TABLE OF CONTENTS

	Page
ACKNOWLEDGEMENTS	iii
ABSTRACT (ENGLISH)	V
ABSTRACT (THAI)	ix
TABLE OF CONTENTS	xii
LIST OF TABLES	xvi
LIST OF FIGURES	xvii
ABBREVATIONS AND SYMBOLS	xxiii
CHAPTER 1 INTRODUCTION	1
1.1 Trace gas analysis	1
1.1.1 Trace gas sampling and analysis	1
1.1.2 Some online sampling devices for determination of trace gas	2
in flow system	
1.1.3 Atmospheric SO ₂ gas determination	10
1.2 Soap bubble and applications	211
1.2.1 Soap bubble in everyday life	11
1.2.2 Soap bubble as scientific device	11 I SI TV
1.3 Chiral separation membrane	12
1.4 Liquid membrane and separation process	15
1.4.1 Liquid membrane	15
1.4.2 Liquid membrane for gas separation	17

	Page
1.4.3 Liquid membrane for chiral compound separation	19
1.4.4 Soap bubble film as liquid membrane	21
1.5 Membrane in flow systems for gas determination	22
1.6 Solid phase micro extraction (SPME) couple with gas chromatograp	ohy 23
for vapor permeation study	
1.7 Aim of the research	27
CHAPTER 2 EXPERIMENT	28
2.1 Apparatus and components	28
2.2 Chemicals and reagents	29
2.3 Making a spherical soap bubble	33
2.3.1 Setup to make soap bubbles	33
2.3.2 Generation of SO_2 standard and detection of SO_2	37
2.4 Making planar soap films	38
2.4.1 Permeation chamber	39
2.4.2 Making a planar soap film	42
2.4.3 Standard α -pinene vapor generation	44
2.4.4 SPME-GC for α-pinene detection	45
2.4.5 α -pinene permeation study	46
CHAPTER 3: RESULTS AND DISCUSSION	48
3.1 Development of soap bubble for gas sampling interface	48
3.1.1 Requirements for soap bubble in gas sampling and	48
analytical chemistry	

	Page
3.1.2 Reproducibility of bubble size	48
3.1.3 Soap bubble film thickness	49
3.2 Conductance in spherical soap bubble	55
3.2.1 Decreasing of conductance with time	55
3.2.2 Conductance vs concentration	56
3.2.3 Effect of TX-100 content to conductance	58
3.2.4 Conductance vs bubble size	60
3.2.5 Film thickness from conductance measurement compared to	63
that from optical measurement	
3.2.6 Bubble as conductance flow cell	64
3.3 Soap bubbles for gas sampling and analysis	66
3.3.1 Application of soap bubble for SO_2 gas sampling and	66
analysis	
3.3.2 Automation for soap bubble gas sampling and analysis by	73
using SIA	
3.4 A planar soap film as a membrane	77
3.4.1 Effect of vertical vs. horizontal film placement	77
3.4.2 Planar soap film. variation in glycerol content	79
3.4.3 Planar soap film lifetime under varying gas flow conditions	80
3.5 Permeation through soap film	82
3.5.1 Investigation on SPME-GC determination of α -pinene	82
3.5.2 Effect of TX-100 content on transport flux	87

3.5.3 Effect of film glycerol content on transport flux	89
3.5.4 Effect of α -cyclodextrin in soap film to α - pinene permeation	91
3.5.5 Effect of transport duration	93
CHAPTER 4 CONCLUSIONS	95
REFERENCES	99
APPENDICES	105
APPENDIX A	105
Some Basic Principle of Conductometry	
APPENDIX B	110
Evaluation Parameter for Soap Film Permeation	
CURRICULUM VITA	112
THE RELEVANCE OF THE RESEARCH WORK TO THAILAND	115

ลิขสิทธิ์มหาวิทยาลัยเชียงใหม่ Copyright[©] by Chiang Mai University All rights reserved

Page

LIST OF TABLES

Table		Page
1.1	Some development of diffusion scrubber for automated gas	4
	sampling interface	
1.2	Some development of wet denuder for automation atmospheric	7
	gas collection and analysis	
1.3	Some liquid drop devices for gas sampling interface and analysis	9
1.4	Some properties of different cyclodextrins (CDs)	13
1.5	Cyclodextrin modified membrane for chiral separation	14
1.6	Supported liquid membrane for gas separation	18
1.7	Example of supported liquid membrane for chiral separation	20
1.8	Application of supported liquid membrane for preconcentration	22
	or extraction prior to determination in flow system	
3.1	Experimental condition for SO ₂ sampling with a soap bubble	70
3.2	Protocol for making bubbles with sequential fluid handling	75
	system	
3.3	Experimental conditions for making soap bubbles by the	76
	sequential fluid handling system	
3.4	Horizontal film lifetime containing various amounts of glycerol	80
	(n = 10, in each case)	
3.5	Life time of 5% TX-100 + 10% glycerol soap film under various	S 82
	flow conditions T S T E S E T V	
3.6	Peak area, standard deviation and % rsd of SPME-GC	86
	determination of (-) and (+) α -pinene obtained from many days	
	of experiments	

