CHAPTER 3

RESULTS

3.1 The suitable GC-ECD conditions for analysis of cypermethrin and fenvalerate insecticides

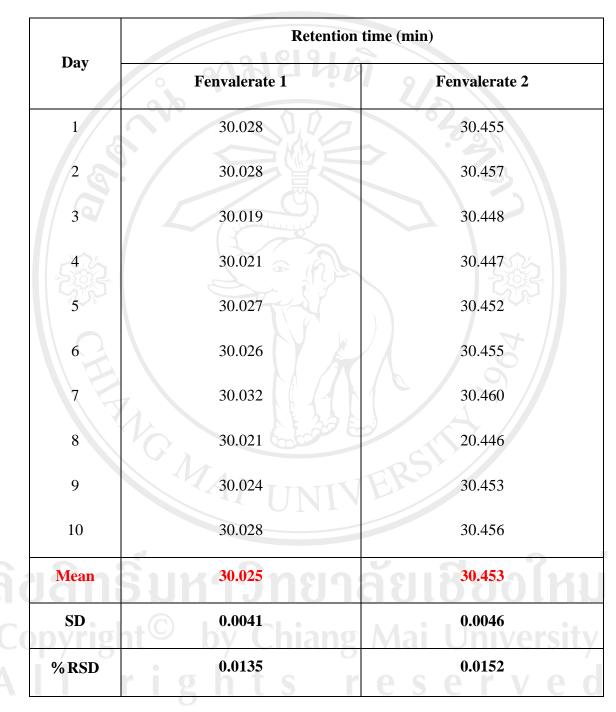
The optimization of GC-ECD conditions were studied using the parameters presented in 2.6.2. Results from optimization of GC-ECD conditions for analysis of cypermethrin and fenvalerate insecticide are shown in Table 3.1.

 Table 3.1 Conditions of GC-ECD employed

Operation	Conditions				
1. Oven	116 5				
initial temperature	100 °C (hold 2 min)				
maximum temperature	320 °C				
rate	100-180 °C, rate 8 °C/min (hold 3 min)				
	180-260 °C, rate 10 °C/min (hold 3 min)				
าสิทธิ์มหาวิเ	260-300 °C, rate 4 °C/min (hold 3 min)				
2. Detector	hiang Mai University				
type					
temperature 1 g h t	S _{300 °C} eserve				
3. Injector					
volume	1.0 μL				

Table 3.1 (continued)

Operation	Conditions			
4. Column	19191			
capillary column	HP-5 5% Phenyl Methyl Siloxane			
	30.0 m \times 320 μm I.D., 0.25 μm nominal			
maximum temperature	325 °C			
5. Front inlet				
mode	splitless			
temperature	250 °C			
6. Carrier gas	helium			
mode	constant flow			
initial flow	1.6 mL/min			
7. Analysis time	42 minutes			


ลิขสิทธิ์มหาวิทยาลัยเชียงใหม่ Copyright[©] by Chiang Mai University All rights reserved

3.2 The retention times of cypermethrin and fenvalerate insecticide standards

The retention time of cypermethrin and fenvalerate insecticide standards were measured under the current operating optimum conditions. Results are presented in Tables 3.2- 3.3 and Figures 3.1-3.3.

		Retention time (min)						
Day	Cypermethrin 1	Cypermethrin 2	Cypermethrin 3	Cypermethrin 4				
503	28.188	28.383	28.533	28.607				
2	28.187	28.383	28.531	28.607				
3	28.185	28.379	28.527	28.601				
4	28.181	28.375	28.523	28.598				
5	28.191	28.384	28.534	28.607				
6	28.187	28.382	28.530	28.604				
7	28.192	28.384	28.535	28.606				
8	28.181	28.376	28.526	28.601				
9	28.182	28.376	28.528	28.598				
10	28.182	28.375	28.526	28.599				
Mean	28.186	28.379	28.529	28.603				
SD	0.0041	0.0038	e 0.0039	0.0038				
% RSD	0.0144	0.0137	0.0138	0.0134				

 Table 3.2 Retention time of cypermethrin insecticide standard (n=10)

Table 3.3 Retention time of fenvalerate insecticide standard (n=10)

