CHAPTER 5

PHYSICAL AND ELECTRICAL PROPERTIES OF MODIFIED PZN-PZT COMPOSITIONS

This chapter describes the investigation of physical and electrical properties of modified PZN-PZT compositions. There are three part, (1) the effect of MnO_2 addition on properties of PZN-PZT ceramics, (2) the effect of Fe_2O_3 addition on properties of PZN-PZT ceramics, and (3) Comparison between Fe_2O_3 and MnO_2 addition on properties of PZN-PZT-based ceramics. The scope of measurement is defined and the results of dielectric, piezoelectric and ferroelectric properties are shown.

5.1. Effect of MnO₂ addition on properties of PZN-PZT ceramics

Fan and Kim [97] investigated Pb(Zn_{1/3}Nb_{2/3})_{0.5}(Zr_{0.47}Ti_{0.53})_{0.5}O₃ ceramics with composition close to the morphotropic phase boundary (MPB) and clarified that the ceramics have large electromechanical coupling factor k_p . However, the mechanical quality factor Q_m is too low to permit their use as high power piezoelectric devices. It is necessary to improve Q_m as much as possible for suppressing the generation of heat during operation. To develop materials suitable for multilayer piezoelectric transformers and actuators with high d_{33} , high k_p and Q_m , it is necessary to add some dopants on PZN–PZT based ceramics to optimize the piezoelectric properties for device applications[9, 45, 74, 85]. The influence of various substitutions on the B-site of $Pb(Zr,Ti)O_3$ perovskite has been widely investigated to optimize the piezoelectric properties [37, 93, 98-101].

Previously, all commercial piezoelectric devices employ Pb(Zr,Ti)O₃ (PZT)based formulations, close to the morphotropic phase boundary (MPB). The MPB composition is modified by the acceptor and donor ions to yield high piezoelectric properties with low losses. Regarding the Mn doping effect since Mn ions can have various valencies from Mn⁴⁺ to Mn²⁺, Mn-ions are well known to be effective in very small amounts for improving the reliability of ceramic capacitors. The enhanced properties are expected to be due to the distribution of Mn²⁺, Mn³⁺, and Mn⁴⁺ on Bsites[102-104, 108]. Mn incorporated on the B sites would act as a lower valent species on a higher valent site. Accordingly, oxygen vacancies would be created for charge compensation, imparting polarization pinning and "hard" characteristics, i.e., an increase in Q_m value [101-104].

In this section, in order to develop PZN-PZT based ceramics for a piezoelectric transformer application, we investigate the effect of MnO₂ addition on structure, and electrical properties of $0.2Pb(Zn_{1/3}Nb_{2/3})O_3$ - $0.8Pb(Zr_{1/2}Ti_{1/2})O_3$ ceramics. The purpose of this study is to obtain ceramics with higher d_{33} , k_p and Q_m , which are especially important from the viewpoint of the development of practical piezoelectric materials.

5.1.1. Experimental procedure

The specimens studied were fabricated according to the formula: $0.2Pb(Zn_{1/3}Nb_{2/3})O_3-0.8Pb(Zr_{1/2}Ti_{1/2})O_3 + x$ wt% MnO₂, where x= 0.1, 0.3, 0.5, 0.7 and 0.9. Raw materials of PbO, ZrO₂, TiO₂, ZnO, Nb₂O₅ and MnO₂ with >99% purity were used to prepare samples by a conventional mixed oxide process. The starting powders were mixied by zirconia ball media with isopropanal as a medium in a polyethylene jar for 30 min via vibro-milling technique. The mixed slurry was dried and calcined at 900°C for 2h. The calcined powders were ball-milled again with additives and consolidated into disks of 12.5 mm diameter using isostatic pressing about 150 MPa. PbO-rich atmosphere sintering of the ceramics was performed in a high-purity alumina crucible at 1200 °C for 2h. Physical and electrical characteristics of the prepared ceramics were investigated with similar procedures described earlier in Chapters 3 and 4.

