CHAPTER 4
CONCLUSION

In This thesis, we study oscillation criteria for second order nonlinear neu-
tral differential equations of the form (E). We provide sufficient conditions for

oscillation of Eq.(E). The results are summarized as follows.

1. Some new oscillation criteria

Theorem 3.1.1 Let (H,) — (Hs) and (S1) be satisfied. Suppose that there ezists g
constant p such that 0 < p(t) < p < 1. If
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where p* = 1 — p, then Eq.(E) is oscillatory.
Theorem 3.1.2 Let (H,) — (Hs) and (S2) be satisfied. If
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where Q(t) = q(t)(1 — p(o(¢)))*, then Eq.(E) is oscillatory.

2. Philos’s type oscillation criteria

Theorem 3.2.1 Let (H,) — (Hs) and (S1) be satisfied. Suppose that there erists a
constant p such that 0 < p(t) < p < 1. If there exist function H € P and positive
function p € C*([to, o0); R*) such that
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then Eq.(E) is oscillatory, where P =1—p and
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Theorem 3.2.2 Let (H1) — (Hs) and (S1) be satisfied. Suppose that there exists a

constant p such that 0 < p(t) £ P <1 and there erists function H € P such that
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and there ezists a positive function o G {5 00); R™) such that

t i a+1 187 «
lim su ( ) (——) G(¢, s)ds < co.
t—oo p i, 0) Jt/g L] yp* (
If there ezists a Sunction ¢ € (J( ) such that for every T > to
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then Eq.(E) is oscillatory, where Pr=1-p ¢.(s) = max{¢(s),0} end
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Theorem 3.2.3 Let (Hy) — (Hs) and (S1) be satisfied. Suppose that there erists q
constant p such that 0 < p(t) £ P <1 and there exists g function H € P such that
(3-27) holds and there exists q positive function p € C'([ty, o0 ); R¥) such that

t
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If there exists a function peC ([to, co)) such that for every T > to
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and (3.30) hold, then Eq.(E) is oscillatory, where pPP=1-pand
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Theorem 3.2.4 Let (H,) — (Hs) and (S») be satisfied. If there exist function H € P
and positive function p € C([to, o0); R*) such that
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then Eq.(E) is oscillatory, where Q(t) = 9(t)(1 - p(a(t)))® and
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Theorem 3.2.5 Let (H,) — (H;) and (S2) be satisfied. Suppose that there erists
a function H € P such that (3.27) holds and there erists a positive function p €
C'([to. o0); R*) such that
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If there ezists a function ¢ € C([ty, 00 00)) such that for every T > t,
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and (3.30) holds, then Eq.(E) is oscillatory, where Q(t) =q(t)(1 - p(a(t)))® and
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Theorem 3.2.6 Let (H,) — (H;) and (S2) be satisfied. Suppose that there ezists
a function H € P such that (3.27) holds and there exists a positive function p €
C([to, o0); R*) such that

lim sup —— i )/ BH(t,s)p(s)Q(s)ds < .
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If there ezists a function ¢ € C([t, 00)) such that for every T > t,
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and (3.30) hold, then Eq.(E) is oscillatory, where Q(t) = q(t)(1 — p(a(t))® and
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