
then Eq.(E) is oscillatory, where p* = 1 — p, ¢, (s) = max{¢(s),0} and
B p(s)r(o(s)) p(s) i
G(t, s) - o (\/{ E l(h(t 9+55 H(t,s)) .

Proof. Suppose that there exists a nonoscillatory solution u(t) of Eq.(E). Without

loss of generality, we may assume that u(t) > 0,u(7(t)) > 0, and u(c(t)) > 0 on
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[T, o0) for some sufficiently large T > t;. Define w as in (3.24). As in the proof of

Theorem 3.2.1, we can obtain (3.25) and (3.26). Then, for t > T > ty, we have

Therefore, by (3.29), we have for T > tg

&(T) < w(T) (3.31)

and

}EEOSUP F(t_T) f H{(t,s)p(s)q(s)ds > o(T). (3.32)

We define functions

Alt] = ] /Tt [h.(t, s)VH(t,s) + H(t, s)j(s)]w(s)ds

H(,T)

and

A W A pio'(s) =
Bl = H(t,T) ~[r L, )(Mp(s)r 0(8)))1/a Calef) T do.

Then, by (3.25) and (3.32), we obtain

thﬂnolo inf [B(t) — A(t)] < w(T) - tlixl;lesup H(tl 7 L H(t, s)p(s)q(s)ds

<w(T) - &(T)

< CO.
Now we claim that
oo ! a1
/ ) Gl e o (3.33)
T (p(s)r(a(s)))®
Suppose to the contrary that (3.33) fails, i.e., there exists a T} > T such that
o0 1 o) ]b{ll'“‘
/ - "1@*—1 (w(s)) = ds > —L  forall t>T (3.34)
T (ps)r(o(s))® L

where 4 is an arbitrary positive number and £ is a positive constant such that

It s
inf [hm inf (t.4)

jnf [ lim inf o 0)} > €0, (3.35)
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Using integration by parts and (3.34), we get for all t > T}

_ ,ypx t .’ g’(é‘} s QTH e
Bll) = MEHET) T)/ H(t,.s)( e (3)))1/0( () = 4

a'(v)

p(v)r(o(v)) "

’}’p
ft
Ml/aHrT) 1 (£ /

{Hts*)

Mi/aﬂ t T)

a’('u) ' atl

Ml/aH 3/ a

a1

(w(v)) Tdt:)

3 t
__A1RNS Y B
— Ml/aH(t T) / ( (95 I‘“\{" “!)

a'(v)

(w(u)) = d."u) ds

= Ml/aH (t,T) /  Bs

- 1| 6 B
= MUeH(1, T)/ ( g5 1 &8

.
—L d !
g—H(t—j_;)- a—H(t S 'dS

.
" T
_H H(t Fl)
& HAAR
-k HET)
=€ H{t t)

By (3.35), there exists T > T} such that

H(t,T)

>T.
H(t to) 2§ forall t>T,

which implies that B(t) > p. Since p is arbitrary,

lim B(t) =

t—o0

Next, we consider a sequence {tn}zl in [tg, 00) such that
lim ¢, =
n—oo

and satisfying

lim [B(t,) - A(t,)] = lim inf [B(t) — A(t)]

n—oo t—oo

(3.36)

< 0.
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Hence, there exists a constant K such that
B(t,) - A(t,) < K (3.37)
for all sufficiently large n € N. It follows from (3.36) that

lim B(t,) = oo. (3.38)

and (3.37) implies that
ith Alt,) =2 (3.39)

n—oe

Furthermore, by (3.37) and (3.38), we derive
Alt,) £ K

B(tn) = Blts)
for large enough value of n € N, where ¢ € (0, 1) is a constant. Thus

All:)
R L e N
B(L,) > e>0

for n € N large enough, which together with (3.39) implies that

L"l(linJ)ﬁ+I |

Jo e T (3.40)

On the other hand, by Hélder’s inequality, we have for n € N

Alte) = gy [ [+ VI + )2 )

_® (P o () (i, 5)" &
__L { (H(ta, T)) " Mp(s )r(o—(s))) wl )}X

((ypo’(s)) M,o )r(a(s) )) [h s SV HGn,5) + H(tn, s

H(t,, T)(H(tn, s))"

: ( o (s)H (tn, s )& =%
{Qmﬁﬂ) sﬁdm) @} 7 )
{

((SS))} pas

yp*a’(s)) ﬂfp S)T(TS‘))

H(t, T)(H “
[h(t $)VH(tn,s) + H(tn ;;))}}QH )DH
= |5 p.‘gf&) )S‘QT-HSQLH
- (H / i )wrp(:)r(o(s)))”“( = ]

a+1
1t Mp(s)r(o [hmﬂM_Z?+HhA;ﬂ )