5.1.2. Results and discussion

5.1.2.1. Crystal structure, phase formations and microstructure

Perovskite phase formation, crystal structure and lattice parameter were determined by XRD at room temperature. The XRD patterns of $0.2Pb(Zn_{1/3}Nb_{2/3})O_3$ - $0.8Pb(Zr_{1/2}Ti_{1/2})O_3$, with the addition of 0–0.9 wt% MnO₂ are shown in Fig.5.1, showing perovskite structure for all compositions. The pyrochlore phase is not observed in this system. In the XRD patterns, the crystal structure of the specimens appears clearly to change to rhombohedral side across MPB with increasing amount of MnO₂ around 0.5 wt%. It has been reported [98, 101] that manganese coexists mainly in the Mn²⁺ and Mn³⁺states, which then enter into the perovskite structure of BO₆ octahedron to substitute for the B-site ion (e.g., Ti⁴⁺and Zr⁴⁺).

Figure 5.1 XRD patterns of the samples sintered at 1200° C for 2h in of 0.2PZN– 0.8PZT + x wt% MnO₂ ceramics: (a) x =0, (b) x =0.1, (c) x =0.3, (d) x =0.5, (e) x =0.7 and (f) x =0.9.

Figure 5.2 shows SEM photographs of the surfaces of 0.2Pb(Zn_{1/3}Nb_{2/3})O₃-0.8Pb(Zr_{1/2}Ti_{1/2})O₃ ceramics doped with 0-0.9 wt% MnO₂. As shown in Figs. 5.2 (a-b), the grain sizes of ceramics are increased with an increasing amount of MnO₂ addition. Similar observations have been reported [107]. Further increasing in MnO₂ content gives rise to an in homogeneous grain size. However, the SEM micrograph in Fig.5.2(c-f) show that a higher porosity level is observed when the amount of MnO₂ is increased [105]. The above results are obviously consistent with the change in the bulk density with MnO_2 content for Mn-doped $0.2Pb(Zn_{1/3}Nb_{2/3})O_3$ -0.8Pb(Zr_{1/2}Ti_{1/2})O₃ ceramics. It can clearly be seen from Fig. 5.2 that the ceramics have high densities in the MnO_2 addition range of 0–0.5 wt%. It is believed that manganese ions are mainly incorporated into the lattice, but if the addition is above 0.5 wt%, manganese ions will accumulate at the grain boundaries [104]. These inferences are obviously consistent with the changes mentioned above in the microstructures. The micrographs also show that the grain size of the ceramics varies considerably, as listed in Table 5.1.

	x	Density (g/cm ³)	Grain size range(µm)	Average grain size (µm)
1	0	7.826	0.5 - 2.0	1.726
	0.1	7.849	1.5 - 6.0	4.131
	0.3	7.897	1.0 - 3.0	2.991
	0.5	8.028	0.5 - 2.0	2.116
	0.7	7.718		-A
	0.9	7.653	Calco Co	

Table 5.1 Physical Properties of 0.2PZN-0.8PZT + x wt% MnO₂ ceramics

(e) x = 0.7 and (f) x = 0.9.

5.1.2.2. Dielectric properties

The temperature and frequency dependence of the dielectric constant (ε_r) and dielectric loss tangent (tan δ) for 0.2PZN–0.8PZT + *x* wt% MnO₂, *x* = 0, 0.1, 0.3, 0.5, 0.7 and 0.9 are shown in Fig. 5.3. The maximum dielectric constant at 1 kHz (ε_m @ 1 kHz) is listed in Table 5.2. Dielectric behaviors show strong increase in frequency-dependence of dielectric constant and dielectric loss which increased amount of MnO₂. This may be caused from oxygen vacancies and conducting regions near grain boundaries when increasing MnO₂ [108]. The variation of the Curie temperature (T_c) as a function of composition *x* is shown in Fig 5.4. The Curie temperature of 0.2PZN–0.8PZT + *x* wt% MnO₂ system can be varied over a wide range from 310 to 340°C by controlling the addition of MnO₂ content in the system.

