TABLE OF CONTENTS

Title	Page
Acknowledgements	iii
Abstract (in English)	iv
Abstract (in Thai)	vi
Table of Contents	viii
List of Tables	xiv
List of Figures	xvi
Abbreviations and Symbols	xxiv
Chapter 1 Introductions	
1.1 Principle and rationale	1
1.2 Literature Review	2
1.2.1 Papaya cysteine proteases	2
1.2.1.1 Composition of cysteine proteases in fruit latex and	
other parts of the tree	2
1.2.1.2 Separation by ion-exchange/FPLC	6
1.2.1.3 Cathodic polyacrylamide gel electrophoresis pattern	9
1.2.1.4 Catalytic mechanism and form of enzyme	12
1.2.2 Glycyl endopeptidase	15
1.2.2.1 History	15
1.2.2.2 Physicochemical properties	16
1.2.2.3 Enzymatic properties	18
1.2.2.4 Preparation	20
1.2.3 Thermodynamically and kinetically controlled peptide synthesis	24
1.2.4 Solid-to-solid peptide synthesis	26
1.2.4.1 Historical background	26
1.2.4.2 General aspects	28
1.2.4.3 Switch like thermodynamics of reaction	31
1.2.4.4 Solvent selection	34
1.2.4.5 Form of enzyme	36

			Page
		1.2.4.6 pH effect on catalytic reaction	37
	1.2.5	Objective of study	39
Cha	apter 2	Materials and Methods	
2.1	Mater	ials	40
	2.1.1	Chemicals for investigation of papaya peel proteases	40
	2.1.2	Chemicals for purification of glycyl endopeptidase	
		from papaya latex	41
	2.1.3	Chemicals for glycyl endopeptidase catalysed	
		solid-to-solid peptide synthesis	42
	2.1.4	Instruments	43
2.2	Metho	ods	44
	2.2.1	Preparation of papaya peel proteases	44
		2.2.1.1 Extraction of proteases from papaya peels	44
		2.2.1.2 Study on the effect of cysteine and EDTA on proteases	
		extraction	45
		2.2.1.3 Precipitation of proteases from papaya peel crude extract	45
		2.2.1.4 Spray drying of papaya peel crude extract	45
	2.2.2	Preparation of papaya latex proteases	46
		2.2.2.1 Latex collection	46
		2.2.2.2 Drying of papaya latex proteases	46
	2.2.3	Proteolytic activity of papaya peel and latex proteases	46
		2.2.3.1 Assay for proteolytic activity	46
		2.2.3.2 Determination of optimal pH	47
		2.2.3.3 Determination of optimal temperature	47
•		2.2.3.4 Determination of enzyme stability at various pHs	47
		2.2.3.5 Determination of enzyme stability at various temperatures	47
	ΑI	2.2.3.6 Effect of cysteine	47
	2.2.4	Protein composition of proteases from papaya peel and latex	47
		2.2.4.1 Protein determination	47
		2.2.4.2 Cathodic gel electrophoresis and in situ proteolysis assay	48
		2.2.4.3 Anodic gel electrophoresis and in situ proteolysis assay	48
		2.2.4.4 Anion-exchange FPLC system	49