‘\H(tn,T) (vpro'(s)H (L, 5))*
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and accordingly,

()™ M f‘" P (5)) [t 5) /T by ) + H (b, )pl‘(:’)rﬂd.
(:B(tn))a - [’]( T) T (fyp*o.r(s)H(tms))o: S

M /:n p(s)r(a(s)) [h(tn,.s) - H(tn,b‘)i((:))]a'”
H(t,,T) (vp2a'(s)) " (VH (s, s))a_l

So, from (3.40), we have

I _
nesbo AL/ T =

1

. fn p(s)r(a(s))[h(tms)Jr H{tn, s p((s))rH 4
(O'I(S))a(\/m& 1

which contradicts (3.28). Therefore, (3.33) holds. Now, from (3.31) we obtain
© ) e ) s
T (9+(s)) ds < - (w(s)) @ ds < o0,
/T (p(s)r(a(s))) = /T (o(s)r(a(s)))®

which contradicts (3.30). This completes the proof of Theorem 3.2.2. T8

The following result is a direct consequence of Theorem 3.2.2 and use the

same choice of the functions H and h as in Corollary 3.2.4.

Corollary 3.2.6 Let (H,) — (Hs) and (S;) be satisfied. Suppose that there exists
a constant p such that 0 < p(t) < p < 1 and there exist positive function p €

C([to,00); RY) and function ¢ € C([to.oo)) such that (3.30) along with

Ct+1 o o
lim sup — / ( ) G(t,s)ds < 00
t—oo " a o+ 1 Fp*

holds and

im s [ (6= 9a(0) = ()" (-2) 60 ) s 2 6(7)

for all T > ty and for some A > a. Then Eq.(E) is oscillatory, where p* =1—p

and

o () = st o ps)
G(t, s) = (s))“ (,\+p(s)( )) .

Proof. The only thing to be checked is condition (3.27). With the above choice of
the functions H and h, this is fulfilled automatically since

H(t,s) - (t — s)*

im ——* = lim ——— =1
t—oo H(t, to t—oo (t = tg)'\

for any s > . O
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Theorem 3.2.3 Let (H;) — (Hs) and (S1) be satisfied. Suppose that there exists a
constant p such that 0 < p(t) < p < 1 and there erists a function H € P such that
(3.27) holds and there exists a positive function p € C'([to,0); R*) such that

lim SUP H t,s)p(s)g(s)ds < oo. (3.41)
t—oo t t{]

If there exists a function ¢ € C([t,. oo)) such that for every T > tg

)7 (=) Gt s 2 a)
(3.42)

T {H(t, 8)p(s)q(s) — M(

t—oo  H(t,T) Jr a+1

and (3.30) holds, then Eq.(E) is oscillatory, where p* =1 — p and

( (s)r(a(s)) 0'(3) a+1
G(t,s) = PQ - h(t.s) + H(t. s )
40 = ) A e Gy VAE)

Proof. Suppose that there exists a nonoscillatory solution u(t) of Eq.(E). Without

loss of generality, we may assume that w(t) > 0,u(7(t)) > 0. and u(o(t)) > 0 on
[T, o0) for some sufficiently large T > #5. Define w as in (3.24). As in the proof of
Theorem 3.2.1, we can obtain (3.25). (3.26) and

1 & } 1 atl y o \ @ ]
Los)p(s)g(s) — M — ) G(t,s) pds < w(T).
hm inf — T / {H(f, $)p(s)q(s) M(a+1) (“rp*) ((f,s)st < w(T)
Therefore, by (3.42), we have
&(T) <w(T) for T >t (3.43)
Using (3.41) and (3.25), we conclude
1 t
. _ < (T — Vi inf - x ,
}H&, sup [B(t) — A(t)] < w(T) tlixgmf ) fT H(t,s)p(s)q(s)ds < oo,

where A(t) and B(t) are defined as in Theorem 3.2.2.
It follows from (3.42) that

o(T) < 11m 1nf ) f H(t,s)p(s)g(s)ds

— tim i H_(j—T) L t ()™ (=) 6ts)as.