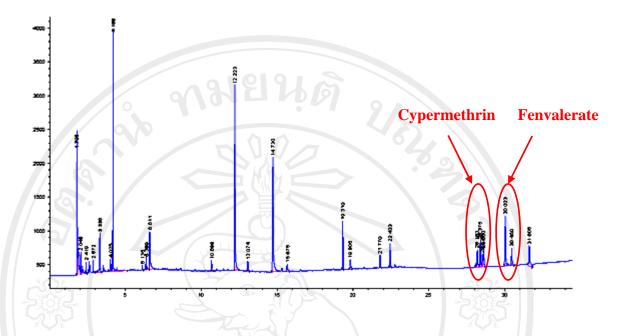


Figure 3.1 GC-ECD chromatogram of cabbage extract under optimum

ERC MAI (fortified with cypermethrin and fenvalerate, 3.0 mg/L)

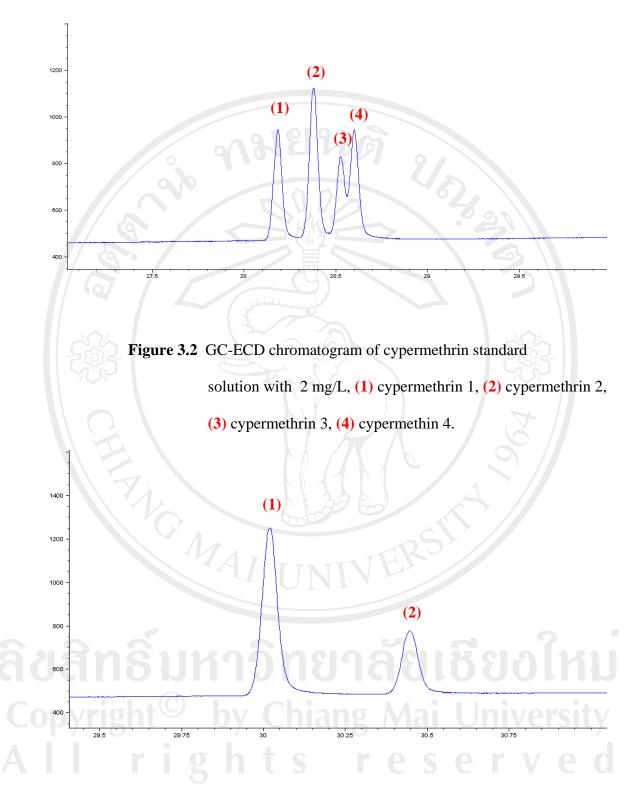


Figure 3.3 GC-ECD chromatogram of fenvalerate standard

solution with 2 mg/L, (1) fenvalerate 1, (2) fenvalerate 2.

3.3 Investigation of suitable solvent for extraction of cypermethrin and fenvalerate insecticide residues from cabbage samples

The suitable ratios of solvent mixture between acetone, *n*-hexane and ethyl acetate for extraction of cypermethrin and fenvalerate insecticide residues from cabbage samples were investigated. Results are presented in Table 3.4.

The ratio of solvent	Cypermethrin				Fenvalerate			
mixture (A : H : E)*	SD	% RSD	% Recovery	% Error	SD	% RSD	% Recovery	% Error
100 : 75 (Acetone : CH ₂ Cl ₂)**	0.06-0.27	10-15	82-89	11-18	0.06-0.29	11-16	78-85	15-22
90:5:5	0.08-0.14	41-14	33-38	62-67	0.05-0.30	21-34	30-46	54-70
80 : 10 : 10	0.06-0.32	24-28	40-45	55-60	0.06-0.31	27-29	35-48	52-65
70 : 15 : 15	0.05-0.45	24-36	41-47	53-59	0.04-0.44	18-36	41-46	54-59
60:20:20	0.05-0.47	19-36	43-48	52-57	0.04-0.33	14-19	52-58	42-48
50:25:25	0.05-0.28	18-19	50-53	47-50	0.04-0.21	a 11-15	58-62	38-42
40:30:30	0.05-0.41	15-17	71-82	18-29	0.08-0.41	17-22	70-79	21-30
33.33 : 33.33 : 33.33	0.05-0.19	6-10	93-103	3-7	0.05-0.36	12-13	83-91	9-17

Table 3.4 Comparison of SD, % RSD, % recovery and % error of cypermethrin and fenvalerate at each solvent mixture ratio (n=5)