ลิขสิทธิ์มหาวิทยาลัยเชียงใหม่ Copyright[©] by Chiang Mai University All rights reserved

Figure 5.3 Temperature and frequency dependence of dielectric properties of 0.2PZN-0.8PZT + x wt% MnO₂ ceramics at 1200°C for 2h; (a) x =0, (b) x =0.1, (c) x =0.3, (d) x =0.5, (e) x =0.7 and (f) x =0.9.

Figure 5.4. Curie temperature of the specimens sintered at 1200°C for 2h of 0.2PZN– 0.8PZT + x wt% MnO₂ ceramics when x = 0, 0.1, 0.3, 0.5, 0.7 and 0.9.

5.1.2.3. Piezoelectric properties

Density, dielectric constant (ε_r), electromechanical coupling factor (k_p), mechanical quality factor (Q_m) and piezoelectric constant (d_{33}) are plotted as a function of amount of MnO₂ addition in Fig 5.5. When the amount of MnO₂ is lower than 0.5 wt%, density slightly increased. The ε_r , k_p and d_{33} show a decrease with increasing MnO₂ content. When the amount of MnO₂ is lower than 0.5 wt%, k_p and d_{33} are rapidly decreased with increasing MnO₂ content. It is well known that the substitutions of acceptor dopant Mn ions will lead to the creation of oxygen vacancies, which pin the movement of the ferroelectric domain walls and result in a decrease of ε_r , k_p and d_{33} [37, 106]. The mechanical quality factor (Q_m) are rapidly increased with increasing MnO₂ content [100]. Therefore, the acceptor dopants of MnO₂ improve Q_m , significantly. The highest value Q_m (~1413) are obtained in the ceramics with MnO₂ amounts of 0.5 wt%. Further addition of MnO₂ above 0.5 wt% leads to a slight decrease in the value of Q_m , which may be mainly attributable to non-uniformity of the microstructure, as shown in Fig.5.2.

Figure 5.5 Density, dielectric constant (ε_r), piezoelectric constant (d_{33}), electromechanical coupling factor (k_p), and mechanical quality factor (Q_m) of the specimens sintered at 1200°C for 2h of 0.2PZN–0.8PZT + x wt% MnO₂ ceramics when x = 0, 0.1, 0.3, 0.5, 0.7 and 0.9.

x	<i>T</i> _C (°C)	Dielectrie (at 25 °	c properties C, 1 kHz)	Dielectric (at	properties T _m)	Piezoelectric properties		
		٤r	Tanð	٤r	tanð	<i>d</i> ₃₃ (pC/N)	k _p	Q _m
0	339.7	1575	0.0249	21047	0.0420	430	0.583	90
0.1	334.2	1155	0.0436	17784	0.1181	365	0.564	356
0.3	326.5	1100	0.0464	19102	0.1241	320	0.551	735
0.5	323.4	1086	0.0440	18220	0.1454	305	0.532	1413
0.7	318.7	1020	0.0368	21178	0.1354	263	0.48	1260
0.9	311	948	0.0438	21389	0.1762	237	0.44	1080

Table 5.2 Dielectric and piezoelectric properties of 0.2PZN-0.8PZT + x wt% MnO₂

ceramics

5.1.2.4. Ferroelectric properties

The polarization-field (*P–E*) hysteresis loops 0.2PZN-0.8PZT + x wt% MnO₂ ceramics are shown in Fig. 5.6. The well-developed and fairly symmetric hysteresis loops with the field are observed for all compositions. To further assess ferroelectric characteristics in MnO₂-modified PZN-PZT ceramics, the ferroelectric parameters, i.e. the remnant polarization (*P_r*) and the coercive field (*E_c*), have been extracted from the experimental data, as given in Table 5.3. It can be seen clearly that *P_r*, *P_s* decrease with an addition of MnO₂ into the PZN-PZT composition and *E_c* increases to maximum at *x*=0.3 wt%. The ferroelectric characteristics can also be assessed with the hysteresis loop squareness (*R_{sq}*), as described earlier. As listed in Table 5.3, the loop squareness parameter *R_{sq}* increases from 1.483 in *x*=0 to reach the maximum value of 1.712 in *x*=0.3. Further addition of MnO₂ above 0.3 wt% leads to a decrease in the loop squareness parameter, which are mainly attributable to non-uniformity of

the microstructure, as shown in Fig.5.2. The longitudinal strain (s) of the specimens as a function of the electric field is plotted in Fig. 5.7. The strains are degraded markedly when MnO₂ content is increased, as listed in Table 5.3.