Hence, (3.41) implies that

lim ‘inf

t—oo : T)

cx+1 8% a
s )ds : 44
a +1 (W) G(t, s)ds < oo (3.44)
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Next, we claim that

fx 2 1e) - (w(s))%la’s < oo. (3.45)
/i (p(.s)?“(cr\(.s))) a

Suppose to the contrary that there exists a number 7} > T such that
oo Pl o axl Ml/a

-/ U(-‘J) - (w(ar)) s> -

T (p(s)r(o(s)) P

where u is an arbitrary positive number and § Is a positive constant with satisfy

forall (>T

(3.35). Using integration by parts. we get for all t > T}

o'(v) a1
R MI/QH /H(t S)d / (p(v)r(o(v))) (w(v) dv)
o Y o'(v) atl
:ng(m /T (- s(ts)( fT ) o) ds

A " /e,
> T [ (- ) (5

— 11 Lo
- Eﬂ(f*_ﬂ—T) 7, 0 B b E)ds
_wH(tT)
¢ HET)
> E _H_(t.’_‘@
= £ H(t 1)

By (3.35), there exists 75 > T} such that

HL,T) |
H(t 1) =

for all ¢t > Tp,

which implies that B(t) > u. Since p is arbitrary,

thml B(t) = oo. (3.46)
oc
Considering a sequence { tn} in [ty,00) with lim ¢, = co and satisfying
n=1 n—oo

lim [B(t,) — A(;tn)] = tlgfr; sup [B(t) — A(t)] < oo

n—oc

Hence, there exists a constant K such that

B(tn) — A(ta) < K (3.47)




37

for all sufficiently large n € N. It follows from (3.46) that

lim Bit,) = (3.48)
and (3.47) implies that
lim A(t,) = oo. (3.49)
Furthermore, by (3.47) and (3.48), we derive
Alt,) K
1-— < <
Bltn) = Blt)
for large enough value of n € N, where € € (0,1) is a constant. Thus
A(t,)
B loige>U

for n € N large enough, which together with (3.49) implies that

¢ a—1
lim (A)) " _ 0. (3.50)

B0 (B(tn))a

On the other hand, by Hélder’s inequality, we have for n € N

A(tr)

N ti,T)/m [h(tn,s)\/ﬁmﬁ+ H(tn,s){:(:)]w(s)ds

o' H(tn,‘s))a =
f {M‘},:Es )r(o( s) (tn,T))a] w(s)}x
a'(s))  Mp(s)r(o(s)1z ]
ey v i O e R R )

1 [ 1o’ (s) sl |
= (H(tn,T)j H(tms)(Mp(S = ()))1/0(11)(5)) ds) ™" x

L e Mpls)r(@(s)) [ Altn, 5) v E(Ew, 5) + H(tn, 5) 43
(H(tn,T) ]:r (vpro'(s)H (tn, 8))°

and accordingly,
(B(tn))™ ~ H(ta,T) Jr (W b)H( mes '>)“
ftn p(s)r(a( h(f.n. 8) + v/ H(tn, 3)?,’((:))}&?
fmT) (vpro' ()" (VH (t, 5)) "

i
] ;
ds)a_ﬁ

S
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So, from (3.50), we have

_ 1 tn p(s)r(o(s)) [h( ,s) + mﬁt—”a—l
lim [ o
)b (0"()) " (V/Htw, 9) "™ ’

which contradicts (3.44). Therefore, (3.45) holds. Now, from (3.43) we obtain
oo () et < (s atl
f 7)o d.s-gf il WEY o PPN
T (p(s)r(a(s)))" T (p(s)r(o(s)))®
which contradicts (3.30). This completes the proof of Theorem 3.2.3. |

Theorem 3.2.4 Let (H,)—(Hs) and (S2) be satisfied. If there exist function H € P
and positive function p € C*([ty, 00); R*) such that

thm SUp — L 5 /t {ﬁH(t s)p(s)Q(s) — M (;)Q-HG(LS)}C{S =0, (3B

(t,t a+1
then Eq.(E) is oscillatory, where Q(t) = q(t)(1 — p(c(t)))" and
($)r(a(s)) o'(s) a+l
als) =T AT (el H(ts)) -
(a'(s)) (\/H(t,s)) ( (e pls) )

Proof. On the contrary, we may assume that () is an eventually positive solution
of Eq.(E). From the proof of Lemma 3.1.2 and Theorem 3.1.2, we conclude that
u(t) > z(t) (1= p(t)), r(t)e(u(t))|2'(¢)|*~12'(t) is decreasing function and 2/(t) > 0
on [T, 00) for some sufficiently large T > t,. Hence, from Eq.(E) and o(t) < t, we
have for t > T

T(t)w(U(t)))ﬁ

2ot 2 70 (3o

and
(r@)w(u®) (2 (#)%) + 8Q(t)2%(a(t) <0

where Q(t) = q(t)(1 — p(c(t)))”. We define a function w by

=T, (3.52)
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Then w(t) > 0 and

- (Z((T(f)))a i) (z(a(?‘,)))u
_ (OO (#(0) o () o'()

(2(a(2)))*"
AU , r(t) w(u(t) '(t) L r(e)w(u(t)y 2
< S0 = 0090 = o O == — ()
A" TR _ ey r(t)w w(£))(2(1))°
C(t) = 5(1Q() el (,o() O )
_ 20— S adl) e
0 (t) = Bp(t)Q(t (Mp(t)r(a(t)))”"( (t) = .