The ratio of solvent		Суре	methrin		Fenvalerate			
mixture (A : H : E)*	SD	% RSD	% Recovery	% Error	SD	% RSD	% Recovery	% Error
5:90:5	0.06-0.20	16-39	33-42	58-67	0.05-0.25	22-30	33-37	63-67
10:80:10	0.05-0.40	23-27	46-48	51-54	0.04-0.30	18-20	43-49	51-57
15 : 70 : 15 🍣	0.06-0.30	15-21	56-67	24-33	0.06-0.29	16-24	50-62	38-50
20:60:20	0.07-0.27	13-21	63-70	30-37	0.05-0.43	17-20	65-70	30-35
25 : 50 : 25	0.05-0.42	15-18	73-79	21-27	0.06-0.34	15-18	69-76	24-31
30:40:30	0.05-0.24	9-11	86-91	9-14	0.07-0.31	12-17	77-85	15-23
5:5:90	0.05-0.34	20-24	39-55	45-61	0.06-0.62	27-34	42-61	39-58
15:15:70	0.04-0.17	11-19	45-49	51-55	0.05-0.08	6-16	45-63	37-55
25:25:50	0.04-0.06	4-9	54-80	20-46	0.05-0.08	4-14	63-74	26-36
30:30:40	0.05-0.08	4-12	64-83	17-36	0.05-0.17	8-12	70-85	15-30

 $(A : H : E)^*$ = The ratio of acetone : *n*-hexane : ethyl acetate (by volume)

 $(Acetone : CH_2Cl_2)^{**} =$

Solvent mixture for extraction method of the Department of Agriculture, Thailand

3.4 Validation of the method

A validation of the method in terms of percent recovery, detection limit, precision and linearity were mentioned as follows.

1) Percent recovery

Standard solutions containing 0.5 mg/L and 3 mg/L of cypermethrin and fenvalerate were added in 10 g of sample and then followed by the process of extraction as described in Figure 2.1. The percent recoveries of the method are shown in Table 3.4. Example of the calculation is shown in Appendix B.

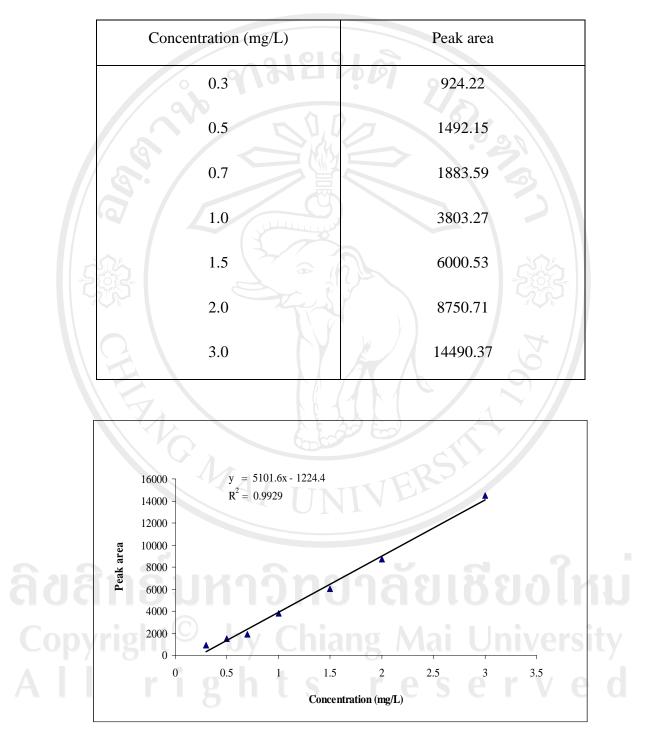
2) Detection limits

Sample blank was added to standard solution containing 0.1-1.0 mg/L of cypermethrin and fenvalerate insecticides and then analyzed by GC. The detection limit can be calculated from the linear calibration curves of each insecticide which were constructed by plotting the peak areas obtained from standard insecticides chromatogram against the corresponding concentration. Results of the determination are listed in Table 3.5.