Figure 5.6 Polarization and electric field of $0.2PZN-0.8PZT + x wt\% MnO_2$

ລິບລັກຮົບກາວົກຍາລັຍເຮີຍວໃກມ Copyright[©] by Chiang Mai University All rights reserved

Figure 5.7 Strain and electric field of 0.2PZN-0.8PZT + x wt% MnO₂ ceramics.

Table 5.3	Ferroelectric	and strai	n properties	of 0.2PZ	N-0.8PZT	+ x wt	MnO ₂
ceramics							

x	Ferroelec	tric properti	es (at 25 °C)	Loop squareness (<i>R</i> _{sq})	Strain %@ 4MV/m		
218	$P_{\rm r}$ (C/m ²)	$P_{\rm s}$ (C/m ²)	<i>E</i> _C (MV/m)	ยาลัยเล	สี่ยงไหม		
0	0.287	0.300	1.97	1.483	0.278		
0.1	0.224	0.233	2.18	ang1.488 ai	Uni0.231 rsitv		
0.3	0.208	0.213	2.37	1.712	0.188		
0.5	0.147	0.175	1.94	1.024	e _{0.162} e 0		
0.7	0.089	0.126	1.63	0.811	0.134		
0.9	0.077	0.111	1.75	0.811	0.115		

These results clearly show decreased P_r and strain level but increased E_c with addition amount of MnO₂. This section shows the significance of MnO₂ addition in the electrical properties of the PZN–PZT system with "hard" characteristics presented. This observation could be caused from Mn ions which lead to the creation of oxygen vacancies, which in turn pin the movement of the ferroelectric domain walls, resulting in "hard" properties.

5.1.3. Summary

In this section, the dielectric, piezoelectric and ferroelectric properties of MnO₂-doped 0.2Pb($Zn_{1/3}Nb_{2/3}$)O₃-0.8Pb($Zr_{1/2}Ti_{1/2}$)O₃ ceramics, which is the morphotropic phase boundary composition of the PZN-PZT system, were investigated. Crystal structure changed to rhombohedral side when increasing MnO₂ content. With the addition of MnO₂, Curie temperature *T*_c, the piezoelectric constant *d*₃₃ and electromechanical coupling factor *k*_p were slightly decreased, but the mechanical quality factor *Q*_m was significantly increased. The *P*–*E* and *s*-*E* loops demonstrated decreased *P*_r and strain level but increased *E*_c with increasing amount of MnO₂. These results clearly show the significance of MnO₂ addition in the controlling electrical properties of the PZN–PZT system to exhibit of "hard" characteristics.

5.2. Effect of Fe₂O₃ addition on properties PZN-PZT ceramics

Vittayakorn *et al.* [70] investigated processing conditions for producing phasepure perovskite PZN–PZT ceramics with the conventional mixed-oxide method and B-site precursor. It was consistently shown that an MPB exists around x = 0.25 in this binary system. It was clarified that the ceramics possess large electromechanical coupling factor k_p . But the mechanical quality factor Q_m is too low to permit their use as high power piezoelectric devices. It is necessary to add some dopants on PZN–PZT based ceramics to optimize the piezoelectric properties for device applications [9, 45, 74, 85]. The influence of various substitutions on the B-site of Pb(Zr,Ti)O₃ perovskite has been widely investigated to optimize the piezoelectric loss (or tan δ) is usually reduced. This is especially true for the dielectric loss in a strong external field [102, 103, 110]. Therefore, Fe³⁺ ion is an effective hard doping ion for PZT used in high-power transducers.

