CHAPTER 2

Tau-p TRANSFORMATION

Seismic data are usually recorded and processed as a function of the traveltime
(#) and source-receiver offset (x), so called time-space domain (f-x domain). The
same data can also be represented by a plot of the slope (p) of events in z-x domain
against the intercept on the time axis (), so called linear tau-p domain (Diebold and
Stoffa, 1981). Whereas the Fourier transform represents data as a superposition of
harmonics waves, the linear fau-p transformation represents the same data as a
superposition of straight-line events. The straight-line events in -x domain, such as
the direct wave, headwave events, ground roll and air wave, transform to points and
the hyperbolic reflections in #x domain become ellipses in the linear fau-p domain
(Telford et al., 1990). Also, the seismic data can be represented by a plot of the
curvature (g) of hyperbolic events in #-x domain against the intercept on the time axis
(7), so called parabolic fau-p domain. The parabolic tau-p transformation represents
data as a summation over hyperbolic curved trajectory. Thus the hyperbolic events in

t-x domain are transformed to points in parabolic zau-p domain

This chapter explains the mathematical relations of the seismic wave in f-x
domain, linear tau-p domain and parabolic tau-p domain, follow by the application of

the tau—p transform,

2.1 The seismic events in time-space domain

Consider a homogeneous layer model in Figure 2.1 (a) which has a single
layer thickness 4 and velocity v; over a half-space velocity v2. There are 3 simple
seismic wave forms. The first is a direct wave (D), travels directly from a source to a
sequence of receivers. The second is a refracted wave or headwave (H) (in the case of

Vi <v;only), travels from source and incidences at the critical angle (8,) at the higher
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layer interface then travels along the interface with the velocity of the lower medium
and refracted back to the surface, The third is a reflected wave (R), travels from
source and incidences at the layer interface then reflected back to the surface. These
waves are detected by the sequence of receiver with different distance from source

and plotted in #-x domain, called shot record (Figure 2.1 (b)).

Rgceiver
..

(b)

Figure 2.1 (a) The source-receiver geometry for a single layer model with v; < va.
The ray path in the model can be detected by the series of receivers. (b) The shot
record plotted in the f-x domain where D, H and R are the direct wave, the hcadwave
and the reflected wave, respectively.

The linear travel time events, directed wave and headwave, can be expressed

in the function of distance as

t=t,.+?%5 , @.1)

where ¢; Is a intercept time and f{v) is a velocity function.

In the case of the direct wave, # = 0 and the f{v) = v,. Thus the direct wave

traveltime (Zp) can be written as

== . (2.2)
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For the headwave, £; = 2kcos, / v; and f{v) = v,. Thus the headwave traveltime

(2x) can be written as

x (2.3)

The hyperbolic traveltime event, reflected wave, can be expressed in the

function of distance as
X
P=+7 (2.4)

where #; is the zero offset traveltime, source and receiver at the same position, or the
normal incident traveltime, £ = 2hA;and v; is the velocity of the layer media, in this

case v; = v;. Thus the reflected wave traveltime (zr) can be written as

2 2
£ =[2—hJ +[1J . (2.5)
Yy v

Rewriting the equation (2.4) by using a binomial expansion approximation of
the square root, the hyperbolic traveltime event becomes the parabolic traveltime

event (approximately to the second order of x) as

2
t=t, {(1+=— A 2.6
0 v} (26)

JC2

2
2tyv;

it + (2.7)

Hence the hyperbolic event, equation (2.6), becomes approximately the
parabolic event, equation (2.7). The traveltime formula for the multi-layer is shown

in Appendix C.
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2.2 The seismic events in fau-p domain

The tau-p transformation is a mathematical technique that has seen popular
usage in seismic data processing and analysis. It is a processing tool utilized to exploit
the differences in the moveout of seismic events. Variants of the algorithm are
commonly employed in discriminating between primary reflections and other types of

coherent noise.

The simplified formula for two-dimensional (2-D) generalized rau-p

transformation is given as (Beylkin, 1987)

m(p,7)= | [d(x,0)8t = t(z, p,)]dedx 2.8)

where the function d(x,f) is the input signal in time-space domain and m(p,7) is the

output function in tqu-p domain. The Dirac delta function (8) identifies rectilinear
path that is a specified set of projection, given by ¢. The function ¢ is particularly

defined for the fau-p transformation.

2.2.1 The linear tau-p transformation

The linear tau-p transformation or slant-stack transformation involves

summation along line (Thorson, 1978)
f=r+px (2.9

where 7 is the intercept on the time axis and p is ray parameter, defined by

_dt _sind
Pem ™

i

(2.10)

where 6 is dip angle of the ray path.