ลิ<mark>ปสิทธิ์มหาวิทยาลัยเชียงไหม</mark> Copyright[©] by Chiang Mai University All rights reserved

Analytes	Regression line	R ²	LOD (mg/L)
Cypermethrin	1191.5x + 161.4	0.9968	0.064
Fenvalerate	2724.4x - 80.932	0.9973	0.061

Table 3.5 Detection limits of cypermethrin and fenvalerate insecticides, using


GC-ECD analytical method

3) Precision

Standard solutions of cypermethrin and fenvalerate at concentration of 0.5 mg/L and 3.0 mg/L were determined using GC-ECD analytical method. The standard solutions were analyzed five replicates. Data were calculated to find the percentage of relative standard deviation (%RSD). Precisions are shown in Table 3.4 and example calculation is shown Appendix B.

4) Linearity

After injection of each working insecticide standard into GC, the peak area appeared. The peak areas are plotted against the insecticide standards at concentrations of 0.3, 0.5, 0.7, 1.0, 1.5, 2.0 and 3.0 mg/L. Results of linearity curves are presented in Tables 3.6- 3.7, and Figures 3.4-3.5.

Table 3.6 The ECD response (peak area) of cypermethrin with variation of

concentration

Figure 3.4 Linearity plot of peak area against concentration of cypermethrin under the optimized condition.

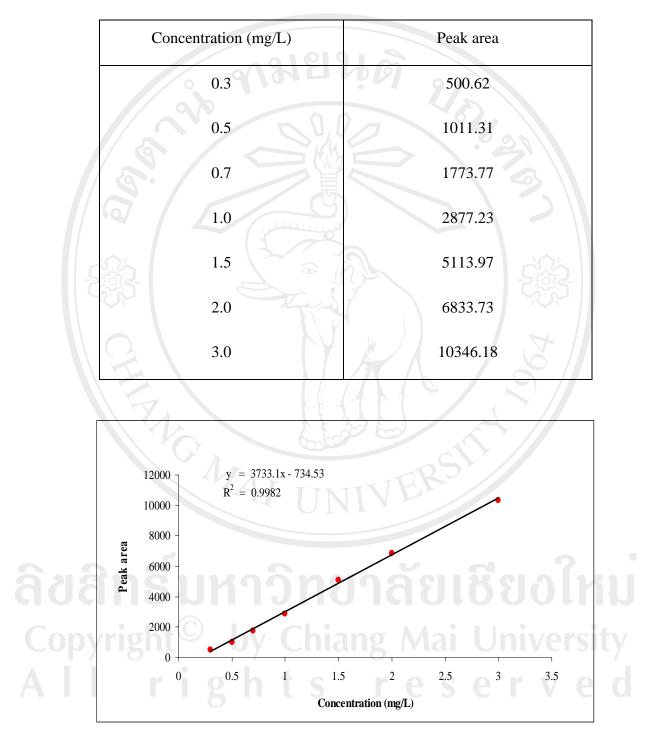


 Table 3.7 The ECD response (peak area) of fenvalerate with variation of

concentration

Figure 3.5 Linearity plot of peak area against concentration of fenvalerate under the optimized condition.

3.5 Determination of cypermethrin and fenvalerate insecticide residues in cabbages

The amounts of cypermethrin and fenvalerate insecticide residues in cabbage samples, using standard addition analytical method were determined. Results are presented in Table 3.8.

	Residues	(mg/kg)	
Sample number	Cypermethrin	Fenvalerate	
Sample No.1	ND*	ND*	
Sample No.2	ND*	ND*	
Sample No.3	0.221	0.201	
Sample No.4	ND*	0.110	
Sample No.5	UND*	ND*	
Sample No.6	ND*	0.093	
Sample No.7	191 ND* 188	0.110	
Sample No.8	0.086 g Ma	0.185	
Sample No.9	nts ^{ND*} re	Ser ^{ND*} e	
Sample No.10	ND*	ND*	