		Page
2.2.5	Analysis of glycyl endopeptidase in proteases from	
	papaya peels and latex	49
2.2.6	Purification of glycyl endopeptidase from fresh papaya latex	49
2.2.7	Assay for glycyl endopeptidase activity on DL-BAPNA	50
2.2.8	Assay for glycyl endopeptidase activity on Boc-Ala-Ala-Gly-pNa	50
2.2.9	Determination of properties of glycyl endopeptidase	51
	2.2.9.1 Optimal pH	51
	2.2.9.2 Optimal temperature	51
	2.2.9.3 Activation time of enzyme and effect of activator	51
	2.2.9.4 Inhibition of enzyme by cystatin	51
	2.2.9.5 Stability of glycyl endopeptidase	52
	2.2.9.6 Alteration of enzyme's form	52
2.2.10	Glycyl endopeptidase catalysed solid-to-solid synthesis of	
	Z-Gly-Phe-NH ₂	52
	2.2.10.1 Effect of substrate molar ratios	52
	2.2.10.2 HPLC analysis	53
	2.2.10.3 Analysis of liquid phase equilibrated with solid substrates	53
	2.2.10.4 Optimal amount of glycyl endopeptidase	53
	2.2.10.5 Effect of Z-Gly-OH sources	54
	2.2.10.6 Effect of cysteine	54
	2.2.10.7 Effect of EDTA	54
2.2.11	Investigation of specificity of glycyl endopeptidase on nucleophiles	
	in solid-to-solid peptide synthesis	54
	2.2.11.1 Synthesis of Z-Gly-Leu-NH ₂	55
Cor	2.2.11.2 Synthesis of Z-Gly-Tyr-NH ₂	55
	2.2.11.3 Synthesis of Z-Gly-Tyr-OEt	55
	2.2.11.4 Synthesis of Z-Gly-Asp-OBzl	55
	2.2.11.5 Synthesis of Z-Gly-Pro-NH ₂	56
2.2.12	Investigation of parameters improving peptide conversion	56
	2.2.12.1 Reducing size and centrifugation of reaction tubes	56
	2.2.12.2 Grinding of solid substances	56
	2.2.12.3 Re-mixing of reaction mixture	57

			Page
		2.2.12.4 Alteration of liquid amount in reaction mixture	57
		2.2.12.5 Analysis of phase composition of reaction mixture	57
		2.2.12.6 Adding of new enzyme solution	57
	2.2.13	Investigation of glycyl endopeptidase recovered from the reaction	
		mixture of solid-to-solid Z-Gly-Phe-NH ₂ synthesis	57
		2.2.13.1 Enzyme assay for amidase activity	57
		2.2.13.2 SDS-PAGE	58
		2.2.13.3 HPLC analysis on C-4 column	58
Cha	apter 3	Results	
3.1	Prepa	ration of proteases from papaya peels	59
	3.1.1	Preparation of papaya peel crude extract	59
	3.1.2	Effect of cysteine and EDTA on proteases extraction	60
	3.1.3	Yield of papaya peel protease preparation	62
	3.1.4	Spray dried papaya peel proteases	63
3.2	Comp	parison of enzyme catalysis between proteases from papaya peel	
	and la	tex	65
	3.2.1	Optimal pH	65
	3.2.2	Optimal temperature	66
	3.2.3	Stability at various pHs	66
	3.2.4	Stability at various temperatures	67
	3.2.5	Effect of cysteine	67
3.3	Comp	arison of protein composition between proteases from papaya peel	
	and la	tex III D DI I J II O ICI O I O O O	69
	3.3.1	Cathodic gel electrophoresis and in situ proteolysis	69
	3.3.2	Anodic gel electrophoresis and in situ proteolysis	70
	3.3.3	Mono Q column FPLC	71
3.4	Prese	nce of glycyl endopeptidase in papaya peels and latex	73
3.5	Purifi	cation of glycyl endopeptidase from fresh papaya latex	77
3.6	Prope	rties of purified glycyl endopeptidase	79
	3.6.1	Substrate specificity	79
	3.6.2	Optimal pH	80

