APPENDIX A

AHP process for weighting four parameters

Step 1: Pair-wise ranking of parameters (judgment matrix).

9	Slope	Geology	Landuse	Stream Proximity
Slope	1	2	5/2	7/2
Geology	1/2	1	2	4
Landuse	2/5	1/2	1	2
Stream Proximity	2/7	1/4	1/2	

Step 2: Synthesis of judgment matrix – matrix A

	Slope	Geology	Landuse	Stream Proximity	Total
Slope	1.00	2.00	2.50	3.50	9.00
Geology	0.50	1.00	2.00	4.00	7.50
Landuse	0.40	0.50	1.00	2.00	3.90
Stream Proximity	0.29	0.25	0.50	1.00 Ver	2.04
Total	2.19	3.75	6.00	10.50	22.44

Step 3: Calculation of priorities using approximation method (normalized matrix, each cell is divided by respective column total to obtain the values in the cells.

	Slope	Geology	Landuse	Stream Prox.	Total	Average W
Slope	0.46	0.53	0.42	0.33	1.74	0.44
Geology	0.23	0.27	0.33	0.38	1.21	0.30
Landuse	0.18	0.13	0.17	0.19	0.67	0.17
Stream Proximity	0.13	0.07	0.08	0.10	0.38	0.09
Total	1.00	1.00	1.00	1.00	4.00	1.00

Step 4: Consistency measurement (Consistency matrix) A*W

Each column value in step 2 (Matrix A) is multiplied by its respective row W

	Slope	Geology	Landuse	Stream Prox.	Total	Total/W
Slope	0.44	0.60	0.42	0.33	1.79	4.11
Geology	0.22	0.30	0.34	0.38	1.23	4.08
Landuse	0.17	0.15	0.17	0.19	0.68	4.05
Stream Proximity	0.12	0.08	0.08	0.09	0.38	4.02
Pyright		y Ch	Average	4.07		

Consistency Index (CI) = $(+ \frac{1}{max} - n)/n-1$

Where, n = number of criteria under consideration, here 4 parameters

CI =
$$(4.07-4)/(4-1)$$

= 0.0233

Consistency Ratio (CR) = CI / CI_r

Where, CI is consistency index and CI_r random value of CI for r criteria, here 4 parameters.

$$CR = 0.0233/0.90$$

$$= 0.03$$

CR is acceptable since it is less than 0.09 for a 4x4 matrix.

Average consistency index for different order matrices and acceptable limit of CR

		antico especia		21					25		
308	Size of matrix (n)										
	1	2	3	4	5	6	7	8	9	10	
Random	0.00	0.00	0.52	0.90	1.11	1.25	1.35	1.40	1.45	1.5	
CI Value								\			
Acceptable	C,	11	<0.05	<0.09	+			.10 —			

Source: Saaty (1980)

ลิขสิทธิมหาวิทยาลัยเชียงใหม Copyright[©] by Chiang Mai University All rights reserved

APPENDIX B

Geotechnical Lab Result

ภาควิชาวิศวกรรมโยธา คณะวิศวกรรมศาตร์ มหาวิทยาลัยเชียงใหม่

239 ถ.ห้วยแก้ว ค.สุเทพ อ.เมือง จ.เชียงใหม่ โทร. 053-944157-66 โทรสาร 053-892376

GEOTECHNICAL ENGINEERING LABORATORY

DIRECT SHEAR TEST OF SOILS UNDER CONSOLIDATED UNDRAINED CONDITIONS
ASTM D 3080-90

Client:	Mr. Dorji Gyeltshen P.	Job No:	344/49
Project:	Landslide Hazard and Risk Assessment of Doi Suthep Area	Date:	19 ธ.ค. 49
Location:	Doi Suthep, Chiang Mai	Sample No.	1, S2(Shale) 770823
Soil Description:	ดินเหนียวปนซิลท์ สีน้ำตาลเข้ม	Depth (m.)	
Remark:		Tested By:	สายันท์
		Checked By:	รศ.คร.บุญส่ง

WORK INSTRUCTIONS

Test procedure was carried out according to ASTM D3080-90, which can be described briefly as follows:

- 1) The test condition is the consolidated undrained test, using square box, (CU Test)
- 2) Samples were prepared from an undisturbed soil collected using a 6" tube
- 3) Three samples were used with the applied normal stress of 4.0, 10.0, 16.0 t/sq.m. coresponding to the overburden pressure of height 2, 5 and 8 m.
- 4) Each sample was consolidated in a shear box by load steps, consolidation was monitored till completion before starting a new load step
- 5) After completion of consolidated under full normal stress, the samples were then allowed to be under water for 12 hours to ensure a saturated condition
- 6) Under full normal stress, the samples were tested under undrained condition, using the shear rate of 1.2 mm./minute (as recommended by J.E. Bowles, Engineering Properties of Soil and Their Measurement)
- 7) The maximum shearing stress were obtained from all tests, the Mohr-Coulomb failure line was drawn and the value of Cohesion and Friction angle were determined.

239 ถ.ห้วยแก้ว ค.สุเทพ อ.เมือง จ.เชียงใหม่ โทร. 053-944157-66 โทรสาร 053-892376

GEOTECHNICAL ENGINEERING LABORATORY

DIRECT SHEAR TEST OF SOILS UNDER CONSOLIDATED UNDRAINED CONDITIONS

ASTM D 3080-90

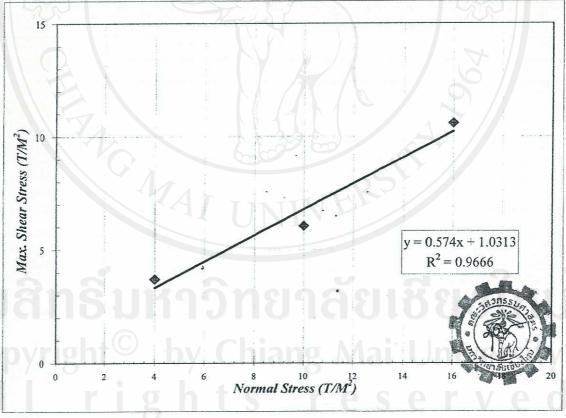
Client: Project:

Mr. Doni Gyeltshen P.

Job No: Date: 344/49 19 ธ.ค. 49

Location:

Landslide Hazard and Risk Assessment of Doi Suthep Area Doi Suthep, Chiang Mai


Sample No. Depth (m.) 1, S2(Shale) 770823

Soil Description:

ดินเหนียวปนซิลท์ สีน้ำตาลเข้ม

Tested By: Checked By: สายันห์ รศ.คร.บุญส่ง

	Test1	Test 2	Test3	Test 4
Normal Stress (T/M2)	4.0	10.0	16.0	
Max. Shear Stress (T/M2)	3.7	6.0	10.6	

Remarks:

Cohesion, C (T/M2)

1.09

Friction Angle, \(\phi \) (degree)

29

239 ถ.ห้วยแก้ว ค.สุเทพ อ.เมือง จ.เชียงใหม่ โทร. 053-944157-66 โทรสาร 053-892376

GEOTECHNICAL ENGINEERING LABORATORY

DIRECT SHEAR TEST OF SOILS UNDER CONSOLIDATED UNDRAINED CONDITIONS ASTM D 3080-90

344/49 Job No: Client: Mr. Dorji Gyeltshen P. 19 ธ.ค. 49 Date: Project: Landslide Hazard and Risk Assessment of Doi Suthep Area 1, S2(Shale) 770823 Sample No. Location: Doi Suthen, Chiang Mai Depth (m.) ดินเหนียวปนชิลท์ สีน้ำตาลเข้ม Soil Description: สายันห์ Tested By: Remark: รศ.คร.บุญส่ง Checked By:

Load .	- Defor	nation	Data	Sample Data Diect Shear Apparatus
Horiz.	Hori.	Verti.	Shear	Water Content Determination Plan Dimension (cm.) 6.00 Load Ring No. 14595
Disp.	Load Rd.	Disp.	Stress	Cont + Wet Soil (gm) 132.30 Initial Height (cm.) 1.90 Ring Constant 0.1401 (Kg./Div.)
0.01mm.)	(Div.)	(Div.)	(T/M²)	Cont + Dry Soil (gm) 106.10 Wt Samp+Cont (gm) 224.21 Shearing Rate 1.20 (mm./mir
0	0	0	0.0	Cont (gm) 17.87 Wt. Cont (gm) 112.90 Lever Arm Ratio 1:10
25	51	20	2.0	Water Content (%) 29.70 Initial Area (cm²) 36.00 Hanging Weight 3.6 (kg)
50	90	40	3.5	Initial Volume (cm ³) 68.40 Normal Stress 10.00 (t/m ³)
75	100	48	3.9	Wet Density (t/m²) 1.627
100	108	59	4.2	Dry Density (t/m²) 1.255
125	115	67	4.5	
150	119	78	4.6	7.0
175	122	90	4.7	
200	125	104	4.9	
225	126	117	4.9	
250	126	128	4.9	6.0
275	126	140	4.9	0000
300	125	150	4.9	NE 33 Ex
325	125	164	4.9	00
350	129	178	5.0	5.0
375	134	192	5.2	Approved C
400	136	205	5.3	
425	140	217	5.4	24 10 THE TOTAL OF
450	144	230	5.6	Ē4.0 - \(\)
475	146	248	5.7	2 7 0 1 1 1 .
500	148	255	5.8	Shear Stress (Um2)
525	149	265	5.8	Set
550	151	274	5.9	\$3.0
575	151	282	5.9	
600	151	290	5.9	
625	151	300	5.9	
650	152	310	5.9	
675	155	318	6.0	
700	155	328	6.0	
725	155	337	6.0	Mariang Mai Aganssu, Maria
750	155	344	6.0	1.0
775	155	355	6.0	The state of the s
800	155	362	6.0	
	and ten			
	1			0.0 Caraute
141			E.1 (49)	0.0 200 400 600 800 1000
				II a second seco
				Horizontal Displacement (x 0.01mm.)
-				Result Summary:
	1			Normal Stress 10.0 T/M²
				Maximum Shear Stress 6.0 T/M ²

239 ถ.ห้วยแก้ว ต.สุเทพ อ.เมือง จ.เชียงใหม่ โทร. 053-944157-66 โทรสาร 053-892376

GEOTECHNICAL ENGINEERING LABORATORY

DIRECT SHEAR TEST OF SOILS UNDER CONSOLIDATED UNDRAINED CONDITIONS

ASTM D 3080-90

Client: Project:

Mr. Dorii Gyeltshen P.

Landslide Hazard and Risk Assessment of Doi Suthep Area

Location: Soil Description:

Doi Suthep, Chiang Mai

Remark:

ดินเหนียวปนชิลท์ สีน้ำตาลเข้ม

Result Summary:

344/49 Job No: 19 ธ.ค. 49 Date:

1, S2(Shale) 770823 Sample No.

4.0 3.7

T/M2 T/M²

Depth (m.) Tested By:

สายันห์ รศ.คร.บุญส่ง

	Dejon	nation	Data		Sampl	e Data		Diect Sn	ear Apparatus
loriz. Disp. 01mm.)	Hori. Load Rd.	Verti. Disp. (Div.)	Shear Stress (T/M²)	Water Content Det Cont + Wet Soil (gm) Cont + Dry Soil (gm) Cont (gm)	148.01	Plan Dimension (cm.) Initial Height (cm.) Wt Samp+Cont (gm) Wt. Cont (gm)	6.00 1.90 219.01 112.90	Load Ring No. Ring Constant Shearing Rate Lever Arm Ratio	14595 0.1401 (Kg/Div.) 1.20 (mm./min 1:10
25	10	2	0.4	Water Content (%)	27.18	Initial Area (cm ²)	100000000000000000000000000000000000000	Hanging Weight	1.44 (kg)
50	30	27	1.2			Initial Volume (cm ³)	68.40	Normal Stress	4.00 (t/m³)
75	49	54	1.9			Wet Density (t/m²)	1.551	2	
100	60	80	2.3			Dry Density (t/m²)	1.220		
125	67	107	2.6						
150	72	117	2.8	4.0					
175	74	222	2.9			1 /			., ///
200	76	140	3.0	11		00000	,	2	
225	79	151	3.1	3.5		o o o o o o o o o o o o o o o o o o o		a l	
250	82	160	3.2			po		0	- //
275	84	174	3.3			od /			/ / * -
300	87	186	3.4		6	7 / ()			
325	88	197	3.4	3.0	20			1 X	
350	90	207	3.5		00				
375	91	214	3.5		1				
400	93	215	3.6	25	8 m.c.	(*** * * ***) ()			/
425	94	232	3.7	8		•			
450	95	237	3.7						
475	95	252	3.7	1 2		7			
500	95	244	3.7	\$2.0					
525	95	246	3.7	1 3					
550	95	251	3.7	ar				1	
575	95	254	3.7	Shear Stress (Vm2)					
600	95	254	3.7	11.5				1	
625	94	254	3.7						
650	92	256	3.6	1 9					
675	90	257	3.5	1.0				r ci	
700	88	259	3.4						Ass.
								Manss.	17.
		-		0.5				2/9%	12
) y	rig	ht			Lhia				

Normal Stress

Maximum Shear Stress

239 ถ.ห้วยแก้ว ค.สุเทพ อ.เมือง จ.เชียงใหม่ โทร. 053-944157-66 โทรสาร 053-892376

GEOTECHNICAL ENGINEERING LABORATORY

DIRECT SHEAR TEST OF SOILS UNDER CONSOLIDATED UNDRAINED CONDITIONS ASTM D 3080-90

344/49 Job No: Client: Mr. Dorji Gyeltshen P. 19 ธ.ค. 49 Date: Project: Landslide Hazard and Risk Assessment of Doi Suthep Area 1, S2(Shale) 770823 Sample No. Location: Doi Suthep, Chiang Mai Depth (m.) Soil Description: ดินเหนียวปนชิลท์ สีน้ำตาลเช้ม สายันห์ Tested By: Remark: รศ.คร.บุญส่ง Checked By:

Load .	- Defori	nation	Data	Sample Data Diect Shear Apparatus
Horiz.	Hori.	Verti.	Shear	Water Content Determination Plan Dimension (cm.) 6.00 Load Ring No. 14595
Disp.	Load Rd.	Disp.	Stress	Cont + Wet Soil (gm) 149.94 Initial Height (cm.) 1.90 Ring Constant 0.1401 (Kg/Div.)
0.01mm.)	(Div.)	(Div.)	(T/M²)	Cont + Dry Soil (gm) 118.77 Wt Samp+Cont (gm) 223.88 Shearing Rate 1.20 (mm/min
0	0	0	0.0	Cont (gm) 13.12 Wt. Cont (gm) 112.90 Lever Arm Ratio 1:10
25	57	3	2.2	Water Content (%) 29.50 Initial Area (cm²) 36.00 Hanging Weight 5.76 (kg)
50	102	11	4.0	Initial Volume (cm³) 68.40 Normal Stress 16.00 (t/m³)
75	125	29	4.9	Wet Density (t/m²) 1.623
100	154	42	6.0	Dry Density (t/m²) 1.253
125	173	60	6.7	
150	187	77	7.3	12.0
175	200	92	7.8	
200	210	108	8.2	
225	218	120	8.5	20000000000
250	225	132	8.8	10.0
275	230	146	9.0	
300	237	159	9.2	0000
325	241	175	9.4	
350	243	188	9.5	
375	245	200	9.5	8.0
400	247	220	9.6	8 057
425	248	225	9.7	8 9 9
450	253	236	9.8	
475	256	245	10.0	
500	258	252	10.0	Shear Stress (Vm2)
525	259	261	10.1	Str
550	261	268	10.2	
575	264	273	10.3	9 9
600	266	277	10.4	
625	267	283	10.4	4.0 + 0
650	268	289	10.4	
675	269	290	10.5	
700	269	302	10.5	
725	270	306	10.5	(2005)
750	271	312	10.5	2.0
775	272	318	10.5	
800	272	321	10.6	9007/01
825	272	325	10.6	THE PACES INVESTIGATION
	272	328	10.6	
850	272		10.6	0.0 0 200 400 600 800 1000
875	272	332	10.6	
900	212	333	10.0	Horizontal Displacement (x 0.01mm.)
				Result Summary: Normal Stress 16.0 T/M²
2 10 1	1	E 401	100 (T	Maximum Shear Stress 10.6 T/N

239 ถ.ห้วยแก้ว ค.สุเทพ อ.เมือง จ.เชียงใหม่ โทร. 053-944157-66 โทรสาร 053-892376

GEOTECHNICAL ENGINEERING LABORATORY

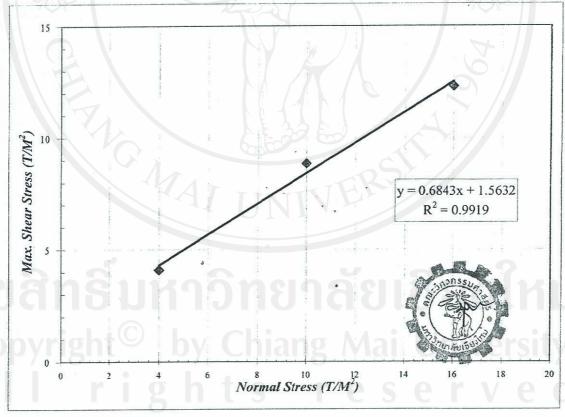
DIRECT SHEAR TEST OF SOILS UNDER CONSOLIDATED UNDRAINED CONDITIONS
ASTM D 3080-90

Client:	Mr. Dorji Gyeltshen P.	Job No:	344/49
Project:	Landslide Hazard and Risk Assessment of Doi Suthep Area	Date:	19 ธ.ค. 49
Location:	Doi Suthep, Chiang Mai	Sample No.	2
Soil Description:	ดินปนหินผุ สีน้ำตาลอ่อน	Depth (m.)	-
Remark:		Tested By:	สายันท์
		Checked By:	รศ.ดร.บุญส่ง

WORK INSTRUCTIONS

Test procedure was carried out according to ASTM D3080-90, which can be described briefly as follows:

- 1) The test condition is the consolidated undrained test, using square box, (CU Test)
- 2) Samples were prepared from an undisturbed soil collected using a 6" tube
- 3) Three samples were used with the applied normal stress of 4.0, 10.0, 16.0 t/sq.m. coresponding to the overburden pressure of height 2, 5 and 8 m.
- 4) Each sample was consolidated in a shear box by load steps, consolidation was monitored till completion before starting a new load step
- 5) After completion of consolidated under full normal stress, the samples were then allowed to be under water for 12 hours to ensure a saturated condition
- 6) Under full normal stress, the samples were tested under undrained condition, using the shear rate of 1.2 mm./minute (as recommended by J.E. Bowles, Engineering Properties of Soil and Their Measurement)
- 7) The maximum shearing stress were obtained from all tests, the Mohr-Coulomb failure line was drawn and the value of Cohesion and Friction angle were determined.


