TABLE OF CONTENTS

	Page
Acknowledgement	iii
Abstract (in English)	iv
Abstract (in Thai)	vi
List of tables	xii
List of illustrations	xiii
Abbreviations and symbols	XV
Chapter 1 Introduction	1
Chapter 2 Literature review	4
2.1 Plant polysaccharides	4
2.1.1 Starch	4
2.1.2 Non-starch polysaccharides (NSPs)	6
2.1.3 Application of plant polysaccharides	8
2.2 Moo-noi 2.3 Pectin	8 11
2.3.1 Structure of pectin	11
2.3.1.1 Homogalacturonan	12
2.3.1.2 Rhamnogalacturonan I	13

viii

TABLE OF CONTENTS (CONTINUED)

	Page
2.3.1.3 Rhamnogalacturonan II	13
2.3.2 Properties of pectins	15
2.3.3 Applications of pectin	16
2.3.4 Pectin and health	20
2.4 Pectic oligosaccharides (POS)	20
2.4.1 POS as prebiotics	21
2.5 Prebiotic	22
2.5.1 Definition of prebiotic	22
2.5.2 Properties of prebiotic substances	22
2.5.3 Structure-function relationships	23
2.5.4 Fiber fermentation by gut bacteria	23
2.5.5 Oligosaccharides as prebiotic	25
2.5.6 Effects of prebitics on health	27
2.6 Probiotic	30
2.6.1 Definition of probiotic	30
2.6.2 Gut microbiota-an unexplored ecosystem	32
2.6.3 A unifying hypothesis for health effects	33
Chapter 3 Materials and Methods	35
3.1 Materials	35
3.1.1 Media	35
3.1.2 Chemical reagents	S 35
3.1.3 Equipment	37
3.1.4 Microorganisms	38
3.1.5 Plants as carbon source	38
3.2 Methods	38
3.2.1 Preparation of plant materials	38
3.2.2 Polysaccharides extraction	38

TABLE OF CONTENTS (CONTINUED)

	Page
3.3.3 Size determination of polysaccharides	39
3.3.4 Analysis of carbohydrates by thin layer	40
chromatography (TLC)	
3.3.5 Preparation of pectic oligosaccharides	40
by enzymatic method	
3.3.5.1 Effect of enzymes concentration on	40
oligosaccharide production by pectinase	
3.3.5.2 Effect of extracted polysaccharide concentration	41
on oligosaccharide production by pectinase	
3.3.6 Study of prebiotic properties of extracted polysaccharides	41
3.3.6.1 In vitro study with defined microorganisms	41
in pure culture	
3.3.6.2 In vitro study with defined microorganisms in	42
mixed culture	
3.3.6.3 Mixed culture test in fecal slurry medium	43
Chapter 4 Results and Discussion	44
4.1 Physical characteristic and size determination of	44
polysaccharides	
4.2 Physical characteristic of gel formation	45
4.3 Analysis of polysaccharides by	46
thin layer chromatography (TLC)	
4.4 Preparation of pectic oligosaccharides	47
by enzymatic method	
4.4.1 Effect of enzymes concentration on	47
oligosaccharide production by pectinase	

TABLE OF CONTENTS (CONTINUED)

	Page
4.4.2 Effect of extracted polysaccharide concentration	48
on oligosaccharide production by pectinase	
4.5 Study of prebiotic properties of prepared carbohydrates	49
4.5.1 In vitro study with defined microorganisms	49
4.5.2 Pathogen inhibition test by mixed cultures	54
of defined microorganisms	
4.5.3 Mixed culture study in fecal slurry	61
Chapter 5 Conclusions	64
References	66
Appendices	74
Appendix A	75
Appendix B	78
	84
Appendix C	
Curriculum Vitae	85

ลิปสิทธิมหาวิทยาลยเชยงเหม Copyright[©] by Chiang Mai University All rights reserved

LIST OF TABLES

Table

Page

1	Chemical composition of Moo-noi leaves	9
2	Property of high methoxy pectin and low methoxy pectin	18
3	Treatment of prebiotic study in pure culture	42
4	Treatment of prebiotic study in mixed culture	43
5	Average DP and yield of polysaccharides extracted	45
	from Moo-noi leaves	
6	The result of bacterial viable cell number in fecal slurry cultlure	62
7	The result of bacterial viable cell number in fecal slurry culture	63
	(added S. havana)	
8	Absorbance at 490 nm by glucuronic acid solution at	79
	several concentrations	
9	Absorbance at 540 nm by glucuronic acid solution at	81
	several concentrations	
10	Absorbance at 525 nm by glucuronic acid solution at	83
	several concentrations	