			Page
	3.6.3	Optimal temperature	81
	3.6.4	Optimal activation before catalysis of enzyme	82
	3.6.5	Lack of inhibition by cystatin	83
	3.6.6	Stability of glycyl endopeptidase	84
	3.6.7	Alteration of enzyme's form	85
3.7	Glycy	el endopeptidase catalysed solid-to-solid synthesis of Z-Gly-Phe-NH ₂	88
	3.7.1	Effect of substrate molar ratios	88
	3.7.2	Composition of liquid phase in substrates mixture	90
	3.7.3	Analysis result of reaction mixture	90
	3.7.4	Optimal amount of glycyl endopeptidase	94
	3.7.5	Effect of Z-Gly-OH sources	94
	3.7.6	Effect of cysteine on glycyl endopeptidase catalysis	96
	3.7.7	Effect of EDTA on glycyl endopeptidase catalysis	97
3.8	Vario	us nucleophiles coupling with Z-GlyOH in glycyl endopeptidase	
	cataly	sed solid-to-solid synthesis	97
	3.8.1	Solid-to-solid synthesis of Z-Gly-Leu-NH ₂	98
	3.8.2	Solid-to-solid synthesis of Z-Gly-Tyr-NH ₂	. 99
	3.8.3	Solid-to-solid synthesis of Z-Gly-Tyr-OEt	99
	3.8.4	Solid-to-solid synthesis of Z-Gly-Asp-OBzl and Z-Gly-Pro-NH ₂	100
3.9	Impro	evement of peptide conversion of solid-to-solid synthesis	,
	cataly	sed by glycyl endopeptidase	1,00
	3.9.1	Water evaporation from reaction mixture	101
	3.9.2	Particle size of reactants	102
	3.9.3	Entrapment of solid substrates	105
	3.9.4	Equilibrium of reaction	108
	3.9.5	Addition of new enzyme solution	109
3.10	Activ	ity of glycyl endopeptidase recovered from solid-to-solid	e d
	reacti	on mixture	111
	3.10.1	Glycyl endopeptidase activity	111
	3.10.2	2 SDS-PAGE	112
	3.10.3	HPLC analysis	113

		Page
Cha	apter 4 Discussion and conclusions	
4.1	Preparation of proteases from papaya peels	115
4.2	Proteolytic contents in papaya proteases from peels and latex	117
4.3	Screening of glycyl endopeptidase from papaya peel proteases	121
4.4	Purification and properties of glycyl endopeptidase from fresh papaya latex	121
4.5	Solid-to-solid synthesis of Z-Gly-Phe-NH ₂ catalysed by	
	glycyl endopeptidase	124
4.6	Nucleophile selectivity of glycyl endopeptidase in solid-to-solid synthesis	127
4.7	Study on parameters improving solid-to-solid peptide conversion	129
4.8	Conclusions	132
Ref	crences	135
App	endix Company	148
Curriculum vitae		151

ลิขสิทธิ์มหาวิทยาลัยเชียงใหม่ Copyright[©] by Chiang Mai University All rights reserved

LIST OF TABLES

Tabl	le 0.31813165	Page
1.1	Characteristics and properties of cysteine proteases from papaya latex.	5
1.2	Chromatographic methods for preparation of glycyl endopeptidase.	23
3.1	Comparison of extracting methods for papaya peel proteases extraction from	
	20 g dried (200 g fresh) papaya peels.	60
3.2	Separation of papaya peel proteases from 38 mL of crude extract	
	obtained from 5 g of dried papaya peels.	63
3.3	Spray dried proteases from 38 mL of papaya peel crude extract (AS was	
	added giving 20% w/v of final concentration before spray drying).	64
3.4	Relative amount of papaya enzymes from fruit peels and latex.	
	The enzymes were separated by cathodic gel electrophoresis and analysed	
	by densitometry.	75
3.5	Purification of glycyl endopeptidase from 100 g fresh papaya latex by	
	aqueous two-phase following with salt precipitation. Enzyme activity was	
	assayed by using Boc-Ala-Ala-Gly-pNA as substrate.	78
3.6	Selective hydrolysis of glycyl endopeptidase on the two amide synthetic	
	substrates comparing with standard proteases and latex solution.	80
3.7	Amidase activity of papaya cysteine proteases with presence and absence	
	of chicken cystatin.	84
3.8	Liquid phase compositions at 27 h of substrate mixture equilibrated with	
	1050 μL of water at 40°C.	90
3.9	Initial rate and % conversion from glycyl endopeptidase catalysed	
	solid-to-solid Z-Gly-Phe-NH ₂ synthesis in the presence and absence of	
	cysteine. Reactions were performed at substrate molar ratio 2:1 and	
	using 20 mg enzyme per reaction.	96
3.10	Quantity of liquid and solid phase components in reaction mixture of	
	glycyl endopeptidase catalysed solid-to-solid Z-Gly-Phe-NH ₂ synthesis.	109

