TABLE OF CONTENTS

	Page
ACKNOWLEDGMENTS	iii
ABSTRACT (ENGLISH)	iv
ABSTRACT (THAI)	vi
LIST OF TABLES	xi
LIST OF FIGURES	xiv
ABBREVIATIONS AND SYMBOLS	xvii
CHAPTER I: INTRODUCTION	
1.1 Solid-phase extraction (SPE)	1
1.1.1 The sample preparation	1
1.1.2 Solid-phase extraction	2
1.1.3 Advantages of solid phase extraction over	4
liquid-liquid extraction	
1.1.4 Step of solid phase extraction procedure	5
1.1.4.1 Pretreatment of the samples	5
1.1.4.2 Conditioning of the cartridges	5
1.1.4.3 Sample loading step	6
1.1.4.4 Washing step	e 6 C
1.1.4.5 Eluting step	6
1.2 Molecularly imprinted polymers (MIPs)	8
1.2.1 Theory of MIPs	8
1.2.2 Molecular imprinting procedure	9

10

1.2.2.1 Covalent imprinting

1	.2.2.2 Non-covalent imprinting	11
1.2.3 Co	nstraints of MIPs synthesis	13
1	.2.3.1 Template	13
1	.2.3.2 Functional monomer	14
	.2.3.3 Cross-linker	14
// 4	.2.3.4 Initiators	17
1	.2.3.5 Solvents (Prorogens)	18
1.3 Molecularly	imprinted solid-phase extraction (MISPE)	19
1.4 Nevirapine		23
1.5 Aim of this	research	25
CHAPTER II: SYNTI	HESIS AND EVALUATION OF MOLECULARLY	
IMPRINTED POLYM	IERS FOR THE BINDING AFFINITY TO NVP	
2.1 Introduction		26
2.2 Experimenta	als 2	28
2.2.1 Ch	emicals 11880 []	28
2.2.2 Ins	trumentals hang Mai Univers	29
2.2.3 Sys	nthesis of MIPs	29
2.2.4 Eq	uilibrium binding study of MIPs with	32
the corre	sponding templates	
2.2.5 Eq	uilibrium binding study of MIPs with NVP	33
2.2.6 Co	mpetitive binding study	33

34

2.2.7 Chromatographic conditions

2.3 Results and o	discussions	35
2.3.1 Syr	nthesis of MIPs	35
2.3.2 Equ	uilibrium binding study of MIPs with	36
the corre	sponding templates	
2.3.3 Equ	uilibrium binding study of MIPs with NVP	40
2.3.4 The	e effect of amount of polymer to the	43
binding e	efficiency of NAM to P(NAM)	
2.3.5 The	e competitive binding study	45
CHAPTER III: MOLI	ECULARLY IMPRINTED SOLID-PHASE	
EXTRACTION FOR 1	NVP	
3.1 Introduction		47
3.2 Experimenta	Is AT TIMIVERS	48
3.2.1 Cho	emicals	48
3.2.2 Inst	trumentals	49
3.2.3 Ger	neral procedure for MISPE	49
3.2.4 Opt	timization of the extraction conditions	vers 50
3	.2.4.1 Optimization of the washing condition	50
3	.2.4.2 Optimization of the eluting condition	52
3.2.5 MI	SPE with the real plasma sample	53
3.2.6 Eff	ect of NAM in MISPE process	53
3.2.7 Me	thod validation	53

3.2.8 Plasma sample preparation	54	
3.2.9 Chromatographic conditions	54	
3.3 Results and discussions		
3.3.1 Optimization of the washing condition	55	
3.3.2 Optimization of the eluting condition	57	
3.3.3 MISPE with the real plasma sample	58	
3.3.4 Effect of NAM to recovery of NVP	60	
3.3.5 Method Validation	61	
CHAPTER IV: CONCLUSIONS	62	
REFERENCES	66	
APPENDICES	73	
APPENDIX A	74	
APPENDIX B	88	
CURRICULUM VIVATE	97	

ลิขสิทธิ์มหาวิทยาลัยเชียงใหม่ Copyright[©] by Chiang Mai University All rights reserved