Hence the transformation in equation (2.8) can be written as

m(p,7)= [ [d(x,0)01t =+ pxldedx . 2.11)



23

The inverse linear taw-p transformation may then be written as

d(x,1)= [ [m(p,7)5[z =t - pxldzdp . (2.12)

The linear fau-p transformation is most easily treated in the temporal Fourier

domain. Let D(x,®) and M(p,w) be the Fourier transformation of d(x,7) and
m(p,7), respectively, where @ is angular frequency. The forward linear fau-p

transform is given by
M(p,0)= [D(x,0)edx , (2.13)
The inverse linear fqu-p transformation is given by

D(x, )= [M(p,w)e™dp (2.14)

Case of the direct wave
Consider the direct wave traveltime, equation (2.2), can be written as

I
=—4%——_and 7=0.
P= v,

Thus the direct wave, linear event in #-x domain, is transformed into a point

(7 =0, p = 1Ay ) in the linear fau-p domain.

Case of the refracted wave

Consider the refracted wave traveltime, equation (2.3), where v; < v, can be

written as

dty, 1 2hcosé,
p=—=-=— and 7="-"71¢
dx v, Vv,
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Thus the refracted wave, linear event in #~x domain, is transfermed into a point

_ 2hcoséb,

Vi

(r

» 0 = I/v7) in the linear tau-p domain.

Case of the reflected wave

Consider the reflected wave traveltime, equation (2.5),

x
=—f="" 2.15

P dx v @13)
Replace x = ptv’ to equation (2.5), which the results in

f= o (2.16)

J1-1? p*
Replace ¢ = _xz_ to equation {2.5), which the results in
pv
2
x=_YPh 2.17)

/l_vzpz

Solving the equation (2.9) by replaced ¢ and x from equation (2.16) and (2.17),

can be written as

7’ 22 _
—+vp =1 . (2.18)

A
Equation 2.18 shows an cilipse equation when plot between p and 7 with the
major and minor axis length is I/ and #y, respectively. Thus the reflected wave,

hyperbolic event in #-x domain, is transformed into ellipse in linear tau-p domain.

According to the linear fau-p transformation, the linear and hyperbolic events
in #-x domain are transformed into some points and the elliptic events in the linear

fau-p domain, respectively (Figure 2.2).
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Figure 2.2 (a) Shot record in #-x domain. (b) Linear tau-p domain that transformed
- the direct wave D, the head wave H and reflected wave R transform into point D', H'
and ellipse R’, respectively.

2.2.2 The parabolic tau-p transformation

The parabolic ‘au-p transformation involves summation along the parabolic
curve (Hampson, 1986),
t=r+gx’ | (2.19)

where ¢ is the curvature variable representing the moveout of curve at offset. The

transformation equation (2.8) can be written as
m(q,7) = ”d (x,0)0[t = 7+ qx*)dtdx . (2.20)
The inverse parabolic fau-p transformation may then be written as

d(x,t)= _”m(q,z‘)é'[r =t—qx*ldrdg . (2.21)

Let D(x,®) and M(g,w) be the Fourier transformation of d(x,) and m(q,7),

respectively. The forward parabolic fau-p transformation is given by
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M(g,0)= [D(x,0)e"* dx . (2.22)
The inverse parabolic fau-p transformation is given by

D(x,0) = IM (g, @)% dg . (2.23)

From equation (2.20), the hyperbolic event in #-x domain, equation (2.7), is
transformed into a point, T = fy, ¢ = 1/24gv; , in the parabolic tau-p domain. Consider
five hyperbolic events P1, P2, P3, M1 and M2 in #-x domain (Figure 2.3 (a)) where P
denote the primary events and M denote the multiples events, transformed to point
P1',P2',P3',M1'and M2' in parabolic tau-p domain (Figure 2.3 (b)). The moveout
velocity of the event P1 < P2 < P3 and the moveout velocity of P1, M1 and M2 are

the same.

x q
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Figure 2.3 (a) Five hyperbolic events P1, P2, P3, M1 and M2 in -x domain. (b) The
parabolic fau-p domain showing the events in (a) transformed into points
P1,P2', P3',M1'and M2, respectively (modified from Yilmaz, 2001).
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The tau-p transformation given in equation (2.8) is sufficient for use with
continuous and infinite data. In practice, however, field data are finite and discretely
sampled functions. Thorson and Claerbout (1985) used the idea of minimum entropy
to formulate an expression to calculate the model space, m, for a finite number of ¢

and 7. This formulation later was called the discrete Radon transform (DRT).