Tabl	le	Page
3.11	Activity of glycyl endopeptidase in reaction mixture for Z-Gly-Phe-NH ₂	
	synthesis. Assay substrate used was Boc-Ala-Ala-Gly-pNA and 1 unit is	
	defined as 1 nmole product released within 1 min at pH 7.5 and 40°C.	112
4.1	Glycyl endopeptidase catalysed solid-to-solid synthesis of various peptides.	
	Acyl donor was used at 1.1 per mol nucleophiles, with 20 mg enzyme	
	and 20 mg solid cysteine.	128
	ALLINITYER	
	OIVI V	
	ลิขสิทธิ์มหาวิทยาลัยเชียงใ	
	Copyright [©] by Chiang Mai Univer	
	A I I will a be a second	

LIST OF FIGURES

Figu	re	Page
1.1	Cysteine and half-cystine residues and disulfide bonds in the four papaya	
	cysteine proteases. 25* denotes the catalytic cysteine residues and	
	chymopapain shows additional cysteine at 117.	3
1.2	Alignment of the prosequences of papaya cysteine proteases. Residues	
	conserved in all four sequences are in bold and for clarity, deletions	
	are denoted by hyphens.	4
1.3	Separation of papaya proteases using a Mono Q anion-exchange column	
	attached to the Pharmacia FPLC: peak 1; chitinase (denoted in the paper as	
	papaya proteinase B), peak 2; impurities, peak 3; caricain, peak 4; mixture	
	of chymopapain isoforms, and peak 5; papain.	8
1.4	Gel electrophoresis of the four papaya cysteine proteases after purification	
	by chromatographic methods.	10
1.5	Catalytic mechanism for hydrolysis of peptide bond by cysteine proteases.	13
1.6	Schematic drawing of simplest version of propapain-papain transition.	14
1.7	Reaction producing inactive forms of protein thiol group.	14
1.8	Three dimension strand structure of glycyl endopeptidase; ball & stick	
	representing the catalytic Cys25 (green), catalytic His159 (pink), three	
	disulfide bond residues (yellow), Leu1 at N-terminal (red), and Asn216 at	
	C-terminal (blue).	17
1.9	Terminology of the cleavage site of glycyl endopeptidase, and also papaya	
	cysteine proteases.	18
1.10	Structures of (a) Sepharose-glutathione-S-S-2-Py gel, (b) Sepharose-2-	
	hydroxypropyl-S-S-2'-Py gel, and (c) 2,2'-dipyridyl disulfide	
	(2-Py-S-S-2-Py).	22
1.11	Protease catalysed thermodynamically controlled and kinetically controlled	
	synthesis of peptides.	24
1.12	Comparison of a kinetically and a thermodynamically (or equilibrium)	
	controlled peptide synthesis.	25