Table 3.8 Cypermethrin and fenvalerate insecticide residues in cabbage samples

ND* = not detectable

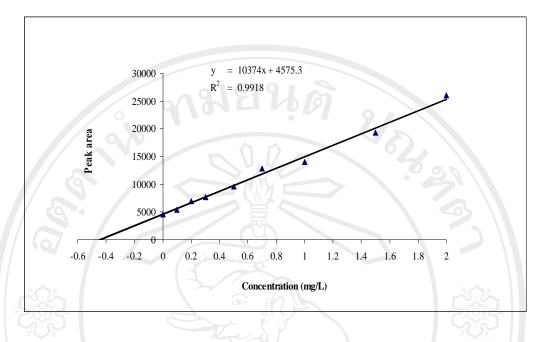


Figure 3.6 Relationship between peak area and concentration of cypermethrin

insecticide in sample No. 3 by standard addition method

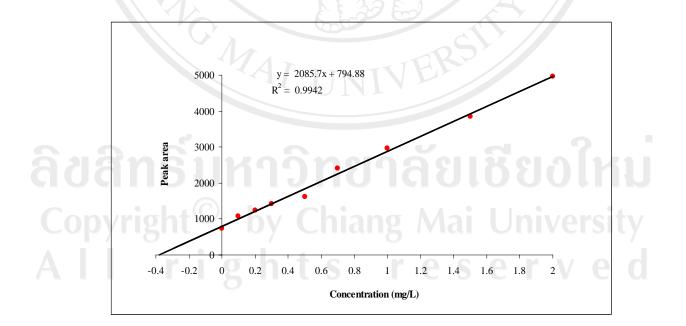


Figure 3.7 Relationship between peak area and concentration of fenvalerate

insecticide in sample No. 3 by standard addition method

3.6 Desorption study

3.6.1) Desorption of cypermethrin at room temperature (28 °C)

A time profile for desorption of cypermethrin from cabbage in water and in washing liquid at room temperature was determined. Results are shown in Tables 3.9 and Figures 3.8.

Table 3.9 Comparison of time profile for desorption of cypermethrin from cabbage,

in water and in washing liquid at room temperature (28 °C) (*initial* amounts of cypermethrin in the cabbage samples were 17 and 16 mg for desorption in water, and in washing liquid, respectively)

Desorption time			Amount of cyp	ermethri	in found	
h (min)	h ^{1/2} (min ^{1/2})	i	n water	in washing liquid		
		mg	%desorbed	mg	%desorbed	
10	0.41	1.4	8.2	1.2	7.5	
20	0.58	1.6	9.4	2.0	12	
30	0.71	1.8	11	1.9	12	
40	0.81	1.6	9.4	1.9	12	
50	0.91	1.5	8.8	1.8	-11	
06160 51	1.00	1.7	10	1.8	011	
70	1.08	1.6	9.4	1.5	9.4	
80	1.15	1.4	8.2	1.6	versn 10	
90	Q 1.22	S 1.5	8.8 S	1.5	9.4	
100	1.30	1.5	8.8	1.5	9.4	
110	1.35	1.4	8.2	1.5	9.4	
120	1.41	1.3	7.6	1.5	9.4	

3.6.2) Desorption of cypermethrin at 90 °C

A time profile for desorption of cypermethrin from cabbage at 90 °C was determined, in water and in washing liquid. Results are shown in Table 3.10 and Figure 3.8.

Table 3.10 Comparison of time profile for desorption of cypermethrin from cabbage,in water and in washing liquid at 90 °C (*initial amounts of cypermethrin*in the cabbage samples were 13 and 12 mg for desorption in water, andin washing liquid, respectively)

Desorption time		~ (n	Amount of cype	ermethrin	found	
h (min)	h ^{1/2} (min ^{1/2})	in	n water	in washing liquid		
2		mg	%desorbed	mg	%desorbed	
10	0.41	1.7	13	2.6	22	
20	0.58	1.6	12	1.3	11	
30	0.71	1.4	11	2.1	18	
40	0.81	1.1	8.5	1.7	14	
50	0.91	1.4	11	1.1	9.2	
60	1.00	1.2	9.2	1.5	13	
70 51	1.08	1.1	8.5	1.4	12	
80	1.15	1.1	8.5	1.2	10	
90	1.22	1.0	9.0 A	1.2	/er ₁₀ It	
100	Q 1.30	S 1.1	8.5 S	e 1.3	VÆ	
110	1.35	1.0	9.0	1.2	10	
120	1.41	1.0	9.0	1.2	10	