Consequently, we have

/ﬁﬁta!p s)ds < — ]Hts s)ds +

H(t, s Ll 5) (s) °T”ds.
] Mp s)r( J(s))) ( YN )

Since

t \ . A\ B t 8
/T H(t, s)w'(s)ds = — H (¢, T)w(T) — /T w(s)>—H(t, s)ds

and in view of (3.22), the previous inequality becomes

| st speQs
< H(LT)w(T) + / tw(s)z%ﬂ(t,s)ds+ f “H(t, )2 w(s)ds

p(s)
) : ’ ao’(s) il
/I\" H(t? )(_M_rp(s)r((}'(s)))l/a ('UJ(S)) dS

= H(t, T)w(T) — / tw (3)A(t, s)\/H(E, s)ds + /T H(t,s)pl((s))w(s)ds

p(s
aa’(s) oL
/ Hi%. ) (Vo) ols) )/a (w(s)) = ds

< H(t, T)w( )—i—/ [h(ts Hit,s)

)p’(S)
p(s)

/ H(t (w(s)) % ds (3.53)

]w(.s)d.s
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In Lemma 3.1.1, we let

e+l , (ad' () (L 5) "\ ar
d=——>1 X *( Mo(s)r(a(s)) ) i

and

= () (M TET + ) (Moo o

a+1 n(s)

From Lemma 3.1.1, we then obtain for t > s > T

h H(t H( i(—ﬂws — H(t,s iy, w(s &
‘ (t,s)V/H(t,s) + tS)p())] (s) (t é)(.Mp()(()))l/a( (s))

< é[(j%)a(h(tws)\/ff_('er H(t. ) (( ))) ((Mp((s));((t(sﬁ )—]—
1 at '(s)\*+tl Mp(s)r(a(s))
- E(a_a_l) ( (f) \/_(t s)+ H(t '0( )) (ao’p(s)H(t,j])a

(@) (VI 9)) A(s)
3)”* alt,s).

o
Hence, (3.53) implies for [ > s > T
£

"
= M(a jl)aﬂ( p(s)r(a(s)) . 1(h(t,s)+p,(5) H(t,s))m-l
( 1

f BH(t, )p(s)Q(s)—M(EI—)HIG(t,s)}ds5H(t,T)w(T) (3.54)
iy

+1
< H(t, to)w(T).
Thereby, including (i7), we conclude that for ¢ > ¢

/t t { BH(t, 5)p(s)Q(s) — M(ﬁﬂ‘”lcu, .s)}ds

/t {8 )s) - M(==)"" 6t Jas
/ {ﬁH t,8)p(s)Q(s) — A’f(a—_lf_—l)aﬂ(}(t,s)}ds
/ BH(t, s)p(s)Q(s)ds + H(t, to)w(T)

< H(t, to) / Bp(s)Q(s)ds +'w(T)}.
to

Accordingly, we obtain

[ {prespeae - ()" o as

H(t, to) J,, 1

T
< f Bp(s)Q(s)ds + w(T) < oo
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for t > ty. Taking the limit superior as ¢ — oc in the above inequality, we obtain

a contradiction to (3.51). which completes the proof of Theorem 3.2.4. a

As immediate consequences of Theorem 3.2.4, we obtain the following

Corollaries.

Corollary 3.2.7 Let (H,)—(Hs) and (S2) be satisfied. If there exist function H € P

and positive function p € C*([ty,00); R™) such that

fim sup 77 [ (L 9(6)QL5)ds = o,

and

lim sup

‘ L (2 elrnd
li — 7 [
t—oc H(t,to) /t;) (a + 1) ( y S‘) =% OO’

then Eq.(E) is oscillatory, where Q(t) = q(t)(1 — p(rf(t)))” and

‘ s)r(o(s) o'(s) o+l
G(t,s) = pa h(L,s) + ois) .
(o'(s))* (VH2. ) ( ’ )

Theorem 3.2.5 Let (H:) — (Hs) and (S2) be satisfied. Suppose that there erists
a function H € P such that (3.27) holds and there erists a positive function p €
C*([to, 00); RY) such that

I NSV g ¥ 3.55
tiIEoSllp m’j‘/ﬁl} (a—-l—l) J(A,S) S5 <.00. ( ; )

If there ezists a function ¢ € C([to. oo)) such that for every T > tg

Jim sup s | {BH( (@)~ M ()" Gltis)}ds 2 6(7) (3.50)

and (3.30) holds, then Eq.(E) is oscillatory, where Q(t) = q(t)(1 — p(c(t)))” and

o p()r(e(s) J(s)
G, s) O TS (h(t,s)+p(s) H(t,s)) .