ลิขสิทธิ์มหาวิทยาลัยเชียงไหม Copyright[©] by Chiang Mai University All rights reserved

xii

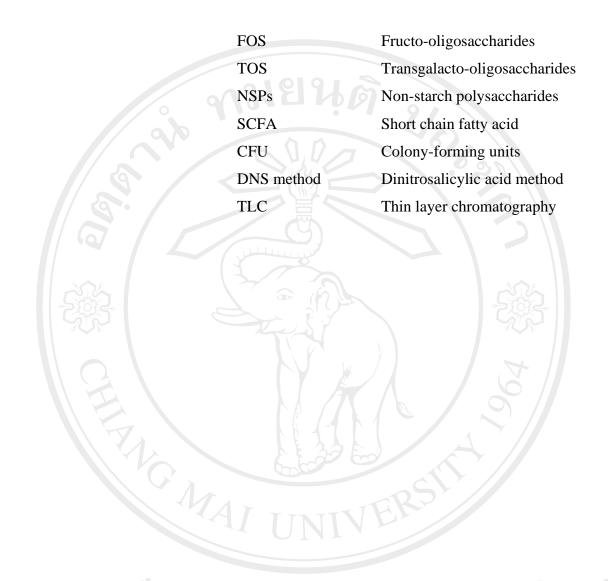
LIST OF ILLUSTRATIONS

Figure

1	Structures of amylose	5	
2	Structures of amylopectin	5	
3	Flow chart of non-starch polysaccharides	6	
4	Structures of cellulose	6	
5	Structures of β-glucan	7	
6	Structures of xylan	7	
72	Cissampelos pareira (Moo-noi)	9	
8	Structure of pectin	11	
9	Structures of homogalacturonan	12	
10	Structures of Rhamnogalacturonan I	13	
11	The basic structure of pectin	14	
12	The metabolism and associated health benefits	27	
13	Some prebiotic products	30	
14	Some probiotic products	32	
15	The numerically dominant microbial genera in	33	
	the adult human gastrointestinal tract		
16	Flow chart of polysaccharides extraction	39	
17	The gel formation of polysaccharide from Moo-noi leaves	46	
18	Sugar composition of Moo-noi by using TLC	47	
19	Effect of enzyme concentration on POS production by pectinase	48	
20	Effect of extracted polysaccharide concentration on oligosaccharide	49	
01	production by 10 units pectinase	51	
21 22	The growth of tested strains in difference C-sources	51 53	
	pH change in culture broth of every medium	55 57	
23	Cell number changes in different C-sources with mixed culture	57	

xiii

LIST OF ILLUSTRATIONS (CONTINUED)


Figu	ire	Page
24	pH changes in different C-sources with mixed culture	60
25	Standard curve of total sugar by Phenol-Sulfuric method	79
	Using glucuronic acid as standard sugar	
26	Standard curve of reducing sugar by DNS method	81
	using glucuronic acid as standard sugar.	
27	Standard curve of uronic acid by carbazole method	83
	using glucuronic acid as standard sugar	
28	The morphology of some strain on selective media	84

ลิขสิทธิ์มหาวิทยาลัยเชียงใหม่ Copyright[©] by Chiang Mai University All rights reserved

ABBREVIATIONS AND SYMBOLS

Percent % Kilogram kg Gram g Milligram mg Microgram μg Milliliter ml L Liter Nanometer nm Μ Molar U Unit Milli molar mМ Weight by volume w/vVolume by volume v/v Minute min h Hour °C Degree Celsius Optical density at 600 OD600 Non-digestible oligosaccharides NDOs spp. Species DW Distill water DP Degree of polymerization Degree of esterification DE ΡI prebiotic index LMP Low methoxy pectin HMP High methoxy pectin LAB Lactic acid bacteria POS Pectic oligosaccharides

ABBREVIATIONS AND SYMBOLS (CONTINUED)

ลิขสิทธิ์มหาวิทยาลัยเชียงใหม่ Copyright[©] by Chiang Mai University AII rights reserved