## CHAPTER 1

## INTRODUCTION

The operator L iterated k times and is defined by

$$L^{k} = \left( \left( \frac{\partial^{2}}{\partial x_{1}^{2}} + \frac{\partial^{2}}{\partial x_{2}^{2}} + \dots + \frac{\partial^{2}}{\partial x_{p}^{2}} \right)^{2} + \left( \frac{\partial^{2}}{\partial x_{p+1}^{2}} + \frac{\partial^{2}}{\partial x_{p+2}^{2}} + \dots + \frac{\partial^{2}}{\partial x_{p+q}^{2}} \right)^{2} \right)^{k} (1.1)$$

where p + q = n is the dimension of the space  $\mathbb{R}^n$ ,  $x = (x_1, x_2, ..., x_n) \in \mathbb{R}^n$ ,  $i = \sqrt{-1}$  and k is a nonnegative integer.

Actually the operator  $L^k$  is an extension of the operator  $L^k_1$  and the operator  $L^k_2$ . So the operator  $L^k$  can be expressed as the product of the operator  $L_1$  and  $L_2$ , that is  $L^k = L^k_1 L^k_2 = L^k_2 L^k_1$  where

$$L_1^k = \left( \left( \frac{\partial^2}{\partial x_1^2} + \frac{\partial^2}{\partial x_2^2} + \dots + \frac{\partial^2}{\partial x_p^2} \right) + i \left( \frac{\partial^2}{\partial x_{p+1}^2} + \frac{\partial^2}{\partial x_{p+2}^2} + \dots + \frac{\partial^2}{\partial x_{p+q}^2} \right) \right)^k (1.2)$$

and

$$L_2^k = \left( \left( \frac{\partial^2}{\partial x_1^2} + \frac{\partial^2}{\partial x_2^2} + \dots + \frac{\partial^2}{\partial x_p^2} \right) - i \left( \frac{\partial^2}{\partial x_{p+1}^2} + \frac{\partial^2}{\partial x_{p+2}^2} + \dots + \frac{\partial^2}{\partial x_{p+q}^2} \right) \right)^k. (1.3)$$

A. Kananthai, S. Suantai, V. Longani ([3], Lemma 2.4 p223) has shown that the convolution  $(-1)^k(-i)^{\frac{q}{2}}S_{2k}(w)*(-1)^k(-i)^{\frac{q}{2}}T_{2k}(z)$  is an elementory solution of the operator  $L^k$ , that is

$$L^{k}\left((-1)^{k}(-i)^{\frac{q}{2}}S_{2k}(w)*(-1)^{k}(-i)^{\frac{q}{2}}T_{2k}(z)\right) = \delta$$
(1.4)

where  $\delta$  is the Dirac-delta distribution and the functions  $S_{2k}(x)$  and  $T_{2k}(x)$  are defined by (2.5) and (2.1) respectively with  $\gamma = \nu = 2k$ , k is nonnegative integer.

In this thesis, we study the solution of the equation

$$L^k u(x) = f(x). (1.5$$

Let  $K_{\gamma,\nu}(x)$  be a distributional family and is defined by

$$K_{\gamma,\nu}(x) = S_{\gamma} * T_{\nu} \tag{1.6}$$

where  $S_{\gamma}$  is defined by (3.59) and  $T_{\nu}$  is defined by (3.60) and  $\gamma, \nu$  are the complex parameters.

The family  $K_{\gamma,\nu}(x)$  is well-defined and is a tempered distribution since  $S_{\gamma} * T_{\nu}$  is a tempered see ([1], Lemma 2.2) and  $T_{\nu}$  has a compact support.

In this thesis, we can show that

$$u(x) = (-1)S_{2k}(x) * (T_{2(k-1)}(\nu))^{(m)} + (-1)K_{2k,2k}(x) * f(x)$$

is a solution of (1.5) where  $m = \frac{n-4}{2}$ ,  $n \ge 4$  and n is even number and  $K_{2k,2k}(x)$  is defined by (1.6) with  $\gamma = \nu = 2k$ . Moreover, we can show that the solution u(x) relates to the solution of Laplace operator  $\Delta^{2k}$  defined by (3.62).

