TABLE OF CONTENTS

ACKNOWLEDGEMENTS	Page iii
ABSTRACT (ENGLISH)	v
ABSTRACT (THAI)	vii
TABLE OF CONTENTS	ix
LIST OF TABLES	xii
LIST OF FIGURES	xiv
ABBREVIATIONS AND SYMBOLS	xvii
CHAPTER 1 INTRODUCTION	1
1.1 Disaster Scenario of Thailand	1
1.2 Rationale	6
1.3 Research Objectives	6
1.4 Usefulness of the Research	7
1.5 Scope and Limitations of the Study	7
1.6 Study Area	8
1.7 Climate of Chiang Mai Area	9
1.8 Geological Setting of Northern Thailand	.11
CHAPTER 2 LITERATURE REVIEW	15
2.1 Definition of Landslide	15
2.2 Concept of Landslide Hazard and Risk	16
2.2.1 Landslide Hazard	17
2.2.2 Landslide Risk	18

2.3 Prevention of Landslide Risk	20
2.4 Causes of Landslide	21
2.4.1 Geological causes	21
2.4.2 Morphological causes	22
2.4.3 Physical causes	22
2.4.4 Anthropogenic causes	23
2.4.5 Role of water in landsliding	24
2.5 Landslide Hazard Mapping	26
2.6 Landslide Hazard Mapping Methods	27
2.7 GIS as a Tool for Landslide Studies	29
CHAPTER 3 METHOD OF STUDY	31
3.1 Input Data	31
3.1.1 Slope	31
3.1.2 Landuse	32
3.1.3 Stream Proximity	35
3.1.4 Geology	35
3.2 Data Integration and Analysis	38
3.2.1 Data layers—their weights and ratings	38
3.2.2 Landslide Hazard Index and hazard map 3.2.3 Risk map	43 44
3.3 Field Investigations	47
3.3.1 Landslide mapping	47
3.3.2 Slope stability analysis	54
3.3.2.1 Back-analysis of failed slope	56

3.3.2.2 Stability analysis of natural slope	60
CHAPTER 4 RESULTS AND DISCUSSION	68
4.1 Landslide Hazard Map	68
4.2 Landslide Risk Map	68
4.3 Role of Factors in Landsliding	72
4.3.1 Slope	72
4.3.2 Geology	73
4.3.3 Landuse	73
4.3.4 Stream Proximity	74
4.4 Back Analysis of Failed Slopes	75
4.5 Stability Analysis of Natural Slopes	76
CHAPTER 5 CONCLUSION	
REFERENCES	89
APPENDIX A	
APPENDIX B	
CURRICULUM VITAE	

ลิ**บสิทธิมหาวิทยาลัยเชียงใหม** Copyright[©] by Chiang Mai University All rights reserved

LIST OF TABLES

		Page
Table 1.1	Prioritization of Disaster Risk in Thailand	2
Table 1.2	The level of disaster intensity, vulnerability, managing	3
	competency level and risk levels of Thailand The effect	
	of the disaster in number	
Table 1.3	Statistical data of disasters and damages in Thailand during	4
	2001 – 2004	
Table 1.4	The effect of flash flood and landslide on human lives and	5
	property	
Table 3.1	Parameter weight assignment based on AHP	40
Table 3.2	Data layers and landslide hazard weighting-rating system	42
	adopted in this study	
Table 3.3	Landslide hazard index values and hazard classification	44
Table 3.4	Description of existing landslides	48
Table 3.5	Back analysis calculation table for weathered gneiss	58
Table 3.6	Back analysis calculation table for weathered shale	58
Table 3.7	Model input parameters	65
Table 4.1	The percentage of the different hazard zones of the study area.	68
Table 4.2	The percentage of the different risk zones of the study area.	70
Table 4.3	Percentage area in different classes of slope angle	73
Table 4.4	Percentage area in different classes of rock types	73
Table 4.5	Percentage area in different classes of landuse pattern	74

Table 4.6	Phreatic surface height (hw) when slopes failed and	75
	FS under dry condition	
Table 4.7	Simulation result for weathered gneiss slope with 5 mm/hr	78
	(120 mm/day) rainfall intensity	
Table 4.8	Simulation for weathered shale slope with 5 mm/hr	79
	(120 mm/day) rainfall intensity	
Table 4.9	Simulation result for weathered gneiss slope with 10 mm/hr	82
	(240 mm/day) rainfall intensity	
Table 4.10	Simulation result for weathered gneiss slope with 5 mm/hr	83
	(240 mm/day) rainfall intensity	

ลิชสิทธิ์มหาวิทยาลัยเชียงใหม่ Copyright[©] by Chiang Mai University All rights reserved