Proof. Suppose that there exists a nonoscillatory solution u(t) of Eq.(E). Without

loss of generality, we may assume that u(t) > 0,u(7(¢)) > 0, and u{o(¢)) > 0 on
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[T'. c0) for some sufficiently large T > to. Define w as in (3.52). As in the proof of
Theorem 3.2.4, we can obtain (3.53) and (3.54). Then, for t > T > t;, we have

: 1 . 1 a+1
tlirgjsup mﬁ,/;r {[ﬂH(t,s)p(s)Q(s) - M(Q_H) G(t. s)}ds < w(T)
Therefore, by (3.56). we have for T' > ¢
¢(T) < w(T) (3.57)
and
/ t H{t ds > (T 3.98
Jim sup 7o | BH(L,9)(5)Q(s)ds 2 o(T) (3.58)

We define functions

At) = — /T [h(t,s)\/H(t,s)+H(t,s)%]w(s)ds

HE.T)
and
. 1 ; . ao’(s) atl
BO) = 7079 fT CE v e SO

Then, by (3.53) and (3.58), we obtain

_ 1 .
y B 2 o ;
thj&mf [B(t) — A(t)] < w(T) tlﬂg.q sup AT fT BH(t,s)p(s)Q(s)ds
S w(T) - ¢(T)
< Q.
Now we claim that
ock / a+
/ 7 {5) T (w(s))Tlds < B0, (3.59)
T (p(s)r(o(s)))®
Suppose to the contrary that there exists a 7} > T such that
3 a'(: L cafil ¥ /e
/ 7 (5) — (w(s)) "Ids = A p forall t>T) (3.60)
T (pls)r(o(s))* o

where p is an arbitrary positive number and £ is a positive constant such that

)
;gﬁfo [tllrglo inf m} = E50. (3.61)
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Using integration by parts. we get for all ¢t > T}

By = —© “me ol [ il o
A= Mm(t_ﬁ/q: H(t.s)d(fi“ (P(U)T(U(v)))l/a(”J(L)) {h')

o ‘ d ¢ 4 a=1
» HWW/ (- aH(t,.s))(/T (,O(U);;?i)))l/ﬂ(w(v)) " dv)ds

ey
= Ml/aH t T)/ HiA 5))( af )d"’
e 41 ]
EH( ) " s H(t,s)ds
_r HET)
§ H(t,T)
3 (T_>
~ & H(tto)

By (3.61), there exists T, > T} such that
H(t:zrl)
_ > f 1L L
H(t tg)—§ HRAE [

which implies that B(t) > . Since y is arbitrary,

tlim B(t) = . (3.62)
Considering a sequence {tn} in [tg,00) with lim ¢, = oc and satisfying
n=1 n—o0

lim [B(t,) — A(t,)] = tliIglo inf E(tﬂ) - Z(tn)] < B0,

n—oo

Hence, there exists a constant K such that

B(tn) E ;[(tn) <K (363)

for all sufficiently large n € N. It follows from (3.62) that

lim B(t,) = oo. (3.64)
and (3.63) implies that
lim A(t,) = oc. (3.65)
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for large enough value of n € N, where ¢ € (0,1) is a constant. Thus

for n € N large enough, which together with (3.65) implies that

(A
lim —————— = 0. 3.66
N—s 00 (B(in))' s ( )

On the other hand, by Hélder’s inequality, we have for n € N

Ally)

p)/ A, $)V/H(ln,s) + H(Ly, s)

R I
“fT (remaeny =)

(ad'(s ] r(o(s)] e -
(K H((tn),)T) &’}’E” )" ) [T a0 95 s

s (}7(_1_ [tn Hit,.s) ac'(s) (u( ))Q:ldé) iy y

AT ( (Mp(s)r(a(s)))
1 rtn Mp(s)r(o( [ \/T"‘H ny 8 p(s)]o+1d )n:;-l-l
(H(tmT) - (acr (s)H(fmS)) ; ,
and 7 accordingly.
a+1
(A)™ M e Pl () [t ) /e 3) + Ht )53 d
(B(t))" ~ H’(tn,T)/ (ao’(s)H (tn, 5))" S
M f tn p()r(0(6)) | hltn: 8) + v/ Hltn, 51583 ]a+[d
= @) AED)
So, from (3.66), we have
. /tn A (o () [t ) + /928" Al
st H{t,, TP (O"(b‘))a( H(ln,S))a—l o

which contradicts (3.55). Therefore, (3.59) holds. Now, from (3.57) we obtain
/ - o) T (q‘)ﬂs))fz}ds <f 7'(s) = (w(s) s < 00,
T (p(s)r(o(s)))® T (pls)r(o(s))®
which contradicts (3.30). This completes the proof of Theorem 3.2.5. g
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Theorem 3.2.6 Let (H,) — (Hs) and (S2) be satisfied. Suppose that there ezists
a function H € P such that (3.27) holds and there ezists a positive function p €
C' ([to, 00); R*) such that

i

lim
P )