Figu	re F	age
1.13	Comparison of enzymatic peptide synthesis in organic media (upper row)	
	or in solid-to-solid system (lower row). Initial and equilibrium compositions	
	are represented at the left and the right column, respectively. All areas equal	
	concentration in w/w.	29
1.14	Green aspects of solid-to-solid biocatalysis.	30
1.15	Schematic overview of precipitation driven biocatalysis. The three	
	sub-processes involved are: the dissolution of substrates, the enzyme catalyse	d
	reaction and the precipitation of the reaction product (s).	31
1.16	Schematic representation of solid-to-solid reaction. If $Z_{sat} \le K_{eq}$, the product	
	precipitates and equilibrium will be reached only when the solid	
	substrates completely run out (and completely dissolve).	34
3.1	Residual protease activity of papaya peel crude extract at room temperature.	
	The peels were extracted by water (○), 40 mM cysteine (□) and 40 mM	
	cysteine-20 mM Na ₂ ·EDTA (Δ).	61
3.2	Residual protease activity of papaya peel crude extract at 4°C. The peels	
	were extracted by water (○), 40 mM cysteine (□) and 40 mM	
	cysteine-20 mM Na ₂ ·EDTA (Δ).	61
3.3	Residual protease activity of papaya peel crude extract at -20°C. The peels	
	were extracted by water (○), 40 mM cysteine (□) and 40 mM	
	cysteine-20 mM Na ₂ ·EDTA (Δ).	62
3.4	Typical papaya peel proteases in comparison with dried papaya latex (F).	
	The proteases obtained from precipitation with 75% methanol (A), 70%	
	ethanol (B), 67% 2-propanol (C) and 60% saturated ammonium sulfate (D),	
	and spray drying with addition of 20% ammonium sulfate (E).	64
3.5	Optimal pH at 37°C on casein hydrolyses of papaya peel proteases (■)	
	and papaya latex proteases (▲).	65
3.6	Optimal temperature on casein hydrolyses in Tris-HCl buffer pH 8.0 of	
	papaya peel proteases (■) and papaya latex proteases (▲).	66
3.7	Stability of papaya peel proteases (■) and latex proteases (▲). The enzymes	
	were incubated in various pH buffers before determining their proteolytic	
	activities in pH 8.0 at 37°C.	67

Figu	re	Page
3.8	Stability of papaya peel proteases (■) and latex proteases (▲). The enzymes	
	were incubated in various temperatures before determining their	
	proteolytic activities at pH 8.0 at 37°C.	68
3.9	Effect of cysteine on caseinolytic activities of proteases from papaya	
	peels (■) and latex (▲) in buffer pH 8.0 at 37°C. The activities of the two	
	reactions without cysteine were given as 100% relative activity.	68
3.10	Separation of proteins by cathodic gel electrophoresis, stained with Coomas.	sie
	Brilliant Blue (A) and in situ verifying their proteolytic activities (B).	70
3.11	Separation of proteins by anodic gel electrophoresis, stained with Coomassic	e
	Brilliant Blue (A) and in situ verifying their proteolytic activities (B).	71
3.12	Anion-exchange FPLC of papaya peels (A) and latex (B) proteases, eluted	
	with a linear gradient of NaCl (). Fractions were collected and analysed	
	by measurement the absorbance at 280 nm (-) and proteolytic activity	
	toward casein (····).	72
3.13	Separation of proteins by cathodic gel electrophoresis, stained with	
	Coomassie Brilliant Blue.	73
3.14	Protein band intensity of standard papain in lane 5 of Figure 3.13.	
	Band No. 1; papain, No. 2 and 3; chitinase and chymopapain, respectively.	76
3.15	Protein band intensity of latex proteases in lane 4 of Figure 3.13.	
	Band No. 1; papain, No. 2; chitinase, No.3; chymopapain,	
	No. 4; glycyl endopeptidase and No. 5; caricain.	76
3.16	Protein band intensity of papaya peel proteases in lane 2 of Figure 3.13.	
	Band No. 1-4; protein I-IV, respectively, No. 5; papain, No. 6; protein V,	
	No. 7; protein VI, No. 8; chitinase and No. 9; chymopapain.	77
3.17	Cathodic gel electrophoresis of papaya cysteine proteases which lane 1;	
	standard papain from Sigma (5.5 µg protein), lane 2 and 3; purified	
	glycyl endopeptidase (5.5 and 4.0 µg protein, respectively), lane 4;	
	latex solution (12 µg protein) and lane 5; standard chymopapain from	
	Sigma (5.5 μg protein).	79
2 10	The nH activity profile of alveyl endonentidase	81