239 ถ.ห้วยแก้ว ค.สุเทพ อ.เมือง จ.เชียงใหม่ โทร. 053-944157-66 โทรสาร 053-892376

GEOTECHNICAL ENGINEERING LABORATORY

DIRECT SHEAR TEST OF SOILS UNDER CONSOLIDATED UNDRAINED CONDITIONS ASTM D 3080-90

Client:	Mr. Dorji Gyeltshen P.	Job No:	344/49
Project:	Landslide Hazard and Risk Assessment of Doi Suther Area	Date:	19 ธ.ค. 49
Location:	Doi Suthep, Chiang Mai	Sample No.	2
Soil Description:	ดินปนหินผุ สีน้ำตาลอ่อน	Depth (m.)	-:
// %	200200 0 20	Tested By:	สายันห์
		Checked By:	รศ.คร.บุญส่ง

	Test1	Test 2	Test3	Test 4	
Normal Stress (T/M2)	4.0	10.0	16.0	2	300
Max. Shear Stress (T/M2)	4.1	8.8	12.3	- 4	302-11

Remarks:

Cohesion, $C(T/M^2)$ 1.56 Friction Angle, ϕ (degree) 34

239 ถ.ห้วยแก้ว ค.สุเทพ อ.เมือง จ.เชียงใหม่ โทร. 053-944157-66 โทรสาร 053-892376

GEOTECHNICAL ENGINEERING LABORATORY

DIRECT SHEAR TEST OF SOILS UNDER CONSOLIDATED UNDRAINED CONDITIONS ASTM D 3080-90

Client:	Mr. Dorji Gyeltshen P.	Job No:	344/49
Project:	Landslide Hazard and Risk Assessment of Doi Suthep Area	Date:	19 ธ.ค. 49
Location:	Doi Suthep, Chiang Mai	Sample No.	2
Soil Description:	ดินปนหินมุ สีน้ำตาลอ่อน	Depth (m.)	-
Remark:		Tested By:	สายันท์
		Checked By:	รศ.ดร.บุญส่ง

Load .	- Deform	mation	Data		Sampl	e Data		Diect Shear Apparatus			
Horiz.	TO Fare	Verti.	Shear	Water Content Dete	_	Plan Dimension (cm.)	6.00	Load Ring No.	14595		
7	Load Rd.	Disp.	Stress	Cont + Wet Soil (gm)		Initial Height (cm.)	1.90	Ring Constant	0.1401 (Kg/Div.)		
.01mm.)		(Div.)	(T/M²)	Cont + Dry Soil (gm)	141.60	Wt Samp+Cont (gm)	231.40	Shearing Rate	1.20 (mm/min		
0	0	0	0.0	Cont (gm)	17.33	Wt. Cont (gm)	112.90	Lever Arm Ratio	1:10		
25	12	14	0.5	Water Content (%)	16.46	Initial Area (cm2)	36.00	Hanging Weight	1.44 (kg)		
50	23	34	0.9	establishment out a reference of the Control of the		Initial Volume (cm3)	68.40	Normal Stress	4.00 (t/m ³)		
75	33	55	1.3		A COMP	Wet Density (t/m²)	1.732				
100	43	74	1.7		100	Dry Density (t/m²)	1.488				
125	50	89	1.9			Diff Delicity (Pin)					
150	57	101	2.2	4.5							
175	60	110	2.3								
200	64	117	2.5	ll F				222	V / / / /		
225	69	126	2.7	4.0			20000	wasoa .			
	74	131	2.7			77	, ,	20000000			
250	79) //		
275		136	3.1	3.5		000					
300	83	138		5.5							
325	86	141	3.3								
350	90	143	3.5			6 00		X Y 1/			
375	91	147	3.5	3.0	Coa C						
400	93	148	3.6)	•					
425	95	148	3.7	Shear, Stress (Vm2)	P						
450	98	148	3.8	\$2.5	· 6			1. ±			
475	99	148	3.9	8	Ø						
500	101	147	3.9	tre.	P				1		
525	102	145	4.0	520					1		
550	103	143	4.0	ear	ρ		1				
575	104	134	4.0	Si			1		1		
600	105	129	4.1	1 7							
625	105	119	4.1	1.5				A 100 A.	****** (EG) 1		
650	105	117	4.1	P			A	2222			
675	105	116	4.1					38000			
700	104	111	4.0	1.0			200	18 B			
725	104	106	4.0	1 9			0	1000	3		
750	104	99	4.0				1 E	THILL			
775	102	89	4.0	0.5			3	STATE OF THE PARTY	40 10 1		
800	99	86	3.9					เขาลัยเชื่อ	V CI 311		
		V. 2 20			1		1	A			
1000	* 7e*			0.0							
				0.00	200	400	600	800	1000		
				6		Iorizontal Displace			1000		
	1 4		(* 1000 m)	Result Summary:				r			
34110				ALCOMI DIMINIMI FI	Normal	Stress		4.0	T/M ²		
						m Shear Stress		4.1	T/M ²		
					LIMABALLU	III WILLIAM WILLOW		7.1	* 1541		

239 ถ.ห้วยแก้ว ต.สุเทพ อ.เมือง จ.เชียงใหม่ โทร. 053-944157-66 โทรสาร 053-892376

GEOTECHNICAL ENGINEERING LABORATORY

DIRECT SHEAR TEST OF SOILS UNDER CONSOLIDATED UNDRAINED CONDITIONS

ASTM D 3080-90

Cuent	
Project	:
Locatio	on:
Soil De	scription:

Mr. Dorii Gveltshen P.

Landslide Hazard and Risk Assessment of Doi Suthep Area

Doi Suthep, Chiang Mai

Doi Sucrep, Cinang Mar ดินปนหินผุ สีน้ำตาลอ่อน

นมุ สีนำตาลอ่อน		
	CONTRACTOR OF THE PARTY OF THE	

Job No:	344/49
Date:	19 ธ.ค. 49
Sample No.	2
Depth (m.)	-
Tested By:	สายันท์
Checked By:	รศ.ดร.บุญส่ง

Load - Deformation Data					Sampl	Diect Shear Apparatus			
Horiz.	Hori.	Verti.	Shear	Water Content Determ	ination	Plan Dimension (cm.)	6.00	board reing reer	4595
	Load Rd.	Disp.	Stress	Cont + Wet Soil (gm)	102.15	Initial Height (cm.)	1.90		(Kg/Div.)
Olsp. 1	(Div.)	(Div.)	(T/M ²)	Cont + Dry Soil (gm)	91.40	Wt Samp+Cont (gm)	230.53		(mm./min
0	0	0	0.0	Cont (gm)	18.21	Wt. Cont (gm)	112.90	Devet Tim Page	1:10
	9	33	1.6	Water Content (%)	14.69	Initial Area (cm ²)	36.00	Hanging Weight 3.60	(kg)
25	40	41	2.3	Water Committee (74)		Initial Volume (cm ³)	68.40	Normal Stress 10.00	(t/m^3)
50	60	50	2.9			Wet Density (t/m²)	1.720	₹ 0}€	
75	75		3.3			Dry Density (t/m²)	1.499		
100	85	53				IDIY Density (em.)			T
125	99	61	3.9	10.0					
150	115	71	4.5			`			
175	128	78	5.0						
200	140	83	5.4	9.0	·İ · ·	10 min 10 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		oooooo	
225	150	87	5.8				~0	مرممی	
250	158	87	6.1		A Air		pour		
275	163	87	6.3	8.0	- /	0	0		
300	170	87	6.6		1		У.		1
325	175	86	6.8			000		1 //	
350	180	85	7.0	7.0		000	i		
375	183	82	7.1				1		1
400	188	82	7.3			00		7	
425	190	82	7.4	2 6.0	C				
450	195	82	7.6	3	1				
475	201	87	7.8	Shear Stress (Vm2)	7	714			
500	205	90	8.0	€ 5.0	9				
525	210	100	8.2	15	6				
550	213	105	8.3	a ,	1			2 2	
575	216	115	8.4	4.0	3				
600	219	122	8.5	/		•		1999	
625	222	130	8.6						
650	225	137	8.8	3.0			A.	AORSSUM	
675	227	142	8.8				15	STER	
700	225	147	8.8	1 9	1 2		6		
725	224	152	8.7	2.0			Na.	10人	
750	220	155	8.6	I b	1		間写	THE SERVICE OF THE SE	İ
	218	162	8.5				all in	กษาลัยเชีย	
775		165	8.4	1.0 †		ano Aa			SIL
800	216	103	0.4						
					;				
			i .	0.0 0	200	400	60	800	1000
		: - ×		0	230	Horizontal Displac			
						morizoniai Dispiac	ement (A 0.01 mm.)	
		2 -	100	1					
		1	1	Result Summary:					
		-	*	ACCOUNT DENNING	Norma	i Stress		10.0	T/M
								8.8	T/M ²

26/12/2006

239 ฉ.ห้วยแก้ว ต.สุเทพ อ.เมือง จ.เชียงใหม่ โทร. 053-944157-66 โทรสาร 053-892376

GEOTECHNICAL ENGINEERING LABORATORY

DIRECT SHEAR TEST OF SOILS UNDER CONSOLIDATED UNDRAINED CONDITIONS
ASTM D 3080-90

Client:	Mr. Dorji Gyeltshen P.	Job No:	344/49
Project:	Landslide Hazard and Risk Assessment of Doi Suthep Area	Date:	19 ธ.ค. 49
Location:	Doi Suthep, Chiang Mai	Sample No.	2
Soil Description:	ดินปนหินผ สีน้ำตาลอ่อน	Depth (m.)	H
Remark:		Tested By:	สายันห์
Acama an		Checked By:	รศ.ดร.บุญส่ง

Load -	- Deform	nation	Data		Sample	e Data		Diect Shear	Apparatus
Horiz.	Hori.	Verti.	Shear	Water Content Deter	mination	Plan Dimension (cm.)	6.00	Load Ring No.	14595
Disp.	Load Rd.	Disp.	Stress	Cont + Wet Soil (gm)	217.44	Initial Height (cm.)	1.90	The state of the s	1401 (Kg/Div.)
0.01mm.)	(Div.)	(Div.)	(T/M^2)	Cont + Dry Soil (gm)	190.22	Wt Samp+Cont (gm)	231.53	Shearing Rate	1.20 (mm./min
0	0	0	0.0	Cont (gm)	23.96	Wt. Cont (gm)	112.90	Lever Arm Ratio	1:10
25	60	14	2.3	Water Content (%)	16.37	Initial Area (cm2)	36.00	Hanging Weight	5.76 (kg)
50	91	33	3.5	12		Initial Volume (cm3)	68.40	Normal Stress 1	$6.00 (t/m^3)$
75	118	53	4.6			Wet Density (t/m ²)	1.734		
100	146	79	5.7		TAY CORD	Dry Density (t/m²)	1.490		
125	167	93	6.5	71.5					
150	183	111	7.1	14.0	ATT				
175	198	127	7.7						
200	210	141	8.2						
225	222	153	8.6	1				2000000000	000
250	230	164	9.0	12.0			-0000	30000	
275	240	173	9.3			1	2002		
300	246	179	9.6			2000			
325	251	181	9.8			200			
350	255	186	9.9	10.0	E had	poopoopoopoo			
375	260	189	10.1			O			
400	265	193	10.3		, 20				1
425	269	201	10.5	7	2				
450	274	211	10.7	8.0	2	_4.714			
475	278	219	10.8	Shear Stress (Vm2)	9				i
500	282	229	11.0	res	9				1
525	286	239	11.1	S	3				i
550	291	251	11.3	\$ 6,0					
575	295	261	11.5	1 19					
600	298	273	11.6			•			
625	300	281	11.7	P					
650	304	289	11.8	4.0					AND EN
675	307	298	11.9	0					
700	308	301	12.0						
725	309	307	12.0	1				2010	1
750	310	313	12.1	2.0				30	
775	311	320	12.1						
800	312	325	12.1						
825	313	330	12.2				EN.	5人	
850	314	336	12.2	0.0			7	The State of the S	
875	315	342	12.3	0	200	400	600	En auto	1000
900	316	349	12.3			Horizontal Displace	ement (x 0.01mm.)	
925	316	358	12.3	1		man piuce			
950	315	369	12.3						
975	315	371	12.3	Result Summary:					
1000	314	376	12.2		Normal	Stress		16.0	T/M ²
	~		0.000	1		m Shear Stress		12.3	T/M ²

CURRICULUM VITAE

Name

Dorji Gyeltshen P

Sex

Male

Date of Birth

November 7, 1976

Nationality

Bhutanese

Educational background

Bachelor Degree in Civil Engineering (2001)

Hindustan College of Engineering, Padur, 603103

Madras University, Tamil Nadu, India

Master of Science in Environmental Science (2007)

Chiang Mai University

Chiang Mai, Thailand

Scholarships

Royal Government of Bhutan Scholarship; 1997-2001

Thailand International Development Cooperation

Agency (TICA), Thailand, 2005-2007

Work experiences

January 2002 - present

Assistant Engineer, Department of Roads

Ministry of Works & Human Settlement,

Thimphu, Bhutan.

3.3 Field Investigations

Once the hazard map was generated, the field investigation was carried out to check whether or not the hazard map generated fits with the field reality. The field checks include the verification of the location of the existing landslides and collection of geotechnical and hydrological data for slope stability analysis, one each in weathered gneiss and weathered shale. Mapping and detailed study are restricted to along roads and highways because firstly, these are the areas likely to have maximum landslide due to cutting of the slopes to built roads and, secondly, limited time in hand to hike the rest of the area. A special attention was paid to the places with high hazard.

3.3.1 Landslide Mapping

Landslides encountered during the field investigation are geo-referenced using Global Positioning System (GPS) and mapped in the hazard map. Slope (both natural and modified due to road cut) and landslide dimensions are measured in the field. Types of landuse were also field checked. Detailed descriptions of the prevailing conditions of existing landslides area is as shown in Table 3.4. The figure 3.8 shows the geo-referenced landslides mapped on the hazard map. Figure 3.9 through figure 3.17 shows the pictures of each landslide.