LIST OF TABLES

Table	Page
1.1 Advantages and disadvantages of LLE and SPE technique	4
1.2 Advantages and disadvantages of covalent and non-covalent imprinting	12
1.3 Various application of MIP in SPE	20
2.1 Conditions of MIPs preparation	30
2.2 Chromatographic condition for analysis	33
2.3 The NVP selectivity factors of all polymers in 0.2 mM NVP in 0.01 M	40
phosphate buffer pH 7 containing 0.05% Tween 20	
2.4 The imprinting factors of P(NAM) in 0.2 mM NVP in 0.01 M	44
phosphate buffer pH 7 containing 0.05% Tween 20	
3.1 The washing conditions	50
3.2 The eluting conditions	51
3.3 Chromatographic conditions for analysis	54
A.1 Calibration curve of NAM in 0.01 M phosphate buffer pH 7 containing	73
0.05% Tween 20	
A.2 Calibration curve of NVP in 0.01 M phosphate buffer pH 7 containing	74
0.05% Tween 20 Chiang Mai University	
A.3 Calibration curve of BZM in 0.01 M phosphate buffer pH 7 containing	75
0.05% Tween 20	
A.4 Calibration curve of BZP in 0.01 M phosphate buffer pH 7 containing	76
0.05% Tween 20	

Table	Page
A.5 The binding study of 0.2 mM NVP in 0.01 M phosphate buffer pH 7	77
containing 0.05% Tween 20 with P(NVP)	
A.6 The binding study of 0.2 mM NAM in 0.01 M phosphate buffer pH 7	77
containing 0.05% Tween 20 with 5 mg of P(NAM)	
A.7 The binding study of 0.2 mM BZM in 0.01 M phosphate buffer pH 7	78
containing 0.05% Tween 20 with 5 mg of P(BZM)	
A.8 The binding study of 0.2 mM BZP in 0.01 M phosphate buffer pH 7	78
containing 0.05% Tween 20 with 5 mg of P(BZP)	
A.9 The binding study of 0.2 mM NVP in 0.01 M phosphate buffer pH 7	79
containing 0.05% Tween 20 with P(NVP), P(NAM), P(BZM) and P(BZP)	
A.10 The binding study of 0.2 mM NAM in 0.01 M phosphate buffer pH 7	80
containing 0.05% Tween 20 with P(NAM)	
A.11 The competitive binding study of mix solution of NAM and NVP	80
in 0.01 M phosphate buffer pH 7 containing 0.05% Tween 20	
with P(NAM)	
A.12 Calibration curve of NVP in plasma sample	82
A.13 Percentage of NVP retained in MISPE cartridge after washing step in	83
various washing conditions	
A.14 Percentage of NVP recovery after MISPE process in various eluting	84
conditions	
A.15 The effect of NAM to recovery of NVP in plasma sample after	85
MISPE process.	

A.16 The precision study	85
A.17 The accuracy of the recovery of 10 $\mu g/ml$ NVP in plasma sample	86
after MISPE process	

ลิขสิทธิ์มหาวิทยาลัยเชียงใหม่ Copyright[©] by Chiang Mai University All rights reserved

LIST OF FIGURES

Figure	Page
1.1 The general SPE procedure	7
1.2 The schematic of MIP preparation	9
1.3 The schematics of MIP preparation; covalent and non-covalent approach	12
1.4 The functional monomers most commonly used in MIPs	15
1.5 The cross-linker most commonly used in MIPs	16
1.6 The initiator most commonly used in MIPs	17
1.7 The structure of Nevirapine	23
2.1 Structure of templates, functional monomer, cross-linker	29
and initiator used in MIP synthesis	
2.2 The imprinting factor and the percentage bound of MIP	37
with corresponding template	
2.3 Schematic representation of the synthesis of P(NVP)	38
2.4 The percentage bound of P(NVP), P(NAM), P(BZM) and P(BZP) to NVP	40
(0.2 mM) in 0.01 M phosphate buffer pH 7 containing 0.05% Tween 20	
2.5 The schematic presentation the P (NAM) synthesis	41
2.6 The effect of amount of P(NAM) to the binding affinity	43
with corresponding template	
2.7 The competitive binding study of P(NAM) with mix solution of	45
NAM:NVP in 0.01M phosphate buffer pH 7 containing 0.05% Tween 20	
in ratio 0:1, 1:1, 5:1 and 10:1	
3.1 MISPE method	49