In this section, in order to develop PZN-PZT based ceramics for a piezoelectric transformer application, we investigate the effect of Fe₂O₃ addition on structure, and electrical properties of $0.2Pb(Zn_{1/3}Nb_{2/3})O_3-0.8Pb(Zr_{1/2}Ti_{1/2})O_3$ ceramics. The purpose of this section is to obtain ceramics with higher d_{33} , k_p and Q_m , which are especially important from the viewpoint of the development of practical piezoelectric materials.

5.2.1. Experimental procedure

The specimens studied were fabricated according to the formula: $0.2Pb(Zn_{1/3}Nb_{2/3})O_3-0.8Pb(Zr_{1/2}Ti_{1/2})O_3 + x$ wt% Fe₂O₃, where x= 0.1, 0.3, 0.5, 0.7 and 0.9. Raw materials of PbO, ZrO₂, TiO₂, ZnO, Nb₂O₅ and Fe₂O₃ with >99% purity were used to prepare samples by a conventional mixed oxide process. The starting powders were mixied by zirconia ball media with isopropanal as a medium in a polyethylene jar for 30 min via vibro-milling technique. The mixed slurry was dried and calcined at 900°C for 2h. The calcined powders were ball-milled again with additives and consolidated into disks of 12.5 mm diameter using isostatic pressing about 150 MPa. PbO-rich atmosphere sintering of the ceramics was performed in a high-purity alumina crucible at 1200 °C for 2h. As described in previous section, the sintered ceramics were characterized with the same procedures to determine the physical and electrical properties.

5.2.2. Results and discussion

5.2.2.1. Crystal structure, phase formations and microstructure

The XRD patterns of $0.2Pb(Zn_{1/3}Nb_{2/3})O_3$ -0.8Pb($Zr_{1/2}Ti_{1/2})O_3$ specimens with the addition of 0–0.9 wt% Fe₂O₃ are shown in Fig. 5.8. In these patterns, the crystal structure of the specimens is modified by the addition of Fe₂O₃, as revealed by the evaluation of (200) and (002) peaks. The perovskite structure appears to change to tetragonal side with increasing amount of Fe₂O₃. Fe³⁺ ions are expected to substitute B-sites of the perovskite structure, because ionic radius of Fe³⁺ is more similar to that of Zr⁴⁺, Ti⁴⁺, Zn²⁺ and Nb⁵⁺than that of Pb²⁺ [23].

Figure 5.9 shows SEM photographs of the surfaces of $0.2Pb(Zn_{1/3}Nb_{2/3})O_3$ - $0.8Pb(Zr_{1/2}Ti_{1/2})O_3$ ceramics doped with 0–0.9 wt% Fe₂O₃. As shown in Figs. 5.9 (a-e), the grain sizes of ceramics are increased with increasing amount of Fe₂O₃. However, the SEM micrographs in Fig.5.9 (f) show that a higher porosity level is observed when the amount of Fe₂O₃ is increased, which means that the specimens are not sintered effectively. The above results are obviously consistent with the change in the bulk density with Fe_2O_3 content for Fe-doped $0.2Pb(Zn_{1/3}Nb_{2/3})O_3$ - $0.8Pb(Zr_{1/2}Ti_{1/2})O_3$ ceramics. It should be noted that iron ions are possibly accumulate at the grain boundaries and inhibit grain growth due to the low solubilities of Fe ions in the lattice [31]. These inferences are obviously consistent with the changes mentioned above in the microstructures. The micrographs also show that the grain size of the ceramics varies considerably, as listed in Table 5.4.

Figure 5.8 XRD patterns of the samples sintered at 1200° C for 2h in 0.2PZN-0.8PZT + x wt% Fe₂O₃ ceramics : (a) x =0, (b) x =0.1, (c) x =0.3, (d) x =0.5, (e) x =0.7 and (f) x =0.9.