Table 3.4 Description of existing landslides

SI	GPS	Approx.	Dimensi	on (m)	Slop	e (deg)	Landuse	Rock	Remarks
No	Coordinate	Height	Width	Depth	General	Modified	type	type	
1	0485361 2089342	20	15	1 to 2	45	75	Sparsely vegetated	Gneiss	
2	0483547 2089405	30	80	<2	60	80	Bamboo	Gneiss	3 separate
3	0481748 2090947	20	30	2 to 3	50	60	Bamboo forest	Gneiss	
4	0481575 2088311	45	15	1 to 2	60	-	Bamboo	Gneiss	Natural landslide
5	0477401 2086061	20	60	1 to 2	70	90	Bamboo mixed	Lime-	Rock fall
6	0477077 2082343	38	60	5 to 6	35	40	Bamboo mixed	Shale	
7	0477037 2084682	15	10	<2 U]	40	50	Bamboo mixed	Gneiss	
8	0491800 2078604	15	8	1 to 2	33	50	Forest	Gneiss	
9	0485295 2086369	40	30	2-3	45	10t Mai	Bushy	Gneiss	Old landslide

All rights reserved

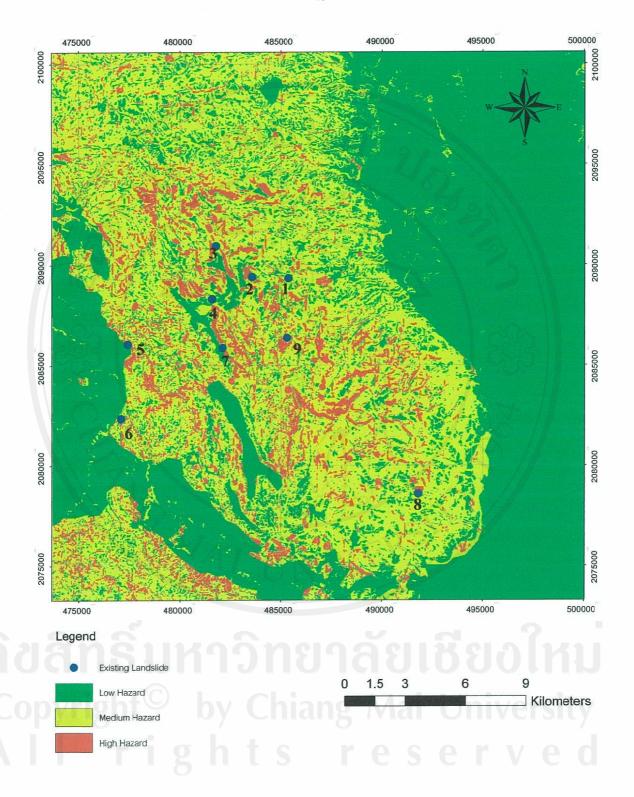


Figure 3.8 Existing landslide mapping

Figure 3.9 Picture of existing landslide (Landslide 1) in weathered gneiss on highway 1096 (Mae Rim-Samoeng highway)

Figure 3.10 Picture of existing landslide (Landslide 2) in weathered gneiss on highway 1096 (Mae Rim-Samoeng highway) near Ban Pong Yaeng Nok.

Figure 3.11 Picture of existing landslide (Landslide 3) in weathered gneiss on road leading to Ban Sam Lang

Figure 3.12 Picture of existing landslide (Landslide 4), a natural landslide in weathered gneiss near Ban Pong Yaeng Nok below highway 1096.

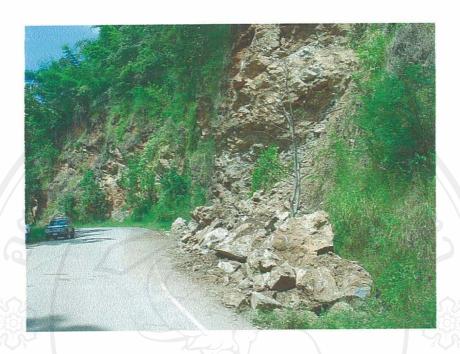


Figure 3.13 Picture of existing landslide (Landslide 5), a rock fall in limestone on highway 1096 (Mae Rim-Samoeng highway).

Figure 3.14 Picture of existing landslide (Landslide 6) in weathered shale on highway 1096 (Mae Rim-Samoeng highway)

Figure 3.15 Picture of existing landslide (Landslide 7), a natural landslide in weathered gneiss above Ban Dong Nok.

Figure 3.16 Picture of existing landslide (Landslide 8) in weathered gneiss before reaching Doi Suthep Temple.

Figure 3.17 Picture of existing landslide (Landslide 9) in weathered gneiss above Ban Mae Sa. The slide occurred in August 2004.

3.3.2 Slope Stability Analysis

Most of the landslides encountered are fresh which occurred during the last monsoon (2006) and are confined to weathered gneiss and shale. To understand the failure mechanism of landslide, slope stability analysis was carried out in weathered gneiss and weathered shale. The slope stability analysis is divided into two parts. The first part focuses on the back analysis of already failed slopes. This analysis is carried out to estimate the water level at which the slope would have failed using Janbu's generalized method of slice. The second part deals with the stability analysis of natural slope to understand and analyze the relation between hydrological conditions and the development of slope movements. The slope stability simulation and modeling was carried out in the natural slope of weathered gneiss and weathered shale

using combined hydrological and stability model (CHASM) software, Version 4.1 (build 413), which is based on Bishop's simplified method of slice.

The input parameters required for both methods of stability analysis were obtained through field and laboratory tests and from the literatures. One undisturbed soil samples each from weathered gneiss and weathered shale (Landslide No. 2 and No. 6 respectively in Figure 3.8) was collected as shown in Figure 3.18. Geotechnical parameters such as friction angle (φ) , cohesion (c), field density (γ) and hydrological parameters such as permeability were determined. Direct shear test of soils under consolidated undrained conditions was carried out to determine soil strength parameters, φ and c. The natural water content was also determined. The wet density of soil samples was obtained through field density test while dry and saturated densities of the soil samples were obtained in the laboratory. The permeability of the two soils was also measured at the sites. Rainfall data obtained from Thai Meteorological Department website was used.

Figure 3.18 Sampling site: A – Gneiss and B – Shale, for slope stability analysis

3.3.2.1 Back-analysis of Failed Slopes

The analysis of failed slopes is aimed at determining the effect of water or the height of phreatic surface above the slip surface during the time of the slope failure. Geotechnical parameters required by the Janbu's method of slices were determined through field and laboratory tests. The dimensions of the failed slopes were measured in the field. The profiles of the failed slopes are shown in Figure 3.19.

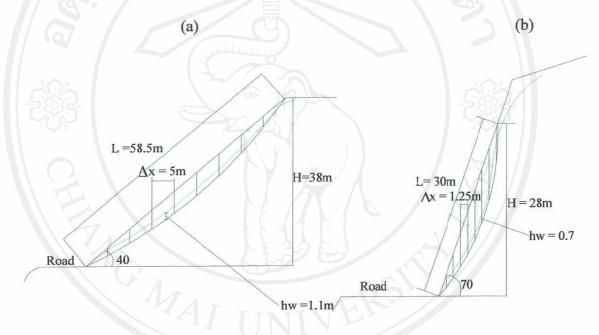


Figure 3.19 Profile of the failed slopes: a) in weathered shale b) in weathered gneiss

Janbu's method for analyzing non-circular failure in slopes is one of the most versatile methods and it is simple enough to permit the solution of problems by hand. When the properties of the soil or waste rock mass vary and the slip surface is not circular as a result to some structural feature such as soil / rock interface, the Janbu's method can be used (Hoek and Bray, 1977). In this method the sliding mass is divided into a number of slices. Unlike other methods, the slices into which the sliding mass is divided need not be of constant width. The factor of safety is given by the formula:

$$FS = f_o \frac{\sum \{c + (p - u) \tan \phi\} \Delta x / n_\alpha}{\sum p. \tan \alpha}$$

Where:

 $f_o = correction factor$

 n_{α} = geometrical functions

c = cohesive strength (kN/m²)

 φ = angle of friction (degree)

p = average weight per unit width of slice (kN)

u = average water pressure on base of slice (kN/m²)

L = chord length of failure surface (m)

d = depth of failure surface (m)

 α = angle of the centre of the base of each slice with respect to the horizontal

datum/plane (degree)

 $\Delta x = slice width (m)$

The inclination α of the center of the base of each slice with respect to the horizontal and the width Δx of the slice are measured. The values of α , Δx , c and ϕ for each slice are tabulated in Table 3.5 and Table 3.6. The weight of the slice ΔW and the average weight of the slice per unit area of base p are also calculated. Water pressure on the base of each slice is calculated assuming certain value of h_w , which is the height of phreatic surface above base of the slip surface. Thus sum of resisting and driving forces is calculated. Figure 3.20 illustrates a) the section through sliding mass showing slice boundaries and geometrical parameters, b) slice parameters used in the stability analysis and c) calculation of average water pressure u on base of slice.

Table 3.5 Back analysis calculation table for weathered gneiss

	1.0	ned)	FS (assum											
	1.0	ated)	FS (calcul											
X/nα	nα	х	ΔW tan	ΔW	u	p	φ	С	γsoil	hw	hm	Δх	α	Slice
+					kN/m ²	kN/m ²	deg	kN/m ²	kN/m ³	m	m	m		
379.79	0.10	36.3	309.4	38.08	6.86	38.075	34	15.3	15.23	0.7	2.5	1.0	83	1
375.02	0.23	87.7	425.9	114.2	6.86	114.23	34	15.3	15.23	0.7	7.5	1.0	75	2
346.90	0.25	87.7	398.0	114.2	6.86	114.23	34	15.3	15.23	0.7	7.5	1.0	74	3
283.13	0.29	82.6	327.8	106.6	6.86	106.61	34	15.3	15.23	0.7	7.0	1.0	72	4
202.64	0.33	67.2	230.0	83.77	6.86	83.765	34	15.3	15.23	0.7	5.5	1.0	70	5
139.10	0.37	51.8	150.7	60.92	6.86	60.92	34	15.3	15.23	0.7	4.0	1.0	68	6
57.92	0.54	31.2	52.7	30.46	6.86	30.46	34	15.3	15.23	0.7	2.0	1.0	60	7
26.66	0.64	17.1	10.9	7.615	4.90	7.615	34	15.3	15.23	0.5	0.5	1.0	55	8
1811.19			1905.4											

											FS (assu	med)	1.00	
					1	4					FS (calcu	lated)	1.00	
Slice	α	Δx	hm	hw	γsoil	С	φ	p	u	ΔW	ΔW tanα	X	nα	X/na
		m	m	m	kN/m ³	kN/m ²		kN/m ²	kN/m ²					
1	55	5.0	1.5	1.0	12.39	10.7	29	18.59	9.81	92.93	132.7	77.8	0.59	131.9
2	50	5.0	4.0	1.1	12.39	10.7	29	49.56	10.79	247.80	295.2	160.9	0.69	234.4
3	45	5.0	5.5	1.1	12.39	10.7	29	68.15	10.79	340.73	340.6	212.4	0.78	273.2
4	40	5.0	5.5	1.1	12.39	10.7	29	68.15	10.79	340.73	285.8	212.4	0.86	247
5	39	5.0	5.5	1.1	12.39	10.7	29	68.15	10.79	340.73	275.8	212.4	0.88	242.7
6	33	5.0	4.5	1.1	12.39	10.7	29	55.76	10.79	278.78	181.0	178.1	0.96	186.1
7	30	5.0	3.8	1.1	12.39	10.7	29	46.46	10.79	232.31	134.1	152.3	0.99	153.8
8	29	5.0	2.3	1.1	12.39	10.7	29	27.88	10.79	139.39	77.2	100.8	1.00	100.8
9	20	5.0	0.8	0.5	12.39	10.7	29	9.29	4.91	46.46	16.9	65.7	1.06	61.86
	14										1739.4			1632

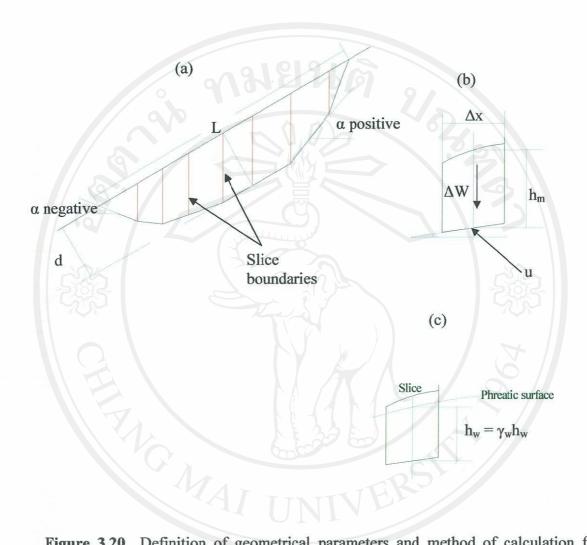


Figure 3.20 Definition of geometrical parameters and method of calculation for Janbu's non-circular failure analysis

After inputting all the parameters in the table, the iteration were performed with different values for h_w each time adjusting the factor of safety closer and closer to 1. The h_w value at the factor of safety equal to 1 is the h_w during the time of the slope failure.

3.3.2.2 Stability Analysis of Natural Slope

Stability analysis of natural slope is carried out using CHASM software. The CHASM is an integrated slope hydrology/slope stability software package that aids the assessment of slope stability conditions. It is designed to help estimate the effect on slope stability of selected storm events, surface covers, slope plan curvatures and other important slope and material properties (Wilkinson *et al.*, 2002).

The dynamics of slope hydrology are computed using a finite difference formulation that accommodates unsaturated and saturated soil conditions. The stability analysis is undertaken using a grid search procedure which is implemented continuously during the simulation period (Wilkinson *et al.*, 2002). The method employed within CHASM 4 is the simplified Bishop's circular stability analysis method with an automated search for the critical slip surface. Figure 3.21 illustrates the definition of geometrical parameters and method of calculation for simplified Bishop's method of slices. The factor of safety is given by:

$$FS = \frac{\sum_{i=0}^{n} \left[c \Delta x_i + (W_i - u_i \Delta x_i) \tan \phi \right] \left[1/M_i(\alpha) \right]}{\sum_{i=0}^{n} W_i \sin \alpha_i}$$

Where $M_i(\alpha) = \cos \alpha_i (1 + \frac{\tan \alpha_i \tan \phi}{FS})$

n = number of slices

FS = factor of safety

c = soil cohesion (kN/m²)

L = slice length (m)

 α = slice angle (degrees)

u = pore water pressure (kN/m²) Φ = effective angle of internal friction (degree) W = total weight of the soil (kN) $\Delta x = slice$ width (m) and θ = slope angle (degree) Δx R L a positive a positive d Slice boundaries

Figure 3.21 Definition of geometrical parameters and method of calculation for Bishop's simplified method of slices

Two natural slopes (Figure 3.22), one near Ban Pong Yaeng Nai and the other near Ban Tong Hua Hin were selected for modeling using CHASM software.

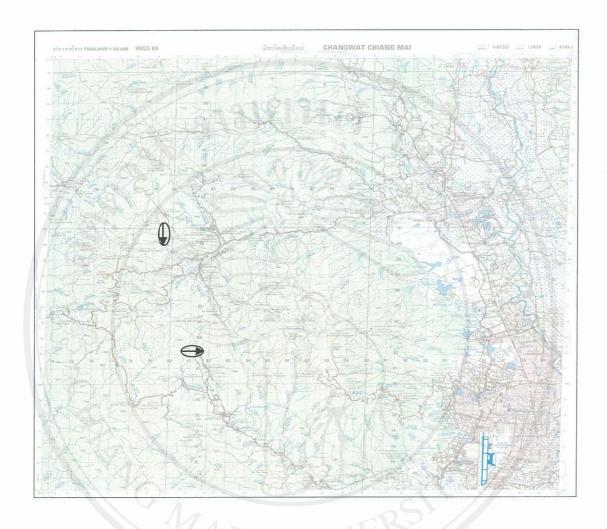


Figure 3.22 Topographic map showing the location and direction of slope under investigation.

The steps outlined in the CHASM 4 HELP has been followed. First the geometry of the slope under investigation, as observed in the field and read from the topographic map was drawn using an automated mesh generator window, which allows drawing a slope profile on the screen, through a simple point and clicking operation (Figure 3.23). From the same window definition of soil layer, water table and choice of slip-circle search grid location (Figure 3.24) for the Bishop's circular stability analysis was achieved.