LIST OF FIGURES

		Page
Figure 1.1	Shaded relief map showing the location map of the study area	9
Figure 1.2	Rainfall pattern for Chiang Mai for the past 19 years	10
Figure 1.3	Average monthly temperature and rainfall of Chiang Mai	11
Figure 1.4	Geologic map of northern Thailand showing the age series	13
	of rocks	
Figure 2.1	Schematic diagram showing forces and stresses acting on	15
	a point along the potential failure plane	
Figure 2.2	Effect of moisture on strength of the weathered granite	25
Figure 3.1	Slope map of the study area	33
Figure 3.2	Landuse map of the study area	34
Figure 3.3	Stream proximity map of the study area	36
Figure 3.4	Geology map of the study area	37
Figure 3.5	GIS analysis for integrating various thematic data layers and	39
	deriving landslide zonation and risk map.	
Figure 3.6	Hazard Index map	45
Figure 3.7	Distance to the settlement points	46
Figure 3.8	Existing landslide mapping	49
Figure 3.9	Pictures of existing landslide (Landslide 1) in weathered	50
	gneiss on highway 1096 (Mae Rim-Samoeng highway)	
Figure 3.10	Pictures of existing landslide (Landslide 2) in weathered	50
	gneiss on highway 1096 (Mae Rim-Samoeng highway)	

Figure 3.11	Pictures of existing landslide (Landslide 3) in weathered	51
	gneiss on road leading to Ban Sam Lang	
Figure 3.12	Pictures of existing landslide (Landslide 4), a natural	51
	landslide in weathered gneiss near Ban Pong Yaeng Nok	
	below highway 1096.	
Figure 3.13	Pictures of existing landslide (Landslide 5), a rock fall in	52
	limestone on highway 1096 (Mae Rim-Samoeng highway).	
Figure 3.14	Pictures of existing landslide (Landslide 6) in weathered	52
	shale on highway 1096 (Mae Rim-Samoeng highway)	
Figure 3.15	Pictures of existing landslide (Landslide 7), a natural	53
	landslide in weathered gneiss above Ban Dong Nok.	
Figure 3.16	Pictures of existing landslide (landslide 8) in weathered	53
	gneiss before reaching Doi Suthep Temple.	
Figure 3.17	Pictures of existing landslide (Landslide 9) in weathered	54
	gneiss above Ban Mae Sa.	
Figure 3.18	Sampling site: A – Gneiss and B – Shale, for slope	55
	stability analysis	
Figure 3.19	Slope profile of the failed slopes:	56
	a) in weathered gneiss b) in weathered shale	
Figure 3.20	Definition of geometrical parameters and method of	59
	calculation for Janbu's non-circular failure analysis	
Figure 3.21	Definition of geometrical parameters and method of	61
	calculation for simplified Bishop's method of slices	
Figure 3.22	Topographic map showing the location and direction of	62

slope under investigation.

Figure 3.23	On-screen slope geometry and finite difference mesh generation	63
Figure 3.24	Bishop's circular slip search	63
Figure 3.25	Hydrology dialog box (with 3D convergence).	64
Figure 3.26	CHASM visualization of critical slip surface	66
Figure 3.27	CHASM visualization of soil moisture distribution	67
Figure 4.1	Landslide hazard map of the study area	69
Figure 4.2	Histogram depicting the size of area under each zone of	70
	hazard and risk map	
Figure 4.3	Landslide risk map of the study area	71
Figure 4.4	Dynamic factor of safety plot for the slopes in weathered	77
	gneiss and weathered shale with rainfall intensity of 5 mm/hr	
	(120 mm/day)	
Figure 4.5	Dynamic factor of safety plot for the slopes in weathered	81
	gneiss and weathered shale with rainfall intensity of 10 mm/hr	
	(240 mm/day)	

ลิขสิทธิ์มหาวิทยาลัยเชียงใหม่ Copyright[©] by Chiang Mai University All rights reserved

ABBRIVATIONS AND SYMBOLS

AHP Analytical Hierarchy Process

angle of the center of the base of each slice with respect to horizontal

CHASM Combined Hydrology and Stability Model

CI Consistency Index

CR Consistency Ratio

c' Cohesion

cm centimeter

d depth of failure surface

DDPM Department of Disaster Prevention and Mitigation

Deg Degree

DEM Digital Elevation Model

 Δx slice width

E East

f_o correction factor

FS Factor of Safety

g grams

GIS Geographic Information System

GPS Global Positioning System

HI Hazard Index

km Kilometer

km² Square Kilometer

kN Kilonewtons

L chord length of failure surface

LHI Landslide Hazard Index

m Meter

m² Square meter

m³ Cubic meter

% Percentage

 θ Slope angle

n number of slice

N North

Sec seconds

u average water pressure on base of slice

UTM Universal Transverse Mercator

φ friction angle

ลิ**ปสิทธิ์มหาวิทยาลัยเชียงใหม**่ Copyright[©] by Chiang Mai University All rights reserved