Figure 5.9 SEM images of the specimens sintered surface of 0.2PZN-0.8PZT + x wt% Fe₂O₃ ceramics at 1200°C for 2h;(a) x = 0, (b) x = 0.1, (c) x = 0.3, (d) x = 0.5, (e) x = 0.7 and (f) x = 0.9.

x	Density (g/cm ³)	Grain size range(µm)	Average grain size (µm)
0	7.826	0.5 - 2.0	1.726
0.1	7.876	0.5 - 2.0	2.138
0.3	7.943	1.0 - 3.0	2.617
0.5	7.831	1.5 - 4.0	4.182
0.7	7.771	2.0 - 7.0	5.125
0.9	7.634	1.0 - 5.0	4.313

Table 5.4 Physical properties of 0.2PZN-0.8PZT + x wt% Fe₂O₃ ceramics

5.2.2.2. Dielectric properties

The temperature and frequency dependence of the dielectric constant (ε_r) and dielectric loss tangent (tan δ) for 0.2PZN–0.8PZT + *x* wt% Fe₂O₃, *x* = 0, 0.1, 0.3, 0.5, 0.7 and 0.9 are shown in Fig. 5.10. The maximum dielectric constant at 1 kHz (ε_m @ 1 kHz) is listed in Table 5.5. Dielectric behaviors show strong increase in frequencydependence of dielectric constant and dielectric loss when increased amount of Fe₂O₃. This may be caused from oxygen vacancies and conducting regions near grain boundaries [108] with increasing Fe₂O₃ content. In Table 5.5, increasing amount of Fe₂O₃ is shown to decrease ε_r at room temperature but increase ε_m at Curie temperature. This observation may be related on grain size as effect observed previously in BaTiO₃ [111]. The variation of the Curie temperature (*T*_c) as a function of composition *x* is shown in Fig 5.11. The Curie temperature of 0.2PZN–0.8PZT + *x* wt% Fe₂O₃ system can be varied over a wide range from 310 to 340°C by controlling the addition of Fe₂O₃ content in the system.

Figure 5.10 Temperature and frequency dependence of dielectric properties of 0.2PZN-0.8PZT + x wt% Fe₂O₃ ceramics at 1200°C for 2h; (a) x = 0, (b) x = 0.1, (c) x = 0.3, (d) x = 0.5, (e) x = 0.7 and (d) x = 0.9.

Figure 5.11 Curie temperature of the specimens sintered at 1200° C for 2h of 0.2PZN-0.8PZT + x wt% Fe₂O₃ ceramics when x = 0, 0.1, 0.3, 0.5, 0.7 and 0.9.

Table 5.5 Dielectric and piezoelectric properties of 0.2PZN-0.8PZT + x wt% Fe₂O₃ceramics

x	Dielectric propertiesT_C (°C)(at 25 °C, 1 kHz)		c properties °C, 1 kHz)	Dielectric properties (at T _m)		Piezoelec	tric prop	erties
	15	ε _r	tan∂	٤r	tanδ	<i>d</i> ₃₃ (pC/N)	k _p	Q _m
0	339.7	1575	0.0249	21047	0.0420	430	0.58	90
0.1	336.4	1167	0.0175	17735	0.0716	355	0.55	98
0.3	334.7	1140	0.0159	19608	0.0698	S 331	0.51	110
0.5	332.3	1075	0.0180	20744	0.0608	310	0.47	128
0.7	331.2	921	0.0198	21819	0.0794	279	0.44	240
0.9	330.4	903	0.0179	21881	0.0814	213	0.41	356

5.2.2.3. Piezoelectric properties

Figure 5.12 shows the changes in density, dielectric constant (ε_r), the piezoelectric constant (d_{33}) the electromechanical coupling factor (k_p) and the mechanical quality factor (Q_m) as a function of the amount of Fe₂O₃ addition, as also listed in Table 5.5. When the amount of Fe₂O₃ is lower than 0.3 wt%, density slightly increased. The ε_r , k_p and d_{33} show a decrease with increasing Fe₂O₃ content. It is well known that the substitutions of acceptor dopant Fe ions will lead to the creation of oxygen vacancies, which in turn pin the movement of the ferroelectric domain walls [31, 74] and result in a decrease of ε_r , k_p and d_{33} . The mechanical quality factor (Q_m) are rapidly increased with increasing Fe₂O₃ content. The acceptor dopants of Fe₂O₃ improve Q_m , simultaneously. The highest value Q_m (~ 356) are obtained in the ceramics with Fe₂O₃ amounts of 0.9 wt%. These results indicate that increased amount of Fe₂O₃ will degrade piezoelectric properties, due to exceeding the solution limit of Fe in the lattices [112,113].