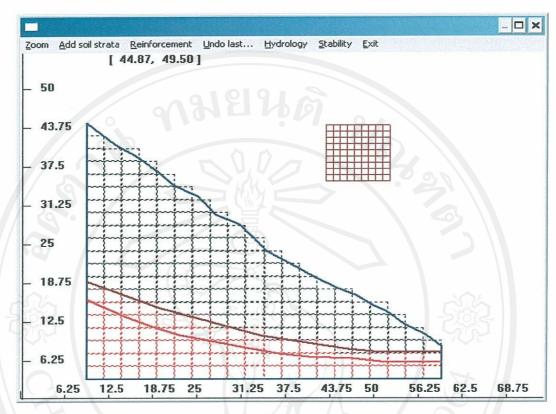


Figure 3.23 On-screen slope geometry and finite difference mesh generation

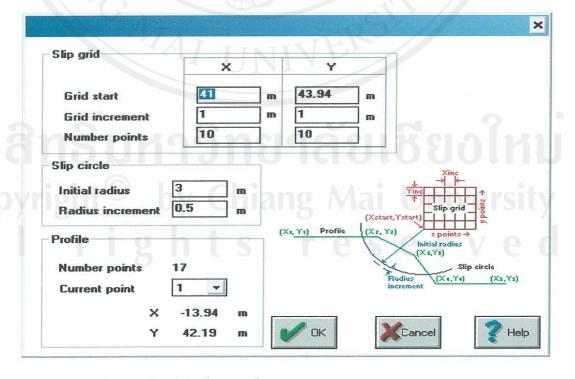


Figure 3.24 Bishop's circular slip search

The second step involved initialization and parameterization of each major component of the model including hydrology, soil and vegetation. In addition to this, other temporal and numerical information such as simulation length and iteration periods were also required. A full list of the model parameters is given in Table 3.7. Initialization and parameterization of the soil, storm and vegetation parameters were done through respective windows. The access to these parameters can also be gained through hydrology summary dialog box (Figure 3.25) which is also used to edit the slope cross- section (including three dimensional slope representations), water table height and the mesh dimension.

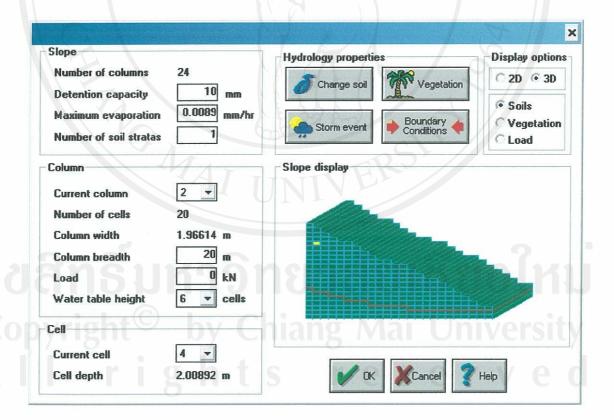


Figure 3.25 Hydrology dialog box (with 3D convergence).

Table 3.7 Input parameters used in back analysis of failed slopes and in natural slopes

Parameter Group	Input Parameter	Unit	Weathered Gneiss	Weathered Shale
Feature geometry	Slope angle	deg	38	31
	Slope length	m	60	60
	Slope height	m	37	32
Soil Properties*	Saturated density (γ _s)	kN/m ³	17.72	15.81
	Wet density (γ _w)	kN/m ³	15.23	12.39
	Dry density (γ _d)	kN/m ³	13.17	9.83
	Cohesion (C)	kN/m ²	15.32	10.69
	Friction angle (φ)	deg	34	29
	Specific gravity (G)	gm/cm ³	2.504	2.575
Hydrology	Permeability (k)	m/sec	2.16x10 ⁻⁶	3.57x10 ⁻⁶
	Degree of saturation (S)	%	45.88	47.25
	Depth of water table (d)	m	10-20	5-15
	Water content (w)	%	15.84	28.79
	Max. evaporation	mm	0.0005	0.0005
	Rainfall intensity	mm/hr	5	5
	Detention capacity	mm	10	10
	Initial suction in top cell	m	-2	-2
	Simulation period (continuous)	hr	48	48
Numerical	Mesh resolution(width, depth)	m	2,2	2,2
	Iteration period	sec	<u> </u>	60

^{*} the same properties is used for back analysis of failed slope

On running the program from the main dialog box the option of resetting the initial moisture condition is offered. After making necessary reset the simulation was carried out. During the simulation period, a result window displays the factor of safety, the X-Y coordinates of the slip grid, the slip circle radius and mass of soil above the critical slip surface. These are displayed in real-time (i.e. as the calculations are made), so that the progress of the simulation can be monitored. Once the simulation has finished, the temporal changes in the factor of safety and the position of the critical failure surface were examined (Figure 3.26). Additionally, the spatial distribution of the soil moisture within the slope was examined at the time of the minimum factor of safety by point and click on the finite difference mesh (Figure 3.27)

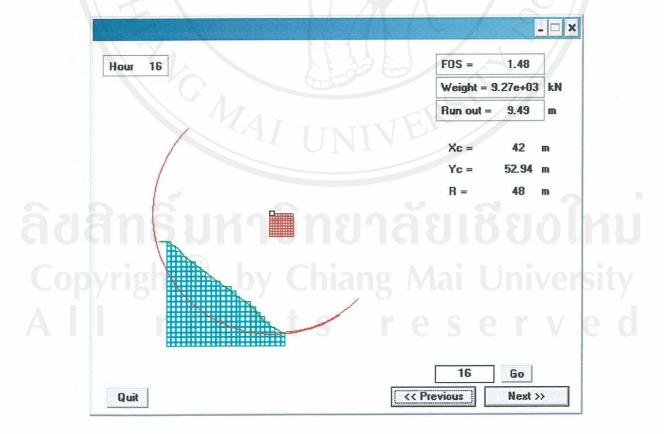


Figure 3.26 CHASM visualization of critical slip surface

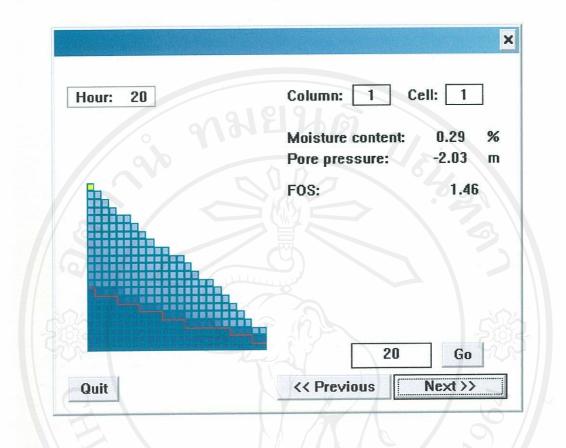


Figure 3.27 CHASM visualization of soil moisture distribution

ลิขสิทธิ์มหาวิทยาลัยเชียงใหม่ Copyright[©] by Chiang Mai University All rights reserved

CHAPTER 4

RESULTS AND DISCUSSION

4.1 Landslide Hazard Map

Landslide hazard map was prepared by integrating the effect of slope, geology, landuse, and stream proximity factors. The zonation map was divided into three zones of landslide hazards, viz., low, medium and high hazard to landslides. The landslide hazard map is shown in Figure 4.1. The percentages of different hazard zones of the area is shown in Table 4.1 and Figure 4.2.

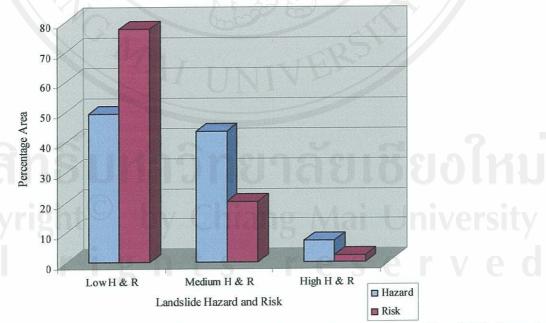
Table 4.1 Percentages of different hazard zones of the study area.

Hazard Categories	Area (%)		
Low landslide hazard	49.38		
Medium landslide hazard	43.43		
High landslide hazard	7.19		
SA OLIVA O MAIO			

As more importance is given to the slope component, most of the high hazard areas occupy steep terrain in the mountains surrounded by moderate hazard areas with gentler terrain and low hazard in the low lands.

4.2 Landslide Risk Map

Hazard maps that are not accompanied by a risk analysis are not meaningful for effective decision making. Landslide risk map (Figure 4.3) was prepared by


Figure 4.1 Landslide hazard map of the study area

The landslide risk map was divided into three zones of landslide risk, viz. low, medium and high. The percentages of different risk zones in the study area are given in Table 4.2 and also shown in Figure 4.2.

Table 4.2 Percentages of different risk zones of the study area.

Risk Categories	Area (%)
Low landslide risk	77.63
Medium landslide risk	20.08
High landslide risk	2.29

The areas of higher risk are those with high hazard places close to the villages and other inhabited places.

Figure 4.2 Histogram depicting the size of the area in each zone of landslide hazard and risk map

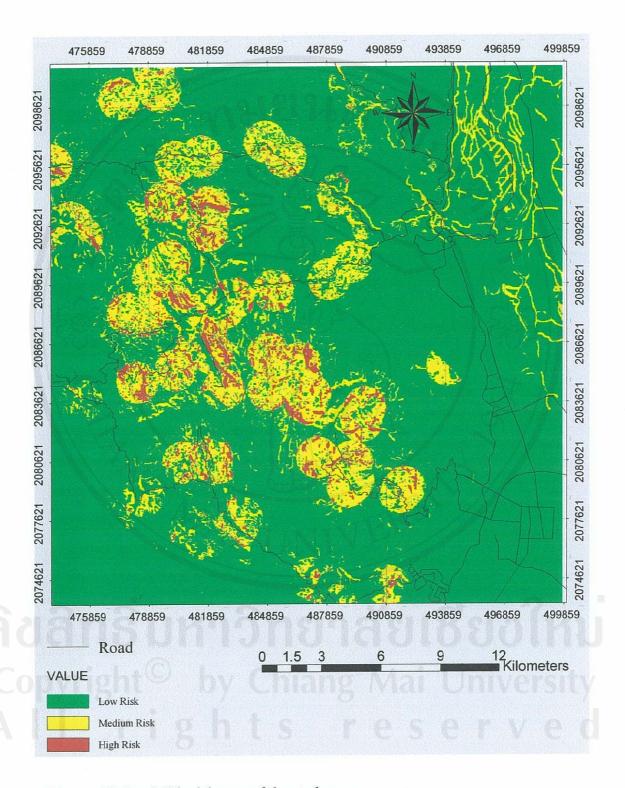


Figure 4.3 Landslide risk map of the study area.

4.3 Role of Factors in Landsliding

Landslide occurrence and behavior are governed by numerous spatial factors that can be, for the purpose of regional susceptibility assessment, cut down to several important ones. These factors can be relatively easily acquired from geological maps, topographic maps, digital elevation models, and satellite images. Using these data, good landslide susceptibility models can be developed.

4.3.1 Slope

As is the case with any landslide occurrence, a slope is one of the major factors leading to a slope failure under its own weight. The slope map, generated from the digital elevation model with the output cell size of 30m x 30m, shows that the general slope angle of the study area ranges from 0° to 60° with an average slope of 13.9° and standard deviation of 10.8°. Percentages of areas in different classes of slope angle are shown in Table 4.3. However, at different places, the natural slopes have been modified by human activities especially road and highway construction making the slopes steeper and more vulnerable to landslides. Almost all of landslides encountered during field investigation have occurred at angles of more than 45°. Studies have shown that the landslide probability increases with slope angle. As the slope angle increase, then the shear stress in the soil or other unconsolidated material generally increases. Gentle slopes are expected to have a low frequency of landslides because of the generally lower shear stress associated with low gradients. Steep natural slopes resulting from outcropping bedrock, however, may not be susceptible to landslides.

Table 4.3 Percentages of areas in different classes of slope angle

Slope Angle	Area (%)
Less than 15°	41.01
Between 15° - 30°	50.62
More than 30°	8.37

4.3.2 Geology

Geology of the area is seen to play a vital role in the occurrence of landslides in the study area. About 48.14% of the study area is made up of granitic and gneissic rocks where most of the landslides were encountered. Table 4.4 shows the geologic components of the study area. It was seen during the field investigation that at some places, these rocks are subjected to different degrees of weathering enhancing the probability of landsliding. These weathered materials, in the presence of certain triggering factor, can easily give way to landsliding.

Table 4.4 Percentages of areas in different classes of rock types

Geology	Area (%)
Unconsolidated Sediment	31.87
Carbonate Rock	10.01
Clastic Rock	9.98
Granite and Gneiss	hiang V48.14 Univers

4.3.3 Landuse

In the case of the relationship between landslide occurrence and the land cover, landslide occurrences were higher in bushes and grass areas, and lower in broadleaf areas. The sloping land in the vicinity of the landslide areas has been used

for cultivation of various crops by villagers for a considerable period of time. The destabilized slopes are mostly abandoned land after farming on slopes or deforested land for commercial purposes as can be made out from the type of vegetation. Such slopes have been covered with inappropriate types of vegetation such as banana, bamboo, etc. Farmers usually practice farming on slopes without proper understanding of slope degradation and potential for slope destabilization. Although there is no immediate threat due to farming activities, continuation of such practices by many farmers may result in serious consequences in future. Further, as the population increases, more people are likely to get involved in such practices. Table 4.5 shows the different percentages of landuse pattern in the study area.

Table 4.5 Percentages of areas in different classes of landuse pattern

Landuse	Area (%)
Forest	70.82
Urban Land	15.84
Agricultural Land	12.82
Water Body	0.52

4.3.4 Stream Proximity

Inclusion of stream proximity was to assess the influence of drainage lines on landslide occurrence. For this purpose, the proximity to a drainage line was identified by buffering. In the case of the relationship between landslide occurrence and distance from drainage, as the distance from the drainage line increases, the landslide frequency generally decreases. This can be attributed to the fact that terrain

modification caused by gully erosion and undercutting may influence the initiation of landslides.

Hence, some of the major drainage segments were digitized to include the effect of this causative factor and converted into raster format and buffered. The medium hazard zone in the plain area especially the river banks can be attributed to the threat posed by river under-cutting or bank erosion. However, during the field investigation no landslide triggered by under cutting or works of the streams had been sited.

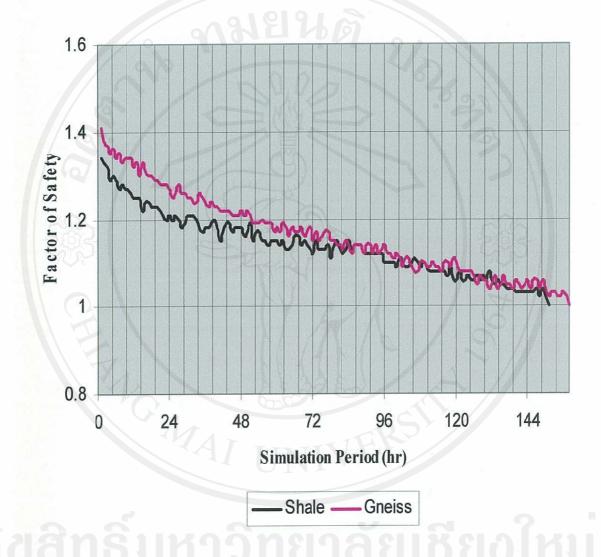
4.4 Back-Analysis of Failed Slope

The back-analysis of the failed slope is aimed to ascertain the height of phreatic surface above the slip surface (h_w), which triggered the landslide. The back-analysis of the failed slope indicated that both the slopes in weathered gneiss and weathered shale failed under the influence of water at varying depth. The factor of safety for both slopes under dry condition was rather high but decreased as the water level increased.

Table 4.6 Phreatic surface height (h_w) when slopes failed and FS under dry condition

Material	Phreatic surface height (m)	FS under dry condition		
Gneiss	C) 0.7	1.407		
Shale	by Clinais W	1.434		

The factor of safety during dry condition was found to be 1.407 and 1.434 for weathered gneiss and weathered shale slopes respectively indicating that the slopes are unlikely to fail. However, when subjected to heavy rainfall, the result shows that the weathered gneiss slope failed when the water level reached to about 0.7 m above


slip surface while the weathered shale slope failed when the water level rose to about 1.1 m above the slip surface.