The computer-intensive time-domain DRT can be written as

N M

m(p,ry=) > d(x.t) (2.24)
i=l j=1
wherei=1,23,... N and j=123,...M

The summation can be written in matrix from as
m=Ld , (2.25)

where L is matrix operator defined by the transformation curves of ¢, m is model

space in matrix dimension n,xn, where n, is number of velocity model, n, is

number of time sample in ¢ and 4 is input data in #~x domain in matrix dimension

n.xn, where n_is number of offset, #, is number of time sampling. The element of
the matrix operator, L, dimensions aren n, x 7 n_. The transformation in time-domain

on field data is computer intensive and very costly due to calculations involving very

large matrices. For an example field data set, n.= 60, n= 1000, n, = 60 and n, =

1000; this implies a L matrix of dimension 60,000 x 60,000 (Yilmaz, 2001).

Sloving the problem of equation (2.25) requires a very large matrix by
performing integration for independent frequencies in the Yourier domain. This
methodology relies on the similarity of the integration over curved lines in the time
domain to the integration over the stretch variable ¢ in the Fourier domain. A
forward Fourier transform is applied to the data and the transform equivalent to

equation (2.13) and (2.22) for a given summation curve, ¢ =7 + pf(x), is written as
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N .
M(p;,0)= Y D, @) (2.26)
k=]

where the function flx) is dependent upon the type of the transformation being
computed and is usually given as x and x* for linear and parabolic tau-p
transformation, respectively. The summation can be written in an equivalent matrix

form as

M=LD , (2.27)

where L* is the adjoint of the Fourier-domain linear operator, L. L is now defined

~as

L =eh/t (2.28)

Flow chart for the linear and parabolic fau-p forward transformations based on the

above derivation is shown in Figure 2.4.
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Input CMP gather
(x-f domain) 1d(x,7)
l
Apply ¢ stretch - td(x,t =7+ pf(x))
l
Fourier transform : D(x, w)
l
Apply equation (2.26) M{(p, )
l
Inverse Fourier transform :m(p,7)
l
Undo ¢ stretch m(p,7=1t—pf(x))
l
Output :m(p,7)

(tau-p domain)

Figure 2.4 The flow chart of forward tau-p transformation. The function f(x) is given

by x and x” for linear and parabolic tau-p transformation, respectively (modified from
Zhou and Greenhalgh, 1994). :
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2.3 Hyperbolic velocity filter

The limited aperture of the recording geometry and the spatial data sampling
might considerably affect the separability of primaries and muitiples (Kabir and
Marfurt, 1999). This data sampling issue is called data aliasing. It causes many
artifacts that dramatically affect focusing in the tau-p domain. A second source of
problems can stem from aliasing of the fau-p transformation operator. The operator
aliasing creates noise in the fau-p domain by the summation action (Abma et al.,

1999; Lumley ef al., 1994).

In 1981, Tatham et al. introduced the concept of hyperbolic velocity filtering
(HVF) as a way to reduce aliasing in the linear fau-p transform. This technique is
applied during the forward linear fau-p transformation of field records by muting the
aliasing zone. The result after applied HVF, the signal-to-noise ratio (S/N) is
improved and thus the full advantages of the linear tau-p domain can be utilized for

further processing.

Following Tatham et al. (1981), differentiate equation (2.4) with respect to x
and note that the ray parameter is given by p = dtp/dx , thus will obtain

p=—. (2.29)

By associating a velocity range (Vmin Vmax) With each point (x, £), a limited range of p

values can be determined from equation (2.29) by the inequalities

(2.30)

7 SPS

v, max tvmin
The velocity values viin and v, associated with the point (x, ) are chosen so that all
geophysically possible stacking velocities associated with this point are within this
chosen range. In practice, the velocities Vimin and vyax are replaced by their time-

variant equivalents v (x, £) and vmu(x, £), given by

vnﬁn(x$t)=(1_k)v(xat) s (231)
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and Viax (%, 8) = A+ E)v(x, 1) (2.32)

where k is a specified fractional percentage value (usually between 15 percent and 25
percent)(Kelamis and Mitchell, 1990) of the primary velocity function, and w(x, #) is
an interpolated stacking velocity, via the traveltime equation for offset x. Inequalities
(2.30) describe the basic algorithm for hyperbolic velocity filtering. Muting process

in the linear fou-p domain, replace ¢ = 7+ px to equation (2.29), the results are given

by
pix+pvir—x=0 . (2.33)

Solving this equation for the ray parameter gives

r (77 1

The limit of p value in linear tau-p domain can be shown as:

-—-+ ——-+ <——+ =, L (2.35)
4 v @ 4x* w2 '

Equation (2.35) presents the limit of p for each  in linear tau-p domain. This can be
achieved using an equivalent set of mutes applied in the linear fau-p domain (Kelamis

and Mitchell, 1990). This muting zone is illustrated in Figure 2.5.