Figure	Page
3.2 The percentage of retained NVP after washing step in various	56
washing conditions	
3.3 The percentage of recovery NVP after eluting step in various	57
eluting conditions	
3.4 HPLC chromatogram of MISPE for NVP in plasma sample	58
3.5 Effect of NAM for recovery of NVP	59
A.1 Calibration curve of NAM in 0.01 M phosphate buffer pH 7	73
containing 0.05% Tween 20	
A.2 Calibration curve of NAM in 0.01 M phosphate buffer pH 7	74
containing 0.05% Tween 20	
A.3 Calibration curve of BZP in 0.01 M phosphate buffer pH 7	75
containing 0.05% Tween 20	
A.5 Calibration curve of BZP in 0.01 M phosphate buffer pH 7	76
containing 0.05% Tween 20	
A.4 Calibration curve of NVP in plasma sample	82
B.1 The HPLC chromatogram of competitive binding study of P(NAM)	87
in mix solution of NAM:NVP (1:1) in 0.01 M phosphate buffer pH7	
containing 0.05% Tween 20	
B.2 The HPLC chromatogram of competitive binding study of P(NAM)	88
in mix solution of NAM:NVP (5:1) in 0.01 M phosphate buffer pH7	
containing 0.05% Tween 20	

Figure	Page
B.3 The HPLC chromatogram of competitive binding study of P(NAM)	89
in mix solution of NAM:NVP (10:1) in 0.01 M phosphate buffer pH7	
containing 0.05% Tween 20	
B.4 The HPLC chromatogram of the study of MISPE with mix solution of	90
NAM:NVP (6:1) in 0.01 M phosphate buffer pH7 containing	
0.05% Tween 20	
B.5 The HPLC chromatogram of the study of MISPE with mix solution of	91
NAM:NVP (1:1) in 0.01 M phosphate buffer pH7 containing	
0.05% Tween 20	
B.6 The HPLC chromatogram of the study of MISPE with mix solution of	92
NAM:NVP (12:1) in 0.01 M phosphate buffer pH7 containing	
0.05% Tween 20	
B.7 The HPLC chromatograms of 0.2 mM NVP in 0.01 M phosphate buffer	93
pH 7 containing 0.05% Tween 20 after washing step	
B.8 The HPLC chromatograms of 0.2 mM NVP in 0.01 M phosphate buffer	95
pH 7 containing 0.05% Tween 20 after eluting step	

ABBREVIATIONS AND SYMBOLS

MISPE Molecularly imprinted solid-phase extraction

NVP Nevirapine

MIPs Molecularly imprinted polymers

NAM Nicotinamide

SPE Solid-phase extraction

HPLC High-performance liquid chromatography

GC Gas chromatography

LC-MS-MS Liquid chromatography tandem mass spectrometry

RIA Radio immunoassay

LLE Liquid-liquid extraction

UV Ultraviolet

ELISA Enzyme-link immunoassay

NNRTI Non-nucleoside reverses transcriptase inhibitor

BZM Benzamide

BZP Benzophenone

NIP Non-imprinted polymer

TRIM Trimethylopropane trimethacrylate

MAA Methacrylic acid

MeOH Methanol

THF Tetrahydrofuran

TEA Triethylamine

SD Standard deviation

%RA Percentage of relative accuracy

%RSD Percentage of relative standard deviation

M Molar

mM Millimolar

ml Milliliter

mg Milligram

nm Nanometer

mg/ml Milligram per milliliter

μg/ml Microgram per milliliter

ml/min Milliliter per minute

v/v Volumn by volumn

λ Wavelength

 λ_{max} The wavelength of maximum absorbance

α The imprinting factor

α' The NVP selectivity factor

mAU milli area unit