4.5 Stability Analysis of Natural Slope

The slope stability analysis of natural slopes, one each in weathered gneiss and shale, was carried out to assess the stability status and simulate the behavior of the slope in response to rainfall using CHASM software. Two intensities of rainfall, viz, 5 mm/hr (120 mm/day) and 10 mm/hr (240 mm/day) are used for the simulation. The results of the stability analysis of the two slopes, using 5 mm/h intensity (120 mm/day), are as shown in Table 4.7 and Table 4.8. The result include factor of safety, coordinates of the centre of the slip circle, the radius, weight of slip and mean runout distance. It can be seen that the factor of safety decreases as the simulation time progresses. Figure 4.4 shows the declination of the factor of safety with simulation time. The displays of the results are real-time as the calculations are made.

Under the existing set of conditions, the results show that the slope in the weathered gneiss is fairly stable with initial factor of safety 1.41. After the slope is subjected to 158 hours (6.6 days) of rainfall with the intensity of 5 mm/h (120 mm/day), the factor of safety reduces to 1.00. Similarly, the factor of safety for the weathered shale slope reduces from initial 1.34 to 1.00 after experiencing 151 hours (6.3 days) of rainfall with the intensity of 5 mm/h (120 mm/day). These indicate that the two slopes are rather stable but weaken very rapidly under the influence of prolonged rainfall with high intensity. The relationship of rainfall and slope instability is very much evident from the reduction of the factor of safety in relation to the

simulation time. Thus if either the duration or the intensity of rainfall is increased the factor of safety will decrease provided that other factors remain constant.

Figure 4.4 Dynamic factor of safety plot for the slopes in weathered gneiss and weathered shale with rainfall intensity of 5 mm/hr (120 mm/day)

Table 4.7 Simulation result for weathered gneiss slope with 5 mm/hr (120 mm/day) rainfall intensity

Hours	FS	X (m)	Y (m)	Radius (m)	Weight (kN)	Runout (m)
1	1.41	41.0	52.9	52.0	1.53×10^4	9.5
5	1.36	41.0	52.9	51.5	1.47×10^4	9.5
10	1.34	41.0	52.9	50.5	1.32×10^4	9.5
15	1.33	41.0	52.9	50.5	1.33×10^4	9.5
20	1.29	41.0	52.9	49.0	1.13×10^4	9.5
25	1.25	41.0	52.9	50.0	1.27×10^4	9.5
30	1.25	41.0	52.9	48.5	1.07×10^4	9.5
35	1.25	41.0	52.9	48.5	1.07×10^4	9.5
40	1.23	41.0	52.9	48.5	1.08×10^4	9.5
45	1.21	42.0	52.9	48.0	9.62×10^3	9.5
50	1.22	42.0	52.9	48.0	9.61×10^3	9.5
55	1.20	42.0	52.9	48.0	9.64×10^3	9.5
60	1.18	42.0	52.9	48.0	9.67×10^3	9.5
65	1.18	42.0	52.9	48.0	9.67×10^3	9.5
70	1.17	42.0	52.9	48.0	9.68×10^3	9.5
75	1.16	42.0	52.9	48.0	9.69×10^3	9.5
80	1.14	42.0	52.9	48.0	9.74×10^3	9.5
85	1.12	42.0	52.9	48.0	9.77×10^3	9.5
90	1.14	42.0	51.9	47.0	9.47×10^3	9.5
95	1.13	42.0	51.9	47.0	9.47×10^3	9.5
100	1.12	42.0	51.9	47.0	9.50×10^3	9.5
105	1.09	42.0	51.9	47.0	9.52×10^3	9.5
110	1.09	42.0	49.9	45.0	8.94×10^3	9.5
115	1.08	42.0	51.9	47.0	9.55×10^3	9.5
120	1.10	42.0	51.9	47.0	9.52×10^3	9.5
125	1.08	42.0	49.9	45.0	8.97×10^3	9.5
130	1.06	42.0	49.9	45.0	8.99×10^3	9.5
135	1.05	42.0	49.9	45.0	9.01×10^3	9.5
140	1.06	42.0	49.9	45.0	8.99×10^3	9.5
145	1.04	42.0	49.9	45.0	9.02×10^3	9.5
150	1.04	42.0	47.9	43.0	8.42×10^3	9.5
155	1.02	43.0	43.9	39.0	8.34×10^3	8.7
158	1.00	43.0	43.9	39.0	8.22×10^3	8.7

End of simulation Ru

Runout only applicable if FS < 1

Vegetation: off

Total duration: 168 hours

Reinforcement: off

Storm start: 0 hours

Leakage: off

Storm end: 168 hours

Table 4.8 Simulation result for weathered shale slope with 5 mm/hr (120 mm/day) rainfall intensity

Hours	FS	X (m)	Y (m)	Radius (m)	Weight (kN)	Runout (m)
1	1.34	44.6	53.6	52.5	1.49×10^4	3.6
5	1.30	44.6	53.6	51.5	1.36×10^4	3.6
10	1.27	44.6	53.6	51.0	1.30×10^4	3.6
15	1.22	44.6	53.6	50.5	1.24×10^4	3.6
20	1.23	44.6	53.6	50.5	1.24×10^4	3.6
25	1.20	44.6	53.6	50.0	1.18×10^4	3.6
30	1.21	44.6	53.6	50.5	1.24×10^4	3.6
35	1.17	44.6	53.6	50.5	1.26×10^4	3.6
40	1.18	44.6	53.6	50.0	1.19×10^4	3.6
45	1.17	44.6	53.6	49.5	1.13×10^4	3.6
50	1.17	44.6	53.6	49.5	1.13×10^4	3.6
55	1.15	44.6	53.6	50.0	1.20×10^4	3.6
60	1.15	44.6	53.6	49.5	1.14×10^4	3.6
65	1.14	44.6	53.6	49.5	1.14×10^4	3.6
70	1.14	44.6	53.6	49.0	1.07×10^4	3.6
75	1.13	44.6	53.6	47.0	8.41×10^3	3.6
80	1.15	44.6	53.6	48.5	1.01×10^4	3.6
85	1.13	44.6	53.6	49.0	1.08×10^4	3.6
90	1.12	44.6	53.6	49.0	1.08×10^4	3.6
95	1.12	44.6	53.6	45.0	6.38×10^3	3.4
100	1.09	44.6	53.6	45.0	6.41×10^3	3.4
105	1.10	44.6	53.6	45.0	6.39×10^3	3.4
110	1.09	44.6	53.6	45.0	6.43×10^3	3.4
115	1.08	44.6	53.6	45.0	6.42×10^3	3.4
120	1.06	44.6	53.6	45.0	6.46×10^3	3.4
125	1.06	44.6	53.6	45.0	6.47×10^3	3.4
130	1.06	44.6	53.6	45.0	6.45×10^3	3.4
135	1.05	44.6	53.6	45.0	6.49×10^3	3.4
140	1.03	44.6	53.6	45.0	6.50×10^3	3.4
145	1.03	44.6	53.6	45.0	6.50×10^3	3.4
150	1.02	44.6	53.6	45.0	6.55×10^3	3.4
151	1.00	44.6	53.6	44.5	6.09×10^3	3.4

End of simulation

Runout only applicable if FS < 1

Vegetation: off

Total duration: 168 hours

Reinforcement: off

Storm start: 0 hours

Leakage: off

Storm end: 168 hours

Figure 4.5 shows the dynamic factor of safety plot for the slopes in weathered gneiss and weathered shale with the rainfall intensity of 10 mm/h (240 mm/day). The simulation results obtained are presented in Table 4.9 and Table 4.10 for slope in weathered gneiss and weathered shale respectively. The result also includes the actual mode of failure, i.e. the critical slip surface with coordinates and slip circle radius.

Rainfall intensity of magnitude 240 mm/day could be rare in the study area where average monthly rainfall, in the past, have rarely exceeded 300 mm. However, such an extreme event might occur in the future as was the case in southern Thailand. Rainfall intensity of such extreme magnitude had occurred in Nakhon Si Thammarat province in the southern Thailand in 1988 which led to unprecedented widespread slope failures in the mountainous areas and debris flows and flooding in lower areas downstream (Phien-wej et al., 1993). The unusual rainfall intensity during three days amounted to more than 700 mm while the mean annual rainfall of the area is only a little above 2000 mm. This triggered one of the worst natural disaster in the living history of the region killing 373 people and property damage amounting to 280 million dollars. Should such an extreme event occur in the future, then the natural slopes under investigation would reach to critical state after 91 hours in weathered gneiss and 77 hours in weathered shale. Nutalaya and Sophonsakulrat (1989) found that rainfall intensity of 260 mm/day was a threshold for the occurrence of widespread landslides in southern Thailand.

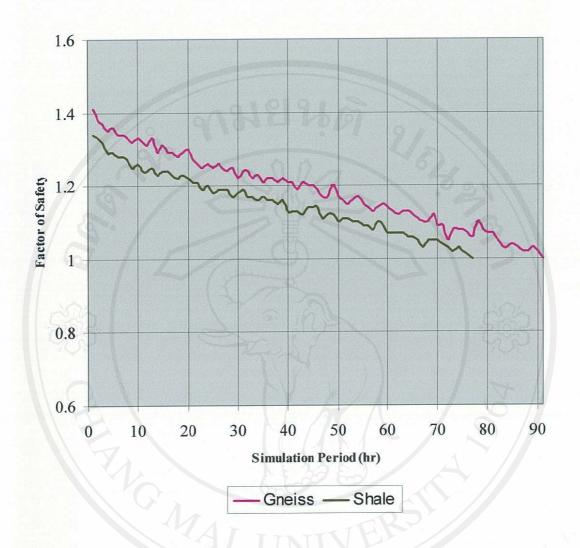


Figure 4.5 Dynamic factor of safety plot for the slopes in weathered gneiss and weathered shale with rainfall intensity of 10 mm/hr (240 mm/day)

One of the important parts of the simulation result is the weight of the slide mass and the runout distance. Very often the damage potential of an unstable slope is related to the weight and the distance the sliding mass travel. In the gneiss slope the weight of the sliding mass ranges from 8,220 kN to 15,300 kN while in the shale slope the weight of the sliding mass ranges from 6,090 kN to 14,900 kN. The average runout distance for gneiss and shale slopes are 9.5 m and 3.6 m respectively, with the

Table 4.9 Simulation result for weathered gneiss slope with 10 mm/hr (240 mm/day) rainfall intensity

Hours	FS	X (m)	Y (m)	Radius (m)	Weight (kN)	Runout (m)
1	1.41	41.0	52.9	52.0	1.53×10^4	9.5
3	1.37	41.0	52.9	51.5	1.47×10^4	9.5
6	1.34	41.0	52.9	51.5	1.47×10^4	9.5
9	1.32	41.0	52.9	51.0	1.40×10^4	9.5
12	1.31	41.0	52.9	51.0	1.40×10^4	9.5
15	1.31	41.0	52.9	50.5	1.33×10^4	9.5
18	1.28	41.0	52.9	50.5	1.33×10^4	9.5
210	1.27	41.0	52.9	50.5	1.34×10^4	9.5
24	1.26	41.0	52.9	48.5	1.07×10^4	9.5
27	1.25	41.0	52.9	48.5	1.07×10^4	9.5
30	1.22	41.0	52.9	48.5	1.07×10^4	9.5
33	1.22	41.0	52.9	48.5	1.08×10^4	9.5
36	1.22	41.0	52.9	48.5	1.08×10^4	9.5
39	1.22	41.0	52.9	48.5	1.08×10^4	9.5
42	1.19	41.0	51.9	47.5	1.05×10^4	9.5
45	1.2	41.0	52.9	48.5	1.08×10^4	9.5
48	1.17	42.0	52.9	48.0	9.67×10^3	9.5
51	1.16	42.0	52.9	48.0	9.68×10^3	9.5
54	1.17	42.0	52.9	48.0	9.68×10^3	9.5
57	1.13	42.0	52.9	48.0	9.75×10^3	9.5
60	1.14	42.0	52.9	48.0	9.73×10^3	9.5
63	1.13	42.0	52.9	48.0	9.75×10^3	9.5
66	1.11	42.0	52.9	48.0	9.77×10^3	9.5
69	1.12	42.0	51.9	47.0	9.48×10^3	9.5
72	1.05	42.0	49.9	45.0	8.99×10^3	9.5
75	1.08	42.0	49.9	45.0	8.95×10^3	9.5
78	1.10	42.0	51.9	47.0	9.50×10^3	9.5
81	1.07	42.0	51.9	47.0	9.53×10^3	9.5
84	1.03	42.0	49.9	45.0	9.02×10^3	9.5
87	1.02	42.0	49.9	45.0	9.02×10^3	9.5
90	1.02	42.0	49.9	45.0	9.03×10^3	9.5
91	1.00	42.0	49.9	45.0	9.05×10^3	9.5

End of simulation Runout only applicable if FS < 1.

Vegetation: off Total duration: 100 hours

Reinforcement: off Storm start: 0 hours

Leakage: off Storm end: 100 hours

Table 4.10 Simulation result for weathered shale slope with 10 mm/hr (240 mm/day) rainfall intensity

Hours	FS	X (m)	Y (m)	Radius (m)	Weight (kN)	Runout (m)
1	1.34	44.6	53.6	52.5	1.49×10^4	3.6
3	1.32	44.6	53.6	52.0	1.42×10^4	3.6
6	1.28	44.6	53.6	51.5	1.36×10^4	3.6
9	1.25	44.6	53.6	50.5	1.23×10^4	3.6
12	1.24	44.6	53.6	50.5	1.23×10^4	3.6
15	1.24	44.6	53.6	50.5	1.24×10^4	3.6
18	1.22	44.6	53.6	50.5	1.24×10^4	3.6
2107	1.21	44.6	53.6	50.0	1.18×10^4	3.6
24	1.20	44.6	53.6	50.0	1.18×10^4	3.6
27	1.19	44.6	53.6	50.5	1.25×10^4	3.6
30	1.18	44.6	53.6	49.5	1.12×10^4	3.6
33	1.17	44.6	53.6	49.5	1.12×10^4	3.6
36	1.16	44.6	53.6	49.5	1.13×10^4	3.6
39	1.16	44.6	53.6	49.5	1.13×10^4	3.6
42	1.13	44.6	53.6	49.5	1.14×10^4	3.6
45	1.14	44.6	53.6	49.5	1.13×10^4	3.6
48	1.12	44.6	53.6	49.5	1.14×10^4	3.6
51	1.11	44.6	53.6	49.5	1.14×10^4	3.6
54	1.10	44.6	53.6	49.0	1.08×10^4	3.6
57	1.08	44.6	53.6	48.5	1.02×10^4	3.6
60	1.07	44.6	53.6	46.0	7.41×10^3	3.5
63	1.07	44.6	53.6	45.0	6.40×10^3	3.4
66	1.05	44.6	53.6	45.0	6.44×10^3	3.4
69	1.05	44.6	53.6	45.0	6.45×10^3	3.4
72	1.03	44.6	53.6	45.0	6.49×10^3	3.4
77	1.00	44.6	53.6	45.0	6.52×10^3	3.4

End of simulation Runout only applicable if FS < 1

Vegetation: off Total duration: 100 hours

Reinforcement: off Storm start: 0 hours

Leakage: off Storm end: 100 hours

maximum runout distance for the slope in gneiss as 25.18 m and for the slope in shale as 17.79 m. The slope in gneiss has a comparatively higher weight and longer runout distance. Thus if at all the conditions become favorable to lower the factor of safety below 1.00, the slope in gneiss will bring comparatively larger damage than the landslide in shale.

In this study, only one soil strata has been considered. Many studies have shown that the deep seated and devastating landslides usually occur where the thickness the soil thickness over bedrock is very high. It was seen during the field investigation that the soil thickness is quite thin in the study area. This is evident from the thickness of the existing landslides and vertical soil profile seen along the road cuts.

Another factor which needs to be studied during the slope stability analysis is the effect of vegetation on the stability of slope. Although the CHASM software is provided with a provision to incorporate the effect of vegetation in slope stability analysis (Ibraim and Anderson, 2002), the same could not be included due to the absence of reliable data. However, it is generally known that inclusion of the vegetation has positive effect. It is a clear fact that vegetation can contribute to slope stability by achieving the following effects: (1) preventing surface erosion through the soil binding properties of roots; (2) reducing the effects of splash erosion through rainfall interception of vegetation canopy; (3) reducing the incidence of shallow slope instability through the anchoring properties of roots; (4) channeling run-off to alter slope hydrology; and (5) providing support to the base of the slope and trapping material moving down the slope (Lammeranne *et al.*, 2005). Inclusion of the vegetation in the simulation would have yielded higher factor of safety than what was

obtained under. The software indicates that the increases in factor of safety upon inclusion of vegetation in the stability analysis is because of the reduction in the effective rainfall reaching the ground due to canopy obstruction and increment in cohesion of the soil due to its roots.