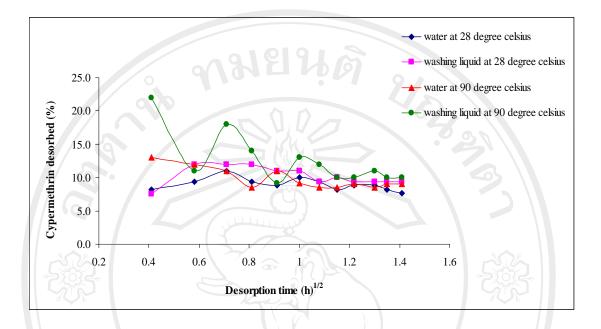


Figure 3.8 Desorption time profile of cypermethrin insecticide residue from

cabbage (at 28 °C and 90 °C) in water and in washing liquid

ลิขสิทธิ์มหาวิทยาลัยเชียงใหม่ Copyright[©] by Chiang Mai University All rights reserved

3.6.3) Desorption of fenvalerate at room temperature (28 °C)

A time profile for desorption of fenvalerate from cabbage at room temperature was determined, in water and in washing liquid. Results are shown in Tables 3.11 and Figures 3.9.

Table 3.11 Comparison of time profile for desorption of fenvalerate from cabbage,in water and in washing liquid at room temperature (28 °C) (initialamounts of fenvalerate in the cabbage samples were 7.4 and 12 mg fordesorption in water, and in washing liquid, respectively)

Desorption time		a a	Amount of fer	nvalerate	found	
h (min)	h ^{1/2} (min ^{1/2})	i	n water	in washing liquid		
		mg	%desorbed	mg	%desorbed	
10	0.41	0.32	4.3	0.48	4.0	
20	0.58	0.90	12	0.90	7.5	
30	0.71	0.61	8.2	1.2	10	
40	0.81	1.8	24	2.4	20	
50	0.91	0.41	5.5	0.99	8.3	
60	1.00	0.57	7.7	0.99	8.3	
70 51	1.08	0.44	5.9	1.4	12	
80	1.15	0.42	5.7	1.2	10	
90 90	1.22	0.50	6.8	1.4	ver₁₂ity	
100	1.30	0.55	7 .4 S	0.87	7.3	
110	1.35	0.56	7.6	1.2	10	
120	1.41	0.59	8.0	1.4	12	

3.6.2) Desorption of fenvalerate at 90 °C

A time profile for desorption of fenvalerate from cabbage at 90 °C was determined, in water and in washing liquid. Results are shown in Table 3.12 and Figure 3.9.

 Table 3.12
 Comparison of time profile for desorption of fenvalerate from cabbage,

in water and in washing liquid at 90 °C (*initial amounts of fenvaleratein the cabbage samples were 18 and 16 mg for desorption in water, and in washing liquid, respectively*)

Desorption time	e c	-ST	Amount of fer	valerate	found	
h (min)	h ^{1/2} (min ^{1/2})	^{/2} (min ^{1/2}) in water		in washing liquid		
		mg	%desorbed	mg	%desorbed	
10	0.41	1.8	10	2.3	14	
20	0.58	2.1	125	2.9	18	
30	0.71	2.9	16	2.3	14	
40	0.81	2.3	13	2.6	16	
50	0.91	2.5	14	2.7	17	
60 51	1.00	2.5		2.7	17	
70	1.08	3.8	21	2.9	18	
80	1.15	2.6	14	2.6	16	
90	9 1.22	\$ 2.5	r e ₁₄ S	2.5	V 16	
100	1.30	2.6	14	2.5	16	
110	1.35	2.3	13	2.5	16	
120	1.41	2.5	14	2.3	14	

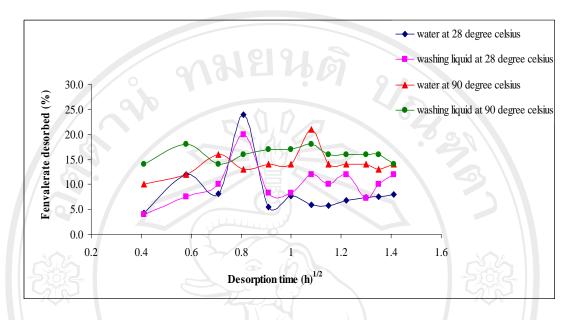


Figure 3.9 Desorption time profile of fenvalerate insecticide residue from

cabbage (at 28 °C and at 90 °C) in water and in washing liquid

ลิขสิทธิ์มหาวิทยาลัยเชียงใหม่ Copyright[©] by Chiang Mai University All rights reserved