LIST OF FIGURES

Figure		Page
1.1	SO_2 purge into H_2O_2 through midget bubbler and then H_2SO_4	2
	product was determined by using IC	
1.2	Schematic of a simple diffusion scrubber	3
1.3	Wet denuder. a) Front view b) Side view	6
1.4	Molecular structure of α-cyclodextrin	13
1.5	Liquid membrane a) bulk liquid membrane b) supported liquid membrane	16
1.6	Moving of carrier molecule in liquid membrane- a) symport b) antiport mechanism	17
1.7	Commercial SPME for manual sorption injection	23
1.8	Mode of SPME sampling: a) direct extraction b) head space	24
	SPME c) membrane protected SPME	
2.1	Annular tube-based bubble head	34
2.2	Panel: Soap bubble making program and measurement display	35
2.3	Softwire TM programming sequence to make soap bubble and	36
	carry out measurements	
2.4	a) Stainless steel electrode. b) Bubble performing setup. The	37
	soap solution from solution bottle SB was delivered by using solenoid valve pump SVP passed through Teflon filter TF and PEEK capillary tube CP to annular bubble head BH. The	
	constant flow of air from the mass flow controller passes	
	through computer-controlled solenoid valve SV to the bubble	
	head to form and inflate the bubble	

Figure		Page
2.5	Schematic diagrams of SO ₂ gas generation and sampling for	38
	standardization	
2.6	Schematic diagram of permeation box. A) Front view, CL=cover	40
	lid, BF= Perspex bubble frame, RL= Perspex ring ledge, W=	
	water, I/O = inlet/outlet for vapor flow in/out. B) Side view	
2.7	Dimensions of permeation chamber and 1 mm thick Perspex	41
	frame and 2 mm thick perspex ring ledge which attached in	
	chamber	
2.8	Making soap film: a) dip plate in soap solution b) lift soap	43
	solution soaked plate, c) and d) sliding Perspex plate on Perspex	
	frame e) soap film is formed on the frame in the permeation	
	chamber (Note the liquid film on the edge of window of plastic	
	frame)	
2.9	Setup for α -pinene chiral vapor generation. MFC1= mass flow	44
	controller-1, MFC2= mass flow controller-2	
2.10	U-tube for sampling of vapor in SPME-GC calibration	46
2.11	Sampling locations: (A) donor chamber, (B) receiver chamber,	47
	and (C) in U-tube placed in-line in the source stream (Note: a	
	dash line of suction pump was used and operated to clean	
	permeation chamber when finish permeation study)	
2.12	Photograph of permeation chamber while SPME sampling is	48

being carried out in receiver chamber

Figure		Page
3.1	Photographic measurement of bubble size	49
3.2	Soap bubble film thickness measurement setup. a) Top view of	50
	a chamber, b) a blue laser beam passes through the bubble	
	perpendicular to the axis connecting the electrodes, at the same	
	vertical plane	
3.3	Absorption spectra of yellow food dye in a soap solution matrix,	51
	cell pathlength 103 μm	
3.4	Temporal absorbance of soap bubble in various dye	52
	concentrations by using laser spectroscopy	
3.5	Absorbance of bubble and absorbance of bubble making solution	54
	from thin (103 μ m path length) cell. The slope of the line	
	between 2-6% dye concentration was used for soap bubble film	
	thickness calculation	
3.6	Temporal conductance profiles for bubbles containing various	56
	concentrations of H ₂ SO ₄	
3.7	Linear relationship of bubble conductance and concentration of	57
	sulfuric acid in bubble making solution	
3.8	Logarithm of the slope values in Figure 3.7 decrease linearly	58
	with the bubble age	