2.4 Antialiasing condition for the parabolic fau-p transformation

Aliasing of the operator can be avoided if limit the dips of the parabolic tau-p
transformation summation path. This dip filtering can be easily implemented in the

Fourier domain, which results in a simple frequency limit condition.

Antialiasing the operator is equivalent to dip-filtering the operator. The anti-

aliasing conditions can be written (Abma ef al., 1999) as



1

< -
fmax ZAT

(2.36)

where AT is the local slope of the operator between two adjacent traces. The

computation of parabolic zau-p transformation in local slope as

ox

, (2.37)

from parabolic ¢au-p transformation condition #(q,x) =7 +¢gx* and then

AT =2gxAx

; (2.38)

where Ax is the input trace spacing. The antialiasing condition becomes

Sy S

Fid
@ S
2gxAx

<

Vimin

ty
T (@

4gxAx

A

, (2.39)

(2.40)

Pmin Pmax

V‘C‘z

Transformed zone
for event at {x,f)

// Aliasing Zone

.- / XminArtifact
© Aliasing/Zone
/

/
/ \ .
/ XmaxAltifact

/
/
/

(b)

Figure 2.5 (a) A schematic of hyperbolic velocity filtering. (b) The muting zone in
the linear fau-p domain (Dunne and Beresford, 1998).



33

2.5 Application of linear fau-p and parabolic tau-p transformation -

The tau-p transformation is a processing tool utilized to exploit the differences
in the moveout of seismic events. Variants of the algorithm are commonly employed
in discriminating between primary reflections and other types of coherent noise. .
Linear fau-p processing is used in the suppression of linear noise events such as
ground roll, direct wave, air wave and refraction wave (Trad ef al., 2002). The
relationship between the linear tou-p transformation and the plane wave
decomposition is also well established (Stoffa et al., 1981; Treitel et al., 1982). Least
square procedures to compute the fau-p transformation were investigated by Thorson
and Claerbout (1985), Beylkin (1987) and Kostov (1990). Parabolic tau-p processing
is commonly employed in data interpolation and coherent noise attenuation such as
multiples. The tqu-p transform is advantageous because it requires no inherent
knowledge of the coherent-noise-generating mechanism and works relatively well
with non-uniform geometries (though it may require extensive computing time).
Table 2.1 lists the main applications of the tau-p transformation in the seismic

exploration.

Table 2.1 Application of the tau-p transformation in the seismic exploration (Zhou
and Greenhalgh, 1994).

Application

References

Velocity analysis
Migration and modeling
Inversion

Interpretation

Plane-wave decomposition

Wave separation and/or filtering

Noise attenuation

Data interpolation
Controiled directional reception & controlled
directional source methods

Schultz and Claerbout, 1978; Schultz, 1982; Gray and
Goldren, 1983

Chapman, 1978; Wenzel ef al., 1982; Miller et al.,
Ruter, 1987

Clayton and McMechan, 1981; Diebold and Stoffa,
1981; Thorson and Claerbout, 1985

McMechan and Ottolini, 1980; Kennett, 1981; Phinney
etal., 1981

Stoffa ez al., 1981; Treitel er al., 1982

Harland et al., 1984; Moon et al., 1986; Benolicl e al.,
1987; Hu and McMechan, 1987; Greenhalgh et al.,
1990

Alam and Austin 1981; Carraion, 1986; Noponen and
Keeney, 1986; Hampson, 1986 & 1987; Yilmaz, 1989;

Mitchell and Kelamins, 1990; Foster and Mosher,

1992; Zhou and Greenhalgh, 1993
Lu, 1985
Zavalishin, 1982; Taner et al., 1991; Sword, 1991
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Hampson (1986) developed a demultiple technique for modeling parabolic
events on NMO corrected CMP gathers that reduces the number of p-values necessary
to model the reflections. This ‘process flattens primary events with an NMO
correction, leaving multiples approximately parabolic on the CMP gathers (Figure 2.6
(a)). A parabolic tau-p transform is applied to the data (Figure 2.6 (a)) and the
multiples are muted in the parabolic fau-p domain. Hampson’s technique is applied in
this study for enhancing deep seismic signal and added rescaling (sign square) in

parabolic fau-p domain for enhancing signal to random noise ratio.
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Flgure 2.6 (a} The five reflectors in Figure 2.2 (a) after applying NMO correction by
using reflection velocity function. (b) The parabolic fau-p domain after the reflectors
in (2) P1, P2, P3, M1 and M2 are transformed into point P1',P2',P3', M1’ and M2’

respectively.