It is known that rapid infiltration of rainfall, causing soil saturation and a temporary rise in pore water pressures (reduction of soil suction to zero) is generally believed to be the mechanism by which most landslides are triggered during rainfall. This effect of rainfall can be clearly visualized with the CHASM software. However, slopes composed of either soil and/or rock respond differently as a function of their geological, physical, mechanical and hydraulic characteristics during the rainfall process (Lan *et al.*, 2003). In addition, the slopes with different permeability have distinct hydraulic and mechanical behaviors during the same rainfall process. A study carried out by Lan *et al.* (2005) showed that pore water pressure and slope stability distribution show significantly different features at different depths of the slope profile during the rainfall process.

From the field verification of the landslides, it can be seen that most of the landslides that occur in weathered gneiss are relatively thinner than those in shale. The thickness of the weathered shale slide is about 5 to 6 meters comparing to the thickness of the slide in weathered gneiss which is only about 2 to 3 meters. This confirms to the findings of the study conducted by Lan *et al.* (2003) that slope with higher permeability results in deep seated landslide while lesser permeability slopes results in shallower landslides as permeability of the weathered shale is on the higher side than that of weathered gneiss. The permeability of the weathered shale and weathered gneiss are 3.57×10^{-6} m/s and 2.16×10^{-6} m/s respectively.

CHAPTER 5

CONCLUSIONS

Landslide occurrence and behavior are governed by numerous spatial factors that can be, for the purpose of regional landslide hazard and risk assessment, cut down to several important ones. The factors considered in this study are slope, geology, landuse and stream proximity. These factors can be relatively easily acquired from geological maps, topographic maps and digital elevation model.

The heuristic approach adopted in this study has been proven elsewhere as one of the good methods especially hazard and risk assessment maps are to be made at a regional scale. The main drawback of this approach, however, lies in the subjectivity involved, both in the direct mapping as well as in the assignment of weights to the parameter classes. Nevertheless, the allocation of parameter weighting values can be assisted by the AHP, which permits a quantitative evaluation of each parameter based on the analyst's expertise. It has been shown that the use of the AHP method gives a means to define the factor weights in the linear landslide susceptibility model. Using the weights derived from AHP, a reasonably good landslide hazard and risk models were developed.

GIS has been proven to be an excellent tool in the spatial analysis of the terrain parameters for landslide hazard and risk zonation. Using GIS, good results are obtained in regional reconnaissance maps, when experienced-based conclusions on hazard susceptibility are qualitatively extrapolated over large areas. The maximum benefit of GIS is obtained at larger scales, when the details about the causative factors

are determined in relation to the occurrence of landslides. The use of GIS can also be extended to the optimization of the hazard model, which otherwise is very cumbersome or not possible at all. However, the use of GIS cannot replace extensive field work and data collection. Therefore, more multidisciplinary collaboration is needed to establish a more rational dynamic model, as well as more detailed knowledge and understanding of the in situ-conditions of geomorphology, geology, and hydrology for accurate estimation of the spatial and temporal distribution of related parameters and their variance.

The usage of this landslide hazard and risk map should not be an end in itself. These maps should be rather used as a tool to narrow down the selection of a site for any developmental schemes such as roads, building construction, villages, towns, etc. in the initial planning phase. The use of such maps should always be followed by detailed subsoil and geotechnical investigation to acquire thorough information about the site.

The role of water as a triggering agent has been explicitly elucidated using the CHASM software. The effect of water and development of pore water pressure can be dynamically studied with the software. As is the case anywhere, water is one of the main agent triggering landslides in the study area and due consideration should be given to rainfall before anything is planned.

From this study, the assessment of landslide causative factors and hydrological modeling, it can be interpreted that the distribution of landslides is largely governed by a combination of geoenvironmental conditions, such as different landuse patterns, slope, proximity (<50 m) to the streams and geology of an area triggered by rainfall. And it can be concluded that the GIS-based methodology for integration of various

topographic, geological, structural, landuse/landcover and other datasets seems to be quite suitable for developing a landslide hazard and risk zonation map.

ลิ**ปสิทธิ์มหาวิทยาลัยเชียงใหม่** Copyright[©] by Chiang Mai University All rights reserved

REFERENCES

- Anbalagan, R. 1992, Landslide hazard evaluation and zonation mapping in mountainous terrain. *Engineering Geology*, 32: 269–277.
- Anbalagan, R., and Singh, B. 1996. Landslide hazard and risk assessment mapping of mountainous terrains a case study from Kumaun Himalaya, India. *Engineering Geology*, 43:237-246.
- Ayalew, L., Yamagishi, H., Marui, H., Kanno T. 2006. Landslides in Sado Island of Japan: Part II. GIS-based susceptibility mapping with comparisons of results from two methods and verifications. *Engineering Geology*, 81: 432–445.
- Barredo, J. I., Benavidesz, A., Hervhl, J., van Westen, C. J. 2000. Comparing heuristic landslide hazard assessment techniques using GIS in the Tirajana basin, Gran Canaria Island, Spain. *Journal of Applied Earth Observation and Geoinformation*, 2: 1-2000.
- Bell, F. G. Fundamentals of Engineering Geology. Butterworth & Co. Ltd, 1983.
- Cevik, E., and Topal, T. 2003. GIS-based landslide susceptibility mapping for a problematic segment of the natural gas pipeline, Hendek (Turkey). *Environmental Geology*, 44: 949-962.
- Chalermpong, P. 2002. Guidelines for community management in landslide risk areas of east-coast of the gulf of watershed, Thailand.
- Chang, K. T. Introduction to Geographic Information Systems. McGraw Hill, 2002.
- Chau, K. T., Sze, Y. L., Fung, M. K., Wong, W. Y., Fong, E. L., Chan, L. C. 2004.
 Landslide hazard analysis for Hong Kong using landslide inventory and GIS.
 Computer & Geosciences, 30: 429-443.

- Chung, C. J. 2006. Using likelihood ratio functions for modeling the conditional probability of occurrence of future landslides for risk assessment. *Computers & Geosciences*, 32:1052–1068.
- Clerici, A., Perego, S., Tellini, C., Vescovi, P. 2002. A procedure for landslide susceptibility zonation by the conditional analysis method. *Geomorphology*, 48: 349–364.
- Corominas, J., and Santacana, N. 2003. Stability analysis of the Vallcebre translational slide, Eastern Pyrenees (Spain) by means of a GIS. *Natural Hazards*, 30: 473–485.
- Dikau, R., Cavallin, A., Jager, S. 1996. Databases and GIS for landslide research in Europe. *Geomorphology*, 15: 227-239.
- Dai, F. C., Lee, C. F., Ngai, Y. Y. 2002. Landslide risk assessment and management: an overview. *Engineering Geology*, 64: 65-87.
- Duman, T. Y., Can, T., Gokceoglu, C., Nefeslioglu, H.A. 2005. Landslide susceptibility mapping of Cekmece area (Istanbul, Turkey) by conditional probability. *Hydrology and Earth System Sciences*, 2: 155-208.
- Fall, M., Azzam, R., Noubectep, C. 2006. A multi-method approach and landslide susceptibility mapping. *Engineering Geology*, 82: 241-263.
- Groundwater Division, Department of Mineral Resources. (2000). Groundwater Map Manual Book, Changwat Chiang Mai.
- Guinau, M., Pallas, R., Vilaplana, J. M. 2005. A feasibility methodology for landslide susceptibility assessment in developing countries: A case-study of NW Nicaragua after Hurricane Mitch. *Engineering Geology*, 80: 316-327.

- Gupta, R. P., and Joshi, B. C. 1990, Landslide Hazard Zonation using the GIS approach—a case study from the Ramganga Catchment, Himalayas. *Engineering Geology*, 28: 119–131.
- Gupta, V., Sah, M. P., Virdi, N. S., Bartarya, S. K. 1993, Landslide Hazard Zonation in the Upper Satlej valley, District Kinnaur, Himachal Pradesh. *Journal of Himalayan Geology*, 4: 81–93.
- Gupta, R. P., Saha, A. K., Arora, M. K., Kumar, A. 1999. Landslide Hazard Zonation in a part of the Bhagirathi Valley, Garhwal Himalayas, using integrated remote sensing-GIS. *Himalayan Geology*, 20: 71-85.
- Guzzetti, F. 2000. Landslide fatalities and the evaluation of landslide risk in Italy.

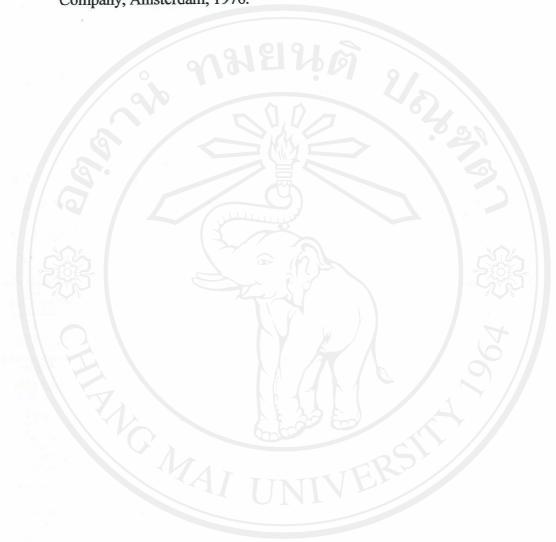
 Engineering Geology 58 (2), 89–107
- Guzzetti, F., Carrara, A., Cardinali, M., Reichenbach, P. 1999. Landslide hazard evaluation: a review of current techniques and their application in a multi-scale study, Central Italy. *Geomorphology*, 31: 181–216
- Hansen, A. 1984. Landslide Hazard Analysis. In: Brunsden, D., Prior, D.B. (Eds.), Slope Instability. Wiley, New York, pp. 523-602.
- Hoek, E., and Bray, J. Rock Slope Engineering. The Institution of Mining and Metallurgy, London, 1977.
- Ibraim, I., and Anderson, M. G. 2002. A new approach to soil characterization for hydrology-stability analysis models. *Geomorphology*, 49: 269–279.
- Komac, M. 2006. A landslide susceptibility model using the Analytical Hierarchy

 Process method and multivariate statistics in perialpine Slovenia.

 Geomorphology, 74: 17-28.

- Lammeranner, W., Rauchl, H. P., Laaha, G. 2005. Implementation and monitoring of soil bioengineering measures at a landslide in the Middle Mountains of Nepal. *Plant and Soil*, 278:159–170.
- Lan, H. X., Zhou, C., Lee, C. F., Wang, S., Wu, F. 2003. Rainfall-induced landslide stability analysis in response to transient pore pressure. *Ser. E Technological Sciences*, 46: 52-68.
- Lan, H. X., Lee, C. F., Zhou, C. H., Martin, C. D. 2005. Dynamic characteristics analysis of shallow landslides in response to rainfall event using GIS. *Environmental Geology*, 47: 254–267.
- Lee, S., Choi, J., Chwae, U., Chang, B. 2002. Landslide susceptibility analysis using weight of evidence. IEEE.
- Leynes, R. D., Pioquinto, W. P. C., Caranto, J. A. 2005. Landslide hazard assessment and mitigation measures in Philippine geothermal fields. *Geothermics* 34: 209–221.
- Metternicht, G., Hurni, L., Gogu, R. 2005. Remote sensing of landslides: An analysis of the potential contribution to geo-spatial systems for hazard assessment in mountainous environments. *Remote Sensing of Environment*, 98: 284-303.
- Montgomery, C.W. 1980. Environmental Geology. Mc Graw Hill, 1980.
- Moss, J. L. 2000. Using the Global Positioning System to monitor dynamic ground deformation networks on potentially active landslides. *Journal of Applied Earth Observation and Geoinformation*, 2: 1-2000.
- Naithani, A. K. 1999. The Himalayan Landslides. Employment News, 47: 20-26

- Nutalaya, P. and Sophonsakulrat, W. 1989. Southern Thailand flood: Proc. Seminar on Flood of Southern Thailand: Disaster that could have been avoided, Bangkok, Thailand: 1-124.
- Pachauri, A. K., and Pant, M. 1992, Landslide hazard mapping based on geological attributes. *Engineering Geology*, 32: 81–100.
- Pachauri, A. K., Gupta, P. V., Chander, R. 1998. Landslide zoning in a part of the Garwal Himalayas. *Environmental Geology*, 36: 3-4.
- Perotto-Baldiviezo, H.L., Thurow, T. L., Smith, C. T., Fisher, R. F., Wu, X. B. 2004. GIS-based spatial analysis and modeling for landslide hazard assessment in steep lands, southern Honduras. *Agriculture, Ecosystem and Environment*, 103: 165-176.
- Phien-wej, N., Nutalaya, P., Aung, Z., Zhabin, T. 1993. Catastrophic Landslide and Debris Flows in Thailand. Bulletin of the International Association of Engineering Geology.
- Pradhan, B., Singh, R. P., Buchroithner, M. F. 2006. Estimation of stress and its use in evaluation of landslide prone regions using remote sensing data. *Advances in Space Research* 37: 698–709.
- Rautela, P., and Lakhera, R. C. 2000. Landslide risk analysis between Giri and Tons Rivers in Himachal Himalaya (India). *Journal of Applied Earth Observation and Geoinformation*, 2: 3-4.
- Ramakrishan, S. S., Kumar, V. S., Sediq, M. G. S. M. Z., Arulraj, M., Gopal, V. 2002.


 Landslide disaster management and planning A GIS based approach. *Indian Cartographer, Mapping for Disaster Management*, 5: 192-195.

- Rapid Assessment: Flashflood and Landslide Disaster in the Provinces of Uttaradit and Sukhothai, Northern Thailand. [Online]. Available: http://www.adpc.net/enewsjuly/Uttaradit_rapitassessment.pdf [December 6, 2006]
- Remondo, J., Soto, J., Gonza'lez-Dı'ez, A., Ramo'n Dı'az de Tera'n, J., Cendrero, A. 2005. Human impact on geomorphic processes and hazards in mountain areas in northern Spain. *Geomorphology*, 66: 69–84.
- Research and International Cooperation Bureau, Department of Disaster Prevention and Mitigation, Ministry of Interior. 2006. Thailand Country Report.
- Saha, A. K., Gupta, R. P., Arora, M. K. 2002. GIS-based landslide hazard zonation in the Bhagirathi (Ganga) Valley, Himalayas. *International Journal of Remote Sensing*, 23: 357-369.
- Saaty, T. L. The analytical hierarchy process. McGraw-Hill, New York, 1980.
- Shou, K. J., and Chen, Y.L. 2005. Spatial risk analysis of Li-shan in Taiwan. Engineering Geology, 80: 199-213.
- Silaratana, T. "Effect of Environmental factors on accumulation of fossil fuel deposits in northern Thailand". PhD Thesis, Graduate School, Chiang Mai University, 2005.
- Suzen, M. L., and Doyuran, V. 2004. Data driven bivariate landslide susceptibility assessment using geographical information system: a method and application to Asarsuyu catchment, Turkey. *Engineering Geology*, 71: 303-321.
- Tangestani, M. H. "Landslide susceptibility mapping using the fussy gamma operation in a GIS, Kakan catchment area, Iran". Map India Conference, 2003.

- Thai Meteorological Department [Online]. Available: http://www.tmd.go.th [October 12, 2006]
- Uromeihy, A., and Mahdavifar, M. R. 2000. Landslide hazard zonation of the Khorshrostam area, Tran. *Engineering Geology Env*, 58: 207-213.
- Uttamo, W. "Structural and sedimentological evolution of tertiary sedimentary basins in Northern Thailand". PhD Thesis, Royal Holloway University of London. 2000.
- van Westen C.J., van Asch, T.W.J., Soeters, R. 2006. Landslide hazard and risk zonation—why is it still so difficult? *Bull Eng Geol Env*, 65: 167–184
- van Westen, C. J. 2000. The modelling of landslide hazards using GIS. Surveys in geophysics 21: 241–255.
- Varnes, D.J., 1984. Landslide hazard zonation: A review of principles and practice.