/ BH(t,s)p(s)Q(s)ds < co. (3.67)

If there ezists a function ¢ € C?([tg, oo)) such that for every T > t

i int L [ {19000 - M ()" 0t Jas 2 9() 369

and (3.30) holds, then Eq.(E) is oscillatory, where Q(t) = q(t)(1 - p(a(t)))” and

G(’t, S) o] p(S)T‘(G(S)) e (h(t, S) + p’(S) H(t, S))CI-H'-

(o'()" (VIT(2.5)) "

Proof. Suppose that there exists a nonoscillatory solution u(t) of Eq.(E). Without

loss of generality, we may assume that u(t) > 0,u(7(¢)) > 0, and u(o(t)) > 0 on
[T. 00) for some sufficiently large T > t. Define w as in (3.52). As in the proof of
Theorem 3.2.4, we can obtain (3.53), (3.54) and

lim inf H(tl - f {BH( 5)os )Q(s)—M(%H)wl(}(t,s)}dsgw(i”).

Therefore, by (3.68), we have
o(T) <w(T) for T >t (3.69)
Using (3.67) and (3.53), we conclude

Jim sup [B(t) - A(t)] <w(T) - lim infﬁ(tl‘—T)—/T BH(t,s)p(s)Q(s)ds < oo,

t—00

where A(t) and B(t) are defined as in Theorem 3.2.5.
It follows from (3.68) that

t—oo

#(T) < lim inf — tT)/ BH(t,s)p(s)Q(s)ds

Hence, (3.67) implies that

lim inf —— [ a(——)" Gz, 5)d 3.70
tlr})]oln m'/r (m) (t,S) S < Q. ( 3 )
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Next, we claim that

r(o(s)))"

Suppose to the contrary that there exists a number T; > T such that

OO O"(S) Q&%
T (w(.s‘)) e ds >
jr (o(s)r(o(s))) ® L

where 4 is an arbitrary positive number and £ is a positive constant with satisfy

b o'(s) -l
- (w(s)) = ds < o0 (3.71)
/'*" (p(s)

1/
forall t>1T,

(3.61). Using integration by parts, we get for all { > T}

B(t) = HWC;(L—T) /T H(t,s)d( fT ) (p(v);f(}i)))l /,, (w(v))QTHd'u)
o : ' . g a'(v) 5 St
= ey (57N, Gt ) ¥ )

\ t 4 rl/a
> Yt T f (- 57ws) (Mag'u)ds

Ty
— 1 ta
= 0T /j:l aH(t,s)ds
R LG
& H(t,T)
T & H(t,to)

By (3.61), there exists 75 > T such that

H(t,T)
N fi W &t
G f) S & £2 1,

which implies that B(t) > u. Since u is arbitrary,

lim B(t) = co. (3.72)

t—oo

o0 -
Considering a sequence { tﬂ} in [to,00) with lim ¢, = cc and satisfying
n=1 n—oo

i — At = lim i Ly — A .
nlﬂnge [B(tn) — A(tn)] tl_l*l’&]nf [B(ta) — A(tn)] < o0
Hence, there exists a constant K such that

B(t.) - A(ta) < K (3.73)
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for all sufficiently large n € N. It follows from (3.72) that

lim B(t,) = co. (3.74)
and (3.73) implies that
lim A(t,) = oco. (3.75)

Furthermore, by (3.73) and (3.74), we derive

Alln) K
—_e = <8 €
B(t.) =~ Blty)

for large enough value of n € N, where € € (0,1) is a constant. Thus

for n € N large enough, which together with (3.75) implies that

lim —(M =50+ (3.76)

o (B(t)"

On the other hand, by Hélder’s inequality. we have for n € N

A(t,)

1 tn p'(s)
"Emﬁfrp [h(tn,s)\/ﬁ( $) + H(tn, s) ()] w(s)ds

oo (ad(s)(H(tn,5))° 12k
=/T {l.f\/[;s)r(a(s)(H(tmT))a} 'w('g)}x

{[(00’(8))"&MP(8)7‘§<)7£S)]n+1[ o ) 4 Hit, )2 )]}

H (b, T) (H (tn, s o)

i P i ad'(s) » el QLHX
S(H(t""T) Jé H(th)(MP(S)T(G(S)))UQ( (s)) ds)