Figu	re	age
3.19	The temperature-activity profile of glycyl endopeptidase in sodium phosphate	
	buffer pH 7.5 at temperature ranging between 20 and 80°C.	82
3.20	Effects of activator and incubation time on glycyl endopeptidase activity.	83
3.21	Stability of glycyl endopeptidase at room temperature (~30°C), the enzyme	
	was incubated as solid form (■) and liquid form in buffer pH 7.5 at	-
	concentration of 5% w/w (□).	85
3.22	Stability of glycyl endopeptidase at 40°C, the enzyme was incubated as solid	
	form (a) and liquid form in buffer pH 7.5 at concentration of	
	5% w/w (□).	85
3.23	Change in total recoverable (■), directly active (○) and reversibly inactive (□)	
	activities of 50% solid glycyl endopeptidase in phosphate buffer pH 7.5,	
	incubated at 40°C.	86
3.24	Change in total recoverable (■), directly active (○) and reversibly inactive (□)	
	activities of 50% solid spray dried papain in in phosphate buffer pH 7.5,	
	incubated at 40°C.	87
3.25	Change in total recoverable (■), directly active (○) and reversibly inactive (□)	
	activities of 16% solid clarified papaya latex solution, incubated at 40°C.	87
3.26	Time course of glycyl endopeptidase catalysed solid-to-solid synthesis	
	of Z-Gly-Phe-NH ₂ , with the substrate molar ratios (Z-Gly-OH: H-Phe-NH ₂)	
	at $1:1$ (\blacksquare), $1.05:1$ (\circ), $1.1:1$ (\blacktriangle), $1.3:1$ (+), $1.5:1$ (x) and $2:1$ (*).	89
3.27	A typical glycyl endopeptidase catalysed solid-to-solid synthesis of	
	Z-Gly-Phe-NH ₂ before (A) and after (B) mixing of reactants with the	
	substrate molar ratio 2:1.	89
3.28	Chromatographic profile at reaction progress of solid-to-solid condensation	
	between Z-Gly-OH and H-Phe-NH ₂ at the substrate molar ratio 2:1, 20 mg	
	of both glycyl endopeptidase and solid cysteine.	91
3.29	Chromatographic profile at reaction progress of solid-to-solid condensation	
	between Z-Gly-OH and H-Phe-NH ₂ at the substrate molar ratio 1:1, 20 mg	
	of both glycyl endopeptidase and solid cysteine.	92

Figu	re	Page
3.30	Accurate mass spectra of peptide product, Z-Gly-Phe-NH ₂ (A) and	
	by-product, Z-Gly-Phe-OH (B) from glycyl endopeptidase catalysed	
	solid-to-solid peptide synthesis.	93
3.31	Effect of glycyl endopeptidase (GE) amount on the initial rate of	
	solid-to-solid synthesis of Z-Gly-Phe-NH ₂ .	94
3.32	Comparison in glycyl endopeptidase catalysed solid-to-solid synthesis of	
	Z-Gly-Phe-NH₂ by using Z-Gly-OH from Bachem (•) and Novabiochem (○)
	and H-Phe-NH ₂ at molar ratio of 2:1, 20 mg of enzyme and solid cysteine.	95
3.33	A typical appearance of Z-Gly-OH powders from Bachem (left) and	
	Novabiochem (right).	95
3.34	Time course of glycyl endopeptidase catalysed solid-to-solid synthesis of	
	Z-Gly-Phe-NH ₂ . Two reactions were compared with the presence (■) and	
	absence (□) of 1 mg EDTA in the mixture.	97
3.35	Time course of glycyl endopeptidase catalysed solid-to-solid synthesis of	
	Z-Gly-Leu-NH ₂ , with 20 mg of both glycyl endopeptidase and solid	
	cysteine per reaction. The substrate molar ratios (Z-Gly-OH:H-Leu-NH ₂)	
	were varied at 1:1 (■), 1.1:1 (×) and 1.5:1 (○).	98
3.36	Time course of glycyl endopeptidase catalysed solid-to-solid synthesis of	
	Z-Gly-Tyr-NH ₂ , with 20 mg of glycyl endopeptidase and solid	
	cysteine per reaction. The substrate molar ratios (Z-Gly-OH:H-Tyr-NH ₂)	
	were varied at 1:1 (\blacksquare) and 1.1:1 (\triangle).	99
3.37	Time course of glycyl endopeptidase catalysed solid-to-solid synthesis of	
	Z-Gly-Tyr-OEt, with 20 mg of glycyl endopeptidase and solid	
	cysteine per reaction. The substrate molar ratios (Z-Gly:Tyr-OEt)	
	were varied at 1:1 (■), 1.1:1 (x) and 1.5:1 (○).	100
3.38	The separation of reaction mixture in glycyl endopeptidase catalysed	
	solid-to-solid synthesis of Z-Gly-Phe-NH ₂ ; the reaction mixture before (A)	
	and after (B) incubation in a water bath 40°C for 25 h.	101