 International Association of Engineering Geology and Environment, UNESCO.
- Virdi, N. S., Sah, M. P., Bartarya, S. K. 1997, Mass wasting, its manifestations, causes and control: some case histories from Himachal Himalaya. In *Perspectives of Risk Engineering in the Himalayan Region*, edited by D. K. Agarwal, A. P. Krishna, V. Joshi, K. Kumar and M. S. Palni (Gyanodaya Prakashan: Nainital), pp. 111–130.
- Watkins, J. S., Bottino, M. L., Morisawa, M. Our Geological Environment. W.B. Saunders, Philadelphia, 1975.
- Wilkinson, P. L., Anderson, M. G., Lloyd, D. M., Renuard, J. P. 2002. Landslide hazard and bioengineering: towards providing improved decision support through integrated numerical model development. *Environmental Modeling & Software*, 17: 333-344.

Zaruba, Q., and Mencl, V. Engineering Geology. Elsevier Scientific Publishing Company, Amsterdam, 1976.

ลิขสิทธิ์มหาวิทยาลัยเชียงใหม่ Copyright[©] by Chiang Mai University All rights reserved

APPENDIX A

AHP process for weighting four parameters

Step 1: Pair-wise ranking of parameters (judgment matrix).

9	Slope	Geology	Landuse	Stream Proximity
Slope	1	2	5/2	7/2
Geology	1/2	1	2	4
Landuse	2/5	1/2	1	2
Stream Proximity	2/7	1/4	1/2	

Step 2: Synthesis of judgment matrix – matrix A

					(2) 0
	Slope	Geology	Landuse	Stream Proximity	Total
Slope	1.00	2.00	2.50	3.50	9.00
Geology	0.50	1.00	2.00	4.00	7.50
Landuse	0.40	0.50	1.00	2.00	3.90
Stream Proximity	0.29	0.25	0.50	1.00 ver	2.04
Total	2.19	3.75	6.00	10.50	22.44

Step 3: Calculation of priorities using approximation method (normalized matrix, each cell is divided by respective column total to obtain the values in the cells.

	Slope	Geology	Landuse	Stream Prox.	Total	Average W
Slope	0.46	0.53	0.42	0.33	1.74	0.44
Geology	0.23	0.27	0.33	0.38	1.21	0.30
Landuse	0.18	0.13	0.17	0.19	0.67	0.17
Stream Proximity	0.13	0.07	0.08	0.10	0.38	0.09
Total	1.00	1.00	1.00	1.00	4.00	1.00

Step 4: Consistency measurement (Consistency matrix) A*W

Each column value in step 2 (Matrix A) is multiplied by its respective row W

	Slope	Geology	Landuse	Stream Prox.	Total	Total/W
Slope	0.44	0.60	0.42	0.33	1.79	4.11
Geology	0.22	0.30	0.34	0.38	1.23	4.08
Landuse	0.17	0.15	0.17	0.19	0.68	4.05
Stream Proximity	0.12	0.08	0.08	0.09	0.38	4.02
Pyright		y Ch	Average	e Lamda max	(‡ _{max})	4.07

Consistency Index (CI) = $(+ \frac{1}{max} - n)/n-1$

Where, n = number of criteria under consideration, here 4 parameters

CI =
$$(4.07-4)/(4-1)$$

= 0.0233

Consistency Ratio (CR) = CI / CI_r

Where, CI is consistency index and CI_r random value of CI for r criteria, here 4 parameters.

$$CR = 0.0233/0.90$$

$$= 0.03$$

CR is acceptable since it is less than 0.09 for a 4x4 matrix.

Average consistency index for different order matrices and acceptable limit of CR

		antico especia		21					25.	
308	Size of matrix (n)									
	1	2	3	4	5	6	7	8	9	10
Random	0.00	0.00	0.52	0.90	1.11	1.25	1.35	1.40	1.45	1.5
CI Value								\		
Acceptable	C,	11	<0.05	<0.09	+			.10 —		

Source: Saaty (1980)

ลิขสิทธิมหาวิทยาลัยเชียงใหม Copyright[©] by Chiang Mai University All rights reserved

APPENDIX B

Geotechnical Lab Result

ภาควิชาวิศวกรรมโยธา คณะวิศวกรรมศาตร์ มหาวิทยาลัยเชียงใหม่

239 ถ.ห้วยแก้ว ค.สุเทพ อ.เมือง จ.เชียงใหม่ โทร. 053-944157-66 โทรสาร 053-892376

GEOTECHNICAL ENGINEERING LABORATORY

DIRECT SHEAR TEST OF SOILS UNDER CONSOLIDATED UNDRAINED CONDITIONS
ASTM D 3080-90

Client:	Mr. Dorji Gyeltshen P.	Job No:	344/49
Project:	Landslide Hazard and Risk Assessment of Doi Suthep Area	Date:	19 ธ.ค. 49
Location:	Doi Suthep, Chiang Mai	Sample No.	1, S2(Shale) 770823
Soil Description:	ดินเหนียวปนซิลท์ สีน้ำตาลเข้ม	Depth (m.)	
Remark:		Tested By:	สายันท์
		Checked By:	รศ.คร.บุญส่ง

WORK INSTRUCTIONS

Test procedure was carried out according to ASTM D3080-90, which can be described briefly as follows:

- 1) The test condition is the consolidated undrained test, using square box, (CU Test)
- 2) Samples were prepared from an undisturbed soil collected using a 6" tube
- 3) Three samples were used with the applied normal stress of 4.0, 10.0, 16.0 t/sq.m. coresponding to the overburden pressure of height 2, 5 and 8 m.
- 4) Each sample was consolidated in a shear box by load steps, consolidation was monitored till completion before starting a new load step
- 5) After completion of consolidated under full normal stress, the samples were then allowed to be under water for 12 hours to ensure a saturated condition
- 6) Under full normal stress, the samples were tested under undrained condition, using the shear rate of 1.2 mm./minute (as recommended by J.E. Bowles, Engineering Properties of Soil and Their Measurement)
- 7) The maximum shearing stress were obtained from all tests, the Mohr-Coulomb failure line was drawn and the value of Cohesion and Friction angle were determined.

239 ถ.ห้วยแก้ว ค.สุเทพ อ.เมือง จ.เชียงใหม่ โทร. 053-944157-66 โทรสาร 053-892376

GEOTECHNICAL ENGINEERING LABORATORY

DIRECT SHEAR TEST OF SOILS UNDER CONSOLIDATED UNDRAINED CONDITIONS

ASTM D 3080-90

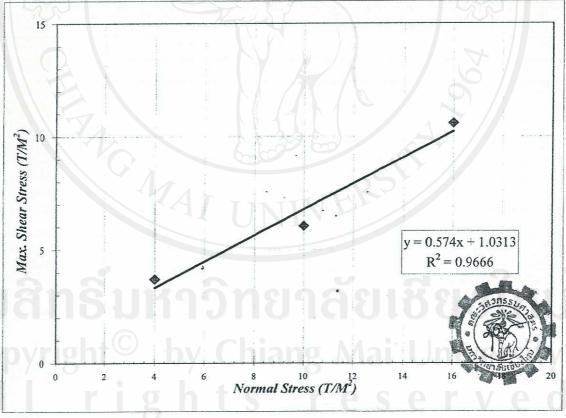
Client: Project:

Mr. Doni Gyeltshen P.

Job No: Date: 344/49 19 ธ.ค. 49

Location:

Landslide Hazard and Risk Assessment of Doi Suthep Area Doi Suthep, Chiang Mai


Sample No. Depth (m.) 1, S2(Shale) 770823

Soil Description:

ดินเหนียวปนซิลท์ สีน้ำตาลเข้ม

Tested By: Checked By: สายันห์ รศ.คร.บุญส่ง

	Test1	Test 2	Test3	Test 4
Normal Stress (T/M2)	4.0	10.0	16.0	
Max. Shear Stress (T/M2)	3.7	6.0	10.6	

Remarks:

Cohesion, C (T/M2)

1.09

Friction Angle, \(\phi \) (degree)

29

239 ถ.ห้วยแก้ว ค.สุเทพ อ.เมือง จ.เชียงใหม่ โทร. 053-944157-66 โทรสาร 053-892376

GEOTECHNICAL ENGINEERING LABORATORY

DIRECT SHEAR TEST OF SOILS UNDER CONSOLIDATED UNDRAINED CONDITIONS ASTM D 3080-90

344/49 Job No: Client: Mr. Dorji Gyeltshen P. 19 ธ.ค. 49 Date: Project: Landslide Hazard and Risk Assessment of Doi Suthep Area 1, S2(Shale) 770823 Sample No. Location: Doi Suthen, Chiang Mai Depth (m.) ดินเหนียวปนชิลท์ สีน้ำตาลเข้ม Soil Description: สายันห์ Tested By: Remark: รศ.คร.บุญส่ง Checked By:

Load .	- Defor	nation	Data	Sample Data Diect Shear Apparatus
Horiz.	Hori.	Verti.	Shear	Water Content Determination Plan Dimension (cm.) 6.00 Load Ring No. 14595
Disp.	Load Rd.	Disp.	Stress	Cont + Wet Soil (gm) 132.30 Initial Height (cm.) 1.90 Ring Constant 0.1401 (Kg./Div.)
0.01mm.)	(Div.)	(Div.)	(T/M²)	Cont + Dry Soil (gm) 106.10 Wt Samp+Cont (gm) 224.21 Shearing Rate 1.20 (mm./mir
0	0	0	0.0	Cont (gm) 17.87 Wt. Cont (gm) 112.90 Lever Arm Ratio 1:10
25	51	20	2.0	Water Content (%) 29.70 Initial Area (cm²) 36.00 Hanging Weight 3.6 (kg)
50	90	40	3.5	Initial Volume (cm ³) 68.40 Normal Stress 10.00 (t/m ³)
75	100	48	3.9	Wet Density (t/m²) 1.627
100	108	59	4.2	Dry Density (t/m²) 1.255
125	115	67	4.5	
150	119	78	4.6	7.0
175	122	90	4.7	
200	125	104	4.9	
225	126	117	4.9	
250	126	128	4.9	6.0
275	126	140	4.9	0000
300	125	150	4.9	NE 33 Ex
325	125	164	4.9	00
350	129	178	5.0	5.0
375	134	192	5.2	Approved C
400	136	205	5.3	
425	140	217	5.4	24 10 THE TOTAL OF
450	144	230	5.6	Ē4.0 - \(\)
475	146	248	5.7	2 7 0 1 1 1 .
500	148	255	5.8	Shear Stress (Um2)
525	149	265	5.8	Set
550	151	274	5.9	\$3.0
575	151	282	5.9	
600	151	290	5.9	
625	151	300	5.9	
650	152	310	5.9	
675	155	318	6.0	
700	155	328	6.0	
725	155	337	6.0	Mariang Mai Aganssu, Maria
750	155	344	6.0	1.0
775	155	355	6.0	The state of the s
800	155	362	6.0	
	and ten			
	1			0.0 Caraute
141			E.1 (49)	0.0 200 400 600 800 1000
				II a second seco
				Horizontal Displacement (x 0.01mm.)
-				Result Summary:
	1			Normal Stress 10.0 T/M²
				Maximum Shear Stress 6.0 T/M ²

239 ถ.ห้วยแก้ว ต.สุเทพ อ.เมือง จ.เชียงใหม่ โทร. 053-944157-66 โทรสาร 053-892376

GEOTECHNICAL ENGINEERING LABORATORY

DIRECT SHEAR TEST OF SOILS UNDER CONSOLIDATED UNDRAINED CONDITIONS

ASTM D 3080-90

Client: Project:

Mr. Dorii Gyeltshen P.

Landslide Hazard and Risk Assessment of Doi Suthep Area

Location: Soil Description:

Doi Suthep, Chiang Mai

Remark:

ดินเหนียวปนชิลท์ สีน้ำตาลเข้ม

Result Summary:

344/49 Job No: 19 ธ.ค. 49 Date:

1, S2(Shale) 770823 Sample No.

4.0 3.7

T/M2 T/M²

Depth (m.) Tested By:

สายันห์ รศ.คร.บุญส่ง

-	Dejon	nation	Data		Sampl	e Data		Diect Sn	ear Apparatus
loriz. Disp. 01mm.)	Hori. Load Rd.	Verti. Disp. (Div.)	Shear Stress (T/M²)	Water Content Det Cont + Wet Soil (gm) Cont + Dry Soil (gm) Cont (gm)	148.01	Plan Dimension (cm.) Initial Height (cm.) Wt Samp+Cont (gm) Wt. Cont (gm)	6.00 1.90 219.01 112.90	Load Ring No. Ring Constant Shearing Rate Lever Arm Ratio	14595 0.1401 (Kg/Div.) 1.20 (mm./min 1:10
25	10	2	0.4	Water Content (%)	27.18	Initial Area (cm ²)		Hanging Weight	1.44 (kg)
50	30	27	1.2			Initial Volume (cm ³)	68.40	Normal Stress	4.00 (t/m³)
75	49	54	1.9			Wet Density (t/m²)	1.551	2	
100	60	80	2.3			Dry Density (t/m²)	1.220		
125	67	107	2.6						
150	72	117	2.8	4.0					
175	74	222	2.9			1 /			., ///
200	76	140	3.0	11		00000	,	2	
225	79	151	3.1	3.5		o o o o o o o o o o o o o o o o o o o		a l	
250	82	160	3.2			po		0	- //
275	84	174	3.3			od /			/ / * - 1
300	87	186	3.4		6	7 / ()			
325	88	197	3.4	3.0	20			1 X	
350	90	207	3.5		00				
375	91	214	3.5		1				
400	93	215	3.6	25	8 m.c.	(*** * * ***) ()			/
425	94	232	3.7	8		•			
450	95	237	3.7						
475	95	252	3.7	1 2		7			
500	95	244	3.7	\$2.0					
525	95	246	3.7	1 3					
550	95	251	3.7	ar				1	
575	95	254	3.7	Shear Stress (Vm2)					
600	95	254	3.7	11.5				1	
625	94	254	3.7						
650	92	256	3.6	1 9					
675	90	257	3.5	1.0				r ci	
700	88	259	3.4						Ass.
								Manss.	17.
		-		0.5				2/9%	12
) y	rig	ht			Lhia				

Normal Stress

Maximum Shear Stress

239 ถ.ห้วยแก้ว ค.สุเทพ อ.เมือง จ.เชียงใหม่ โทร. 053-944157-66 โทรสาร 053-892376

GEOTECHNICAL ENGINEERING LABORATORY

DIRECT SHEAR TEST OF SOILS UNDER CONSOLIDATED UNDRAINED CONDITIONS ASTM D 3080-90

344/49 Job No: Client: Mr. Dorji Gyeltshen P. 19 ธ.ค. 49 Date: Project: Landslide Hazard and Risk Assessment of Doi Suthep Area 1, S2(Shale) 770823 Sample No. Location: Doi Suthep, Chiang Mai Depth (m.) Soil Description: ดินเหนียวปนชิลท์ สีน้ำตาลเช้ม สายันห์ Tested By: Remark: รศ.คร.บุญส่ง Checked By:

Load .	- Defori	nation	Data	Sample Data Diect Shear Apparatus
Horiz.	Hori.	Verti.	Shear	Water Content Determination Plan Dimension (cm.) 6.00 Load Ring No. 14595
Disp.	Load Rd.	Disp.	Stress	Cont + Wet Soil (gm) 149.94 Initial Height (cm.) 1.90 Ring Constant 0.1401 (Kg/Div.)
0.01mm.)	(Div.)	(Div.)	(T/M²)	Cont + Dry Soil (gm) 118.77 Wt Samp+Cont (gm) 223.88 Shearing Rate 1.20 (mm/min
0	0	0	0.0	Cont (gm) 13.12 Wt. Cont (gm) 112.90 Lever Arm Ratio 1:10
25	57	3	2.2	Water Content (%) 29.50 Initial Area (cm²) 36.00 Hanging Weight 5.76 (kg)
50	102	11	4.0	Initial Volume (cm³) 68.40 Normal Stress 16.00 (t/m³)
75	125	29	4.9	Wet Density (t/m²) 1.623
100	154	42	6.0	Dry Density (t/m²) 1.253
125	173	60	6.7	
150	187	77	7.3	12.0
175	200	92	7.8	
200	210	108	8.2	
225	218	120	8.5	20000000000
250	225	132	8.8	10.0
275	230	146	9.0	
300	237	159	9.2	0000
325	241	175	9.4	
350	243	188	9.5	
375	245	200	9.5	8.0
400	247	220	9.6	8 057
425	248	225	9.7	8 9 9
450	253	236	9.8	
475	256	245	10.0	
500	258	252	10.0	Shear Stress (Vm2)
525	259	261	10.1	Str
550	261	268	10.2	
575	264	273	10.3	9 9
600	266	277	10.4	
625	267	283	10.4	4.0 + 0
650	268	289	10.4	
675	269	290	10.5	
700	269	302	10.5	
725	270	306	10.5	(2005)
750	271	312	10.5	2.0
775	272	318	10.5	
800	272	321	10.6	9007/01
825	272	325	10.6	THE PACES INVESTIGATION
	272	328	10.6	
850	272		10.6	0.0 0 200 400 600 800 1000
875	272	332	10.6	
900	212	333	10.0	Horizontal Displacement (x 0.01mm.)
				Result Summary: Normal Stress 16.0 T/M²
2 10 1	1	E 401	100 (T	Maximum Shear Stress 10.6 T/N