1 [tn Mp(s)r(a(s)) [h(tn, s)\/ H(tn,s) + H(tn, s)‘:((:))]mﬂd L.
(H(tn,T) jT (ac’(s)H (tn,s))" 5) "

and accordingly,

ds

Aea)™ M /tn p(s)r(cr(-s))[h(tn,s) H(tn,s)JrH(tn,s)’;((j)J
(B(t))" ~ H(ta,T) Jr (ao’(s)H (Ln, )"
i a+1
_ M /tn ﬂ(-*)r(cr(ﬂ))[h(tn,s)+ H(tn,s)f;((;;]
At (00'())" (/T (f5) "
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So, from (3.76), we have

s = o0,

lim : [t” p{""‘)r(g(-ﬁ’))[h(t ,8) +/ H{t,, s)f';((;))]
e (@) (A

which contradicts (3.70). Therefore, (3.71) holds. Now, from (3.69) we obtain

- a'(s) . \Etl & a'(s) atl
— T (94(s)) = ds < + (w(s)) = ds < o0,
/3; (p(s)r(a(s)))" /T (p(s)r(a(s)))“

which contradicts (3.30). This completes the proof of Theorem 3.2.6. O

3.3 Applications

For illustration we consider the following example of second order nonlinear

neutral delay differential equations.

Example 3.3.1 Consider the nonlinear neutral differential equation

!

[jﬁ@](u(ﬂ + (% — e Hu(t — ﬁ))"a_l(u(t) + (% — e Yu(t - ﬁ))’]

lu(A)|* (M) =0, ¢>1, (3.77)

t01+1

where 0 < A< 1, AR, a0 Qo < T Worboue

1 1 1 a
) = = - < = _egt = —_— =K - 1
r(t) = 1,9 (u) Tt = 1,p(t) 5 ¢ < 2,q(f) ta+1’T(t) t—k,0(t) = A\t
Since
7"1/“(cr(t))R°‘+1(J(t)) a (At —1)of! .
q(?) o (@) FEed 3 = @GN as t— o0
and

o) () -G -

it is easy to see that condition (3.12) reduces to

% a+1
a® > 2“( ) . (3.78)
a+1

By Corollary 3.1.2, Eq.(3.77) is oscillatory if (3.78) holds.
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Example 3.3.2 Consider the nonlinear neutral differential equation

1—6”MHHKDTF%MH+(L—€“MU-nnT

ae)\(y;tl
+ —|u(A) 2P =T, i>1, (3.79)

{a+1

[2 + u.2(£ M

where 0 < A <1, k>0, a0, a>0, u>0. We have

1 it ae,\(u:!.
r(t) =1,¢(u) = o uQ,p(t) =1l —e gt g ,T(t) =t — Kk, 0(t) = AL.

Since
sa "B o (8) _ a1~ (1~ ) (¢ pyen
g a'(t) - tatl A
e~ rt(1-A) 1y o+l
- =)
= g\ as t— oo
and

A{I(_r_{_)ﬂ‘rl _ l( ¥ )(}+1‘
o+ 1 2\a +1

It Is easy to see that condition (3.20) reduces to

A" > %(a i l)a“. (3.80)

By Corollary 3.1.4, Eq.(3.79) is oscillatory if (3.80) holds.

Example 3.3.3 Consider the nonlinear neutral differential equation

1 Tt 1 ) 7
h+muﬂ”ﬂ+“ qmnqmmn|‘@@+u~zm@—mmm]
a b gl 7 B
+ 2 lu(3)l u() =0, t>1, (3.81)
where A > 1, a >0, a > 0. We have
)=1¢() = = 4>p()_1‘%:9’@)Z%,T(t)=t—]sint|,o(t)=§.
Since |

OO (o(1) _a(l— (1= 1) (4 — 1)
bp(t) (1) - i AUA |




and

a+1 a+1
Bleer) =l
o+ 1 a+1 '

it is easy to see that condition (3.20) reduces to

:\% & (ai 1)a+1, (3.82)

for n > 1. By Corollary 3.1.4, Eq.(3.81) is oscillatory if (3.82) holds.