Figu	Figure	
3.39	Effects of tube size and centrifugation on glycyl endopeptidase catalysed	
	solid-to-solid synthesis of Z-Gly-Phe-NH ₂ . Substrate molar ratio	
	(Z-Gly-OH: H-Phe-NH ₂) was 2:1. The reaction was carried out in	
	the tubes of 1.5 mL (a) and 0.5 mL with (o) or without (x) centrifugation.	102
3.40	Time course of glycyl endopeptidase catalysed solid-to-solid synthesis of	
	Z-Gly-Phe-NH ₂ with substrate molar ratio at 2:1, 20 mg of enzyme and	
	solid cysteine per reaction. The reactions were compared between	
	ground (□) and unground (■) of the two solid substrates.	103
3.41	Time course of glycyl endopeptidase catalysed solid-to-solid synthesis of	
	Z-Gly-Leu-NH ₂ with substrate molar ratio at 1.1:1, 20 mg of enzyme and	
	solid cysteine per reaction. The reactions were compared between	
	ground (□) and unground (■) of the two solid substrates.	103
3.42	Time course of glycyl endopeptidase catalysed solid-to-solid synthesis of	
	Z-Gly-Tyr-NH ₂ with substrate molar ratio at 1.1:1, 20 mg of enzyme and	
	solid cysteine per reaction. The reactions were compared between	
	ground (□) and unground (■) of the two solid substrates.	104
3.43	Time course of glycyl endopeptidase catalysed solid-to-solid synthesis of	
	Z-Gly-Tyr-OEt with substrate molar ratio at 1.1:1, 20 mg of enzyme and	
	solid cysteine per reaction. The reactions were compared between	
	ground () and unground () of the two solid substrates.	104
3.44	Effect of grinding solid cysteine on glycyl endopeptidase catalysed	
	peptide synthesis. Substrate molar ratio (Z-Gly-OH: H-Phe-NH ₂)	
	of 2:1, added solid cysteine was ground (□) or unground (■).	105
3.45	Time course of glycyl endopeptidase catalysed solid-to-solid synthesis of	
	Z-Gly-Phe-NH ₂ with substrate molar ratio at 2:1, 20 mg of enzyme and	
	solid cysteine per reaction. Reaction mixture was mixed once at	
	starting time (•) and re-mixed after reaction stopped (o).	106
3.46	Time course of glycyl endopeptidase catalysed solid-to-solid synthesis of	
	Z-Gly-Leu-NH ₂ with substrate molar ratio at 1.1:1, 20 mg of enzyme and	
	solid cysteine per reaction. Reaction mixture was mixed once	
	at starting time (a) and re-mixed after reaction stopped (0)	107