239 ถ.ห้วยแก้ว ค.สุเทพ อ.เมือง จ.เชียงใหม่ โทร. 053-944157-66 โทรสาร 053-892376

GEOTECHNICAL ENGINEERING LABORATORY

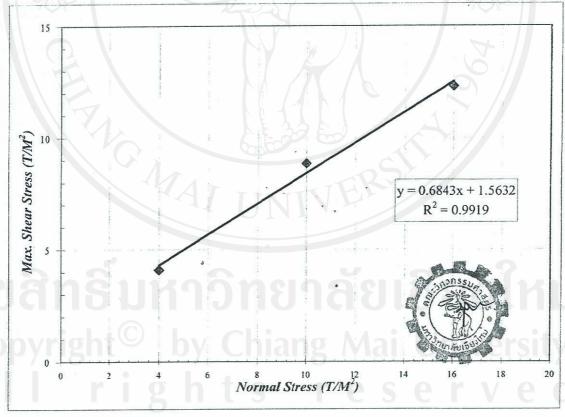
DIRECT SHEAR TEST OF SOILS UNDER CONSOLIDATED UNDRAINED CONDITIONS
ASTM D 3080-90

Client:	Mr. Dorji Gyeltshen P.	Job No:	344/49
Project:	Landslide Hazard and Risk Assessment of Doi Suthep Area	Date:	19 ธ.ค. 49
Location:	Doi Suthep, Chiang Mai	Sample No.	2
Soil Description:	ดินปนหินผุ สีน้ำตาลอ่อน	Depth (m.)	-
Remark:		Tested By:	สายันท์
		Checked By:	รศ.ดร.บุญส่ง

WORK INSTRUCTIONS

Test procedure was carried out according to ASTM D3080-90, which can be described briefly as follows:

- 1) The test condition is the consolidated undrained test, using square box, (CU Test)
- 2) Samples were prepared from an undisturbed soil collected using a 6" tube
- 3) Three samples were used with the applied normal stress of 4.0, 10.0, 16.0 t/sq.m. coresponding to the overburden pressure of height 2, 5 and 8 m.
- 4) Each sample was consolidated in a shear box by load steps, consolidation was monitored till completion before starting a new load step
- 5) After completion of consolidated under full normal stress, the samples were then allowed to be under water for 12 hours to ensure a saturated condition
- 6) Under full normal stress, the samples were tested under undrained condition, using the shear rate of 1.2 mm./minute (as recommended by J.E. Bowles, Engineering Properties of Soil and Their Measurement)
- 7) The maximum shearing stress were obtained from all tests, the Mohr-Coulomb failure line was drawn and the value of Cohesion and Friction angle were determined.


239 ถ.ห้วยแก้ว ค.สุเทพ อ.เมือง จ.เชียงใหม่ โทร. 053-944157-66 โทรสาร 053-892376

GEOTECHNICAL ENGINEERING LABORATORY

DIRECT SHEAR TEST OF SOILS UNDER CONSOLIDATED UNDRAINED CONDITIONS ASTM D 3080-90

Client:	Mr. Dorji Gyeltshen P.	Job No:	344/49
Project:	Landslide Hazard and Risk Assessment of Doi Suther Area	Date:	19 ธ.ค. 49
Location:	Doi Suthep, Chiang Mai	Sample No.	2
Soil Description:	ดินปนหินผุ สีน้ำตาลอ่อน	Depth (m.)	-:
// %	200200 0 20	Tested By:	สายันห์
		Checked By:	รศ.คร.บุญส่ง

	Test1	Test 2	Test3	Test 4	
Normal Stress (T/M2)	4.0	10.0	16.0	2	300
Max. Shear Stress (T/M2)	4.1	8.8	12.3	- 4	302-11

Remarks:

Cohesion, $C(T/M^2)$ 1.56 Friction Angle, ϕ (degree) 34

239 ถ.ห้วยแก้ว ค.สุเทพ อ.เมือง จ.เชียงใหม่ โทร. 053-944157-66 โทรสาร 053-892376

GEOTECHNICAL ENGINEERING LABORATORY

DIRECT SHEAR TEST OF SOILS UNDER CONSOLIDATED UNDRAINED CONDITIONS ASTM D 3080-90

Client:	Mr. Dorji Gyeltshen P.	Job No:	344/49
Project:	Landslide Hazard and Risk Assessment of Doi Suthep Area	Date:	19 ธ.ค. 49
Location:	Doi Suthep, Chiang Mai	Sample No.	2
Soil Description:	ดินปนหินผุ สีน้ำตาลอ่อน	Depth (m.)	
Remark:		Tested By:	สายันท์
		Checked By:	รศ.ดร.บุญส่ง

Load .	- Deform	mation	Data		Sampl	e Data		Diect She	ear Apparatus
Horiz.	TO Fare	Verti.	Shear	Water Content Dete	_	Plan Dimension (cm.)	6.00	Load Ring No.	14595
7	Load Rd.	Disp.	Stress	Cont + Wet Soil (gm)		Initial Height (cm.)	1.90	Ring Constant	0.1401 (Kg/Div.)
.01mm.)		(Div.)	(T/M²)	Cont + Dry Soil (gm)	141.60	Wt Samp+Cont (gm)	231.40	Shearing Rate	1.20 (mm/min
0	0	0	0.0	Cont (gm)	17.33	Wt. Cont (gm)	112.90	Lever Arm Ratio	1:10
25	12	14	0.5	Water Content (%)	16.46	Initial Area (cm2)	36.00	Hanging Weight	1.44 (kg)
50	23	34	0.9	establishment and status and status and status and		Initial Volume (cm3)	68.40	Normal Stress	4.00 (t/m ³)
75	33	55	1.3		A COUNTY	Wet Density (t/m²)	1.732		
100	43	74	1.7		100	Dry Density (t/m²)	1.488		
125	50	89	1.9			Diff Delicity (Pin)			
150	57	101	2.2	4.5					
175	60	110	2.3						
200	64	117	2.5	ll F				222	V / / / /
225	69	126	2.7	4.0			20000	wasoa .	
	74	131	2.7			77	, ,	20000000	
250	79) //
275		136	3.1	3.5		000			
300	83	138		5.5					
325	86	141	3.3						
350	90	143	3.5			6 00		X Y 1/	
375	91	147	3.5	3.0	Coa C				
400	93	148	3.6)	•			
425	95	148	3.7	Shear, Stress (Vm2)	P				
450	98	148	3.8	\$2.5	· 6			1. ±	
475	99	148	3.9	8	Ø				
500	101	147	3.9	tre.	P				1
525	102	145	4.0	520					1
550	103	143	4.0	ear	ρ		1		
575	104	134	4.0	Si			1		1
600	105	129	4.1	1 7					
625	105	119	4.1	1.5				A 100 A.	****** (EG) 1
650	105	117	4.1	P			A	2222	
675	105	116	4.1					38000	
700	104	111	4.0	1.0			200	18 B	
725	104	106	4.0	1 9			0	1000	3
750	104	99	4.0				1 E	THILL	
775	102	89	4.0	0.5			3	STATE OF THE PARTY	40 10 1
800	99	86	3.9					เขาลัยเชื่อ	V CI 311
		V. 2 20			1		1	A	
1000	* 7e*			0.0					
				0.00	200	400	600	800	1000
				6		Iorizontal Displace			1000
	1 4		(* 1000 m)	Result Summary:				r	
14110				ALCOMI DIMINIMI FI	Normal	Stress		4.0	T/M ²
						m Shear Stress		4.1	T/M ²
					LIMADA	III WILLIAM WILLOW		7.1	* 1541

239 ถ.ห้วยแก้ว ต.สุเทพ อ.เมือง จ.เชียงใหม่ โทร. 053-944157-66 โทรสาร 053-892376

GEOTECHNICAL ENGINEERING LABORATORY

DIRECT SHEAR TEST OF SOILS UNDER CONSOLIDATED UNDRAINED CONDITIONS

ASTM D 3080-90

Cuent	
Project	:
Locatio	n:
Soil De	scription:

Mr. Dorii Gveltshen P.

Landslide Hazard and Risk Assessment of Doi Suthep Area

Doi Suthep, Chiang Mai

Doi Sucrep, Cinang Mar ดินปนหินผุ สีน้ำตาลอ่อน

นผุ สีนำตาลอ้อน	

Job No:	344/49			
Date:	19 ธ.ค. 49			
Sample No.	2			
Depth (m.)	-			
Tested By:	สายันท์			
Checked By:	รศ.ดร.บุญส่ง			

Load - Deformation Data			Data	Sample Data				Diect Shear Apparatus		
Horiz.	Hori.	Verti.	Shear	Water Content Detern	ination	Plan Dimension (cm.)	6.00	Load Ring No. 1459	1511	
	Load Rd.	Disp.	Stress	Cont + Wet Soil (gm)	102.15	Initial Height (cm.)	1.90	Ring Constant 0.1401 (Kg.		
).01mm.)	(Div.)	(Div.)	(T/M ²)	Cont + Dry Soil (gm)	91.40	Wt Samp+Cont (gm)	230.53	Shearing Rate I.20 (mm		
0	0	0	0.0	Cont (gm)	18.21	Wt. Cont (gm)	112.90	Lever Arm Ratio 1:1		
25	40	33	1.6	Water Content (%)	14.69	Initial Area (cm ²)	36.00	Hanging Weight 3.60 (kg	100 100 110	
50	60	41	2.3			Initial Volume (cm3)	68.40	Normal Stress 10.00 (t/m	13)	
75	75	50	2.9	2		Wet Density (t/m2)	1.720	7305		
100	85	53	3.3			Dry Density (t/m²)	1.499	Latel		
125	99	61	3.9							
150	115	71	4.5	10.0	1					
175	128	78	5.0			1 1				
200	140	83	5.4							
225	150	87	5.8	9.0				poooa		
250	158	87	6.1				200	~ ~~~		
275	163	87	6.3	8.0	MAL		مص	oooooo		
300	170	87	6.6	8.0		1				
325	175	86	6.8		1 11-	000		A 71		
350	180	85	7.0	7.0		00				
375	183	82	7.1			000				
400	188	82	7.3		99/60	8	4			
425	190	82	7.4	₹ 6.0		9		7 / 4		
450	195	82	7.6	Shear Stress (Vm2)	1	' ,				
475	201	87	7.8	3	P				- 1	
500	205	90	8.0	\$ 5.0	Ø:					
525	210	100	8.2	Str	1					
550	213	105	8.3	a	7					
575	216	115	8.4	4.0	J	1	1		1	
600	219	122	8.5	2					- 1	
625	222	130	8.6				4			
650	225	137	8.8	3.0			A.F.	ADRSSUM		
675	227	142	8.8	12001	na k		13/	SYE IS		
700	225	147	8.8	1 9			6	Carlo III		
725	224	152	8.7	2.0			13	下入人。		
750	220	155	8.6	Ø			题写			
775	218	162	8.5			A A		กเกลียเชีย	.0.	
800	216	165	8.4	1.0		ang M				
000	210	103				4116 HV				
		i	10	0.0					_	
				0 0	200	400	60	800	1000	
						Horizontal Displac	cement (x 0.01mm.)		
		ā 2		Result Summary:	_	• 6.		10.0	T/M	
						I Stress		8.8	T/M	
				1	Maxim	um Shear Stress		0.0	W/10E	

26/12/2006

239 ฉ.ห้วยแก้ว ต.สุเทพ อ.เมือง จ.เชียงใหม่ โทร. 053-944157-66 โทรสาร 053-892376

GEOTECHNICAL ENGINEERING LABORATORY

DIRECT SHEAR TEST OF SOILS UNDER CONSOLIDATED UNDRAINED CONDITIONS
ASTM D 3080-90

Client:	Mr. Dorji Gyeltshen P.	Job No:	344/49
Project:	Landslide Hazard and Risk Assessment of Doi Suthep Area	Date:	19 ธ.ค. 49
Location:	Doi Suthep, Chiang Mai	Sample No.	2
Soil Description:	ดินปนหินผ สีน้ำตาลอ่อน	Depth (m.)	H
Remark:		Tested By:	สายันห์
Remark		Checked By:	รศ.ดร.บุญส่ง

Load - Deformation Data			Data		Sample Data			Diect Shear Apparatus		
Horiz.	Hori.	Verti.	Shear	Water Content Deter		Plan Dimension (cm.)	6.00	Load Ring No.	14595	
Disp.	Load Rd.	Disp.	Stress	Cont + Wet Soil (gm)	217.44	Initial Height (cm.)	1.90		1401 (Kg/Div.)	
0.01mm.)	(Div.)	(Div.)	(T/M^2)	Cont + Dry Soil (gm)	190.22	Wt Samp+Cont (gm)	231.53	Shearing Rate	1.20 (mm./min	
0	0	0	0.0	Cont (gm)	23.96	Wt. Cont (gm)	112.90	Lever Arm Ratio	1:10	
25	60	14	2.3	Water Content (%)	16.37	Initial Area (cm2)	36.00	Hanging Weight	5.76 (kg)	
50	91	33	3.5	12		Initial Volume (cm3)	68.40	Normal Stress	$16.00 \text{ (t/m}^3\text{)}$	
75	118	53	4.6			Wet Density (t/m ²)	1.734			
100	146	79	5.7			Dry Density (t/m²)	1.490			
125	167	93	6.5	Toronto and the second						
150	183	111	7.1	14.0						
175	198	127	7.7							
200	210	141	8.2			poopoopoopoo				
225	222	153	8.6					-0000000	200	
250	230	164	9.0	12.0			- 200	0000000		
275	240	173	9.0				2000			
	246	173	9.5			200				
300						2000				
325	251	181	9.8	10.0	P F :					
350	255	186	9.9			2000				
375	260	189	10.1		~	Ø				
400	265	193	10.3		· 0	*				
425	269	201	10.5	0.8 m2	d	*				
450	274	211	10.7	\$ 8.0	d					
475	278	219	10.8	53	6					
500	282	229	11.0	tre						
525	286	239	11.1	3)					
550	291	251	11.3	Shear Stress (Vm2)						
575	295	261	11.5	S					1	
600	298	273	11.6			•				
625	300	281	11.7	P						
650	304	289	11.8	4.0					*102	
675	307	298	11.9	0						
700	308	301	12.0							
725	309	307	12.0					4		
750	310	313	12.1	2.0				363135093	2 1	
775	311	320	12.1					I STEP		
800	312	325	12.1					TO TO	1911	
			12.1				W.	1 Fells	-	
825	313	330	12.2				E. A.	3. 000		
850	314	336		0.0 0	200	400	600	ั้ยาลัยเชียง 800	1000	
875	315	342	12.3	0				THE PERSON NAMED IN	.500	
900	316	349	12.3			Horizontal Displace	ement (.	x 0,01mm.)		
925	316	358	12.3			. 434				
950	315	369	12.3							
975	315	371	12.3	Result Summary:	Carrier Control of Control				· ·	
1000	314	376	12.2		Normal			16.0	T/M ²	
				1	Marina	m Shear Stress		12.3	T/M ²	

CURRICULUM VITAE

Name

Dorji Gyeltshen P

Sex

Male

Date of Birth

November 7, 1976

Nationality

Bhutanese

Educational background

Bachelor Degree in Civil Engineering (2001)

Hindustan College of Engineering, Padur, 603103

Madras University, Tamil Nadu, India

Master of Science in Environmental Science (2007)

Chiang Mai University

Chiang Mai, Thailand

Scholarships

Royal Government of Bhutan Scholarship; 1997-2001

Thailand International Development Cooperation

Agency (TICA), Thailand, 2005-2007

Work experiences

January 2002 - present

Assistant Engineer, Department of Roads

Ministry of Works & Human Settlement,

Thimphu, Bhutan.