Figure		Page
3.9	Conductance of 10 mM H_2SO_4 solution as a function of TX-100	59
	(0.2, 1, 2, 2.0 and 6% v/v) concentration added. a) Specific	
	conductance of bubble making solution, b) Bubble conductance.	
	Both specific conductance of solution and bubble conductance	
	linearly decrease with increasing glycerol content	
3.10	Setup for conductance measurement of varying bubble size: soap	60
	solution flows by gravity through solenoid valve SV1 to	
	bubblehead and compressed air	
3.11	Temporal conductances from various bubble sizes.	61
3.12	Measured bubble conductance for various bubble sizes	62
	compared to conductance values computed from known solution	
	specific conductance, geometrically estimated thickness	
	(equation 3.3) measurement and the bubble conductance model	
	(equation 3.4)	
3.13	Bubble film thicknesses based on bubble conductance:	64
	Comparison with optically measured film thickness (n=3)	
3.14	Setup of bubble as a conductometric flow cell	65
3.15	FIAgram obtained with bubble flow cell. After making the	65
	bubble, soap solution (2% TX-100, 10% glycerol, was	
	continuously pumped at the indicated flow rate by an auxiliary	
	pump and the 5 μL of $10^{\text{-3}}$ M $H_2 \text{SO}_4$ in the same soap solution	
	matrix was injected	

Figure		Page
3.16	Testing bubble-based collection/analysis system with diluted	66
	SO ₂ standards	
3.17	Temporal bubble conductance profiles from various SO ₂	68
	sampling rates; 1200 ppbv at 200 mL/min shows a non-linear	
	increase of conductance with time, while a sampling rate of 300	
	mL/min produces a nearly linear increase at two different	
	concentrations	
3.18	Arrangement for SO ₂ sampling with provision for flushing	69
	chamber with clean humidified air between samples	
3.19	Top: Net bubble conductance increase between $\tau = 2 \min$ and τ	71
	= 10 min plotted against SO_2 concentration sampled. Bottom:	
	temporal profile of bubble conductance as a function of SO_2	
	concentration sampled	
3.20	Conductance signal vs. SO ₂ concentration for 30 s sampling.	72
3.21	Sequential fluid delivery system to make bubble and wash	74
	electrodes	
3.22	Bubblehead and electrode arrangement to make bubbles in a	74
	sequential fluid handling system: a) Bubblehead, b) electrodes	
	and electrode-washing system	
3.23	Correspondence of specific conductance of bubble making	2 76
	solution vs. bubble conductance, bubble made by the sequential	
	fluid handling system	

Figure		Page
3.24	Schematic diagram of vertical placement plastic ledge in box.	78
3.25	Schematic diagram of horizontal placement perspex ledge in	78
	box. a) 3D, b) top view, c) front view	
3.26	Effect of chamber identities: a) Receiver chamber at top, film	81
	bulges upward and excess solution flows to soap film edge b)	
	Donor chamber at top, film bulges downward, excess solution	
	flows to film bottom and accumulates as a drop	
3.27	Gas chromatogram of α -pinene chiral vapor. a) minus (-) form b)	83
	plus (+) form c) mixed chiral vapor	
3.28	Relationship of sampling time and GC peak area of both forms	84
	of α-pinene	
3.29	Calibration graphs for minus (-) and plus (+) forms of α -pinene.	85
3.30	The effect of TX-100 content (0.05, 0.5, and 5 % v/v) on α -	88
	pinene transport: a) C/C_0 , b) transfer flux, c) separation factor	
3.31.	Effect of glycerol content on a) C/C_o , b) transfer flux, c)	90
	separation factor	
3.32	Effect of α-cyclodextrin content (0-3 % α-CD in 5% TX-100 +	92
	10% glycerol and 0-10% CD in 0.05% TX-100 + 10% glycerol).	
	a) C/C_o , b) transfer flux c) separation factor	
3.33	Separation factor of α -pinene in donor compartment	93
3.34	Effect of experimental duration on a) C/Co	94

ABBREVIATIONS AND SYMBOLS

δ	film thickness
$\delta_{_{geom}}$	film thickness from geometrical consideration
\vec{J}	current density
$ec{E}$	electrical field strength
Ω	ohm
t	bubble age
μ	micro
CD	cyclodextrin
-So -CT	polyurethane coiled tubing
CFLME	continuous-flow liquid membrane extraction
CE	capillary electrophoresis
DS	diffusion scrubber
IC	ion chromatograph
FID	frame ionization detector
GC	gas chromatograph
LCW	liquid core waveguide
LED	light emitting diode
MFC	mass flow controller
MMLLE	micro porous membrane liquid-liquid extraction
min	minute f s reserved
NF	nanofiltration
PEEK	polyether ether ketone
PES	porous hydrophilic polyethersulfone

ppbv	volume by volume part per billion	
PTFE	poly tetrafluoroethylene	
sccm	standard cubic centimeters per minute	
SDS	sodium dodecyl sulfate	
SLM	supported liquid membrane	
SPME	solid phase micro extraction	
SPME-GC	solid phase micro extraction couple with ga	as chromatograph
SV	solenoid valve	
SVP	solenoid valve pump	
TX-100	triton X-100	
tr	retention time	

ลิขสิทธิ์มหาวิทยาลัยเชียงใหม่ Copyright[©] by Chiang Mai University All rights reserved