Figure		Page
3.47	Time course of glycyl endopeptidase catalysed solid-to-solid synthesis of Z-Gly-Tyr-OEt with substrate molar ratio at 1.1:1, 20 mg of enzyme and	
	solid cysteine per reaction. Reaction mixture was mixed once	
	29181146	107
2.40	at starting time (•) and re-mixed after reaction stopped (o).	107
3.48	Glycyl endopeptidase catalysed solid-to-solid synthesis of Z-Gly-Phe-NH ₂ . Substrate molar ratio (Z-Gly-OH: H-Phe-NH ₂) of 2:1. After normal	
	reaction (a) stopped (48 hr), some liquid was removed (×) or added with	
	enzyme solution (\square), pure water (\circ), phosphate buffer pH 7.5 (*)	108
2.40	and activating agent (+).	108
3.49	Effect of adding fresh enzyme after conversion had stopped in glycyl	
	endopeptidase catalysed solid-to-solid synthesis of Z-Gly-Phe-NH ₂	
	at substrate molar ratio 2:1. After normal reaction (m) stopped (48 hr),	
	more enzyme solution was added to the reaction mixture with (x)	
	and without drying (□).	110
3.50	Effect of adding fresh enzyme after conversion had stopped in glycyl	
	endopeptidase catalysed solid-to-solid synthesis of Z-Gly-Tyr-OEt	
	at substrate molar ratio 1.1:1. After normal reaction () stopped	
	(24 hr), more enzyme solution was added to the reaction mixture	
	without drying (□).	110
3.51	Inactivation of glycyl endopeptidase while catalysing solid-to-solid	
	synthesis of Z-Gly-Phe-NH ₂ with substrate molar of 2:1; progress of	
	synthesis (—=—), and residual amidase activity of enzyme (Δ).	111
3.52	SDS-PAGE of glycyl endopeptidase recovered from the reaction mixture;	
	after catalysis for 5 min (lane 3), 30 min (lane 4), 1 h (lane 5), 3 h (lane 6)	
Λ	and 24 h (lane 7), comparing to the enzyme before addition to the reaction	
	mixture (lane 2).	113
3.53	Absorption at 280 nm of glycyl endopeptidase recovered from the reaction	
	mixture of solid-to-solid Z-Gly-Phe-NH ₂ synthesis after mixing with the	
	substrates and incubation for 1 h (B), 3 h (C) and 24 h (D), compared	
	with the enzyme before catalysis (A).	114

Figure Page

4.1 Three dimensional structure of glycyl endopeptidase molecule indicating the glycine residues at the surface (blue sphere shape). Balls & stick representing the catalytic Cys-25 (green), catalytic His-159 (red) and three disulfide bridges (yellow). Source: Brookhaven Protein Databank (Code 1GEC).

132

ลิขสิทธิ์มหาวิทยาลัยเชียงใหม่ Copyright[©] by Chiang Mai University All rights reserved

ABBREVIATIONS AND SYMBOLS

AB product peptide

Ac acetyl

Ac-Phe-Gly-pNA N-acetyl-L-Phenylalanylglycine-p-nitroanilide

Ahx-Gly-Phe-NHCH₂CN 6-aminohexanoyl-glycine-phenylalanine-

aminoacetonitrile

AOH acyl donor

AS ammonium sulfate

BH nucleophile

Boc t-butyloxycarbonyl

Boc-Ala-Ala-Gly-NHMec t-butyloxycarbonyl-L-alanyl-L-alanyl-L-glycine-

7-(4-methyl)coumaryl-amide

Boc-Ala-Ala-Gly-pNA t-butyloxycarbonyl-L-alanyl-L-alanyl-L-glycine-

p-nitroanilide

Boc-Gly-OPhNO₂ t-butyloxycarbonyl-L-glycine-p-nitrophenyl ester

Bz benzoyl

Bz-Arg-pNA N-benzoyl-DL-arginine-p-nitroanilide
DL-BAPNA N-benzoyl-DL-arginine-p-nitroanilide

 ΔG gibbs free energy change (Jmol⁻¹)

GSH glutothione

HOAc acetic acid

K_{eq} concentration based equilibrium constant (M⁻¹)

K_{th} thermodynamics equilibrium constant

Log P partitioning between octanol and water

R_m relative mobility

pI isoelectric point

PAGE polyacrylamide gel electrophoresis

PEG polyethyleneglycol

2-Py-S-S-2-Py 2,2'-dipyridyl disulfide

S_{AOH} molar solubility of acyl donor (M⁻¹)

S_{BOH} molar solubility of nucleophile (M⁻¹)

S_{AB} molar solubility of peptide product (M⁻¹)

TFAc trifluoroacetyl

Z benzyloxycarbonyl

Z-Gly-OPhNO₂ benzyloxycarbonyl-L-glycine-*p*-nitrophenyl ester

Z_{sat} saturated mass action ratio

Z_{th} thermodynamics mass action ratio