Example 3.3.4 Consider the nonlinear neutral differential equation

3l ]

z )
+t""2(V( fCCEt_) 'FSnt)lu(#t)la"IU(ut)ZU, t=1, (383

where 0 < ¥, u < 1, v is arbitrary positive constant and &, « are constant such

1
that Kk + @ > 2 and a < 1. We have r(t) = t7", ¥(u) = T S <1, 4q(t) =
(2 — cost 1 1
2 (i'_h_f‘ ) + sin t). it = = et < 3 7(t) = ¢, o(t) = ut. Here, we

choose p(t) =t and H(t,s) = (t — s)? for t > s > ty. Since

p(t)q(t) = t2 [t”—z(i@—}c—oﬂl 4 sint)]

(2 —
:ﬁ@LfEﬂ+mQ

(t 2 — cost)),

we get

f p(s)q(s)ds = / d(s*(2 — cos s))

to Jip

= 1"(2 —cost) — t5(2 — costg)

Eity'_ kU:

where kg = 5(2 — cos(p), and

p(s)r(a(s)) 1 o' (s) a+1
~ ——(%lt, 8} + H(t,s)
(o'())* (VH (. 5) ( )
SR

(Zt)t:le(t _ S)lfar

#a+x5a+m—1

G(t,s) =




Therefore, we have

tto}-/ H{(t, s)p(s)q(s)ds
- f (t - 5p(s)a(s)ds

_ (leﬁ /t:(t ~ s ft p(r)a(r)dr )

> (=97 [ o + [ 22— )(s" — ko)ds]

- (t = t0)2 to = to
2 [f ‘
= ts” — thg — s¥1 + sko)ds
(t — to)? to( ’ ;
B 2 |:t30+1 - Su+2 32k0:| t
N (T o N
5 ' ko e = ik
- £2 ) t( koto — ) ( 0 )J
(t—tD)?[ ((y+1)(y+2) 2) " (” v+1 vi2 |2
1 oV tv—H tu+2 tzkg
(1—25)2[{u+1)(u+2) °+ koto v+1 (u+2 2 )
= 00 as [ — oo.

and
L M) () e
__._.._-._._ —— 5 S
H(t, to) to = 1 P >
1 S Tl B
= 2 2 ( ) a+K ga+Kk—1 ds
(t—10)% Sy a+1 portrgnd
< kl ta+1(t _ to)l—a /t 1 N
= (t b tO)Z - gotr—1
kl o+l ‘52-—01—.': t
B (t N to)ﬂ"'l |:2 or— K]s:tg
) ki (1 1 t_o') (a+1}(t_(a+nA2) B ta(a+n—2))
2 A t
k f Ct+r€ 2)
Sldks—2
< 00 as t— oo,
1 a+1 22{1-0—1
where k; = ( ) Consequently, by Corollary 3.2.1, Eq.(3.83) is
it 1 s

oscillatory.



Example 3.3.5 Consider the nonlinear neutral differential equation

(0)+ (1= D) "™ (w) + (1 = D))’

[2 + u?(t) i
+ o2y (pt) |2 lufut) = 0, > (3.84)
where 0 < ¥, u < 1, v is arbitrary positive constant and &, o are constant such that

k+a>2and a < 14We have r(L]s 575 ¢(u) = R

1 < 1

2+ u(t) — 27
1

p(t)=1- s 7(t) = 9t. o(t) = ut. Here. we choose p(t) = t? and H(t,s) = (t—s)?

for { > s > ty;. Hence

/ BH(t,s)p(s)Q(s)ds

ato

1 t 1 (o3
. to

s
1 t
= — t — s)%s¥ds
e ASD

1 fz 2 1 2
5 t°s" — 2ts"7 + 57 )ds
(L= ta)? J;, ( )
|\ 1 [tzs""] O sHEe " g¥+3 ]e
W\ -t02leNl  v+2 " w+Blls,
_ b [ g iz e AN J
TR P D 2)r+3) L2+ | 442 va3
n 1 [ Qv+l t5+1 2t5+2 t5+3 ]
= (1- %Q)? (v+1D(v+2)(v+3) v+1 v+2) 2(v+3)
= 00 as t— oo,
and
1 : 1 a+1
M(—~) t,s)d
Hit, tg)_/ 1) Gls)ds
1 k2t0+1 ’/t (1f ’ S)luads
(t 48 10)2 Jio gat+r—1
k: a+1 _ t Y]—a t
S 2 t (t 0,) / . A
(]L = t0)2 t Sa-&-ﬁ—l
ks (1 B t_g) —(a+1)(r(a+ﬁﬁ2) . ta(a+n—2))
2—a—k t
k t—((}*h—z)
= Q__.__ < 00 as t 3 OO,
a+K—2
il 2 a-1 |
where k; = 2_(1_( Y 1) . Consequently, by Corollary 3.2.7, Eq.(3.84) is
,LL +K

oscillatory.