ลิ<mark>ปสิทธิ์มหาวิทยาลัยเชียงใหม่</mark> Copyright[©] by Chiang Mai University All rights reserved

Figure 5.12 Density, dielectric constant (ε_r) , piezoelectric constant (d_{33}) , electromechanical coupling factor (k_p) , and mechanical quality factor (Q_m) of the specimens sintered at 1200°C for 2h in 0.2PZN–0.8PZT + x wt% Fe₂O₃ ceramics; when x = 0, 0.1, 0.3, 0.5, 0.7 and 0.9.

5.2.2.4. Ferroelectric properties

The polarization-field (*P*–*E*) hysteresis loops of 0.2PZN–0.8PZT + x wt% Fe₂O₃ ceramics are shown in Fig. 5.13. The well-developed and fairly symmetric hysteresis loops with the field are observed for all compositions. To further assess ferroelectric characteristics in Fe₂O₃–modified PZN-PZT ceramics, the ferroelectric parameters, i.e. the remnant polarization (*P*_r) and the coercive field (*E*_c), have been extracted from the experimental data, as listed given in Table 5.6. It can be seen clearly that *P*_r and *P*_s decrease, while *E*_c increases, with an addition of Fe₂O₃ into the

PZN–PZT composition. The ferroelectric characteristics of the ceramics can also be assessed with the hysteresis loop squareness (R_{sq}), as described in earlier sections. As listed in Table 5.6, the loop squareness parameter R_{sq} increases from 1.483 in x=0 to reach the maximum value of 1.761 in x=0.5. Further addition of Fe₂O₃ above 0.5 wt% leads to a decrease in the loop squareness parameter, which is mainly attributable to abnormal grain of the microstructure, as shown in Fig. 5.9. Strain of specimens as a function of the electric field was shown in Figs. 5.14, which show decreasing strain and increasing coercive field with Fe₂O₃ content, as also listed in Table 5.6.

Table 5.6 Ferroelectric and strain properties of $0.2PZN-0.8PZT + x \text{ wt\% Fe}_2O_3$ ceramics

x	Ferroele	Ferroelectric properties (at 25		Loop squareness (R_{sq})	Strain % @ 4MV/m		
	$P_{\rm r}$ (C/m ²)	$P_{\rm s}$ (C/m ²)	$E_{\rm C}$ (MV/m)	90 00 I	· · · · · · · · · · · · · · · · · · ·		
0	0.287	0.300	1.97	1.483	0.278		
0.1	0.257	0.267	2.14	1.702	0.268		
0.3	0.253	0.262	2.25	1.732	0.254		
0.5	0.251	0.254	2.28	1.761	0.234		
0.7	0.239	0.249	2.35	1.650	0.223		
0.9	0.227	0.243	2.38	1.661	0.207		
OY	right		y Chia	ang Mai (Jniversit		

Figure 5.13 Polarization and electric field 0.2PZN-0.8PZT + x wt% Fe₂O₃ ceramics.

Figure 5.14 Strain and electric field of 0.2PZN-0.8PZT + x wt% Fe₂O₃ ceramics.

These results that show decreased P_r and strain level but increased E_c when addition amount of Fe₂O₃, clearly indicate the significance of Fe₂O₃ addition in the electrical properties of the PZN–PZT system with "hard" characteristics. This observation could be caused by Fe-ions addition that leads to the creation of oxygen vacancies, which then pin the movement of the ferroelectric domain walls.

5.2.3. Summary

In this section, the dielectric, piezoelectric and ferroelectric properties of Fe_2O_3 -doped $0.2Pb(Zn_{1/3}Nb_{2/3})O_3$ - $0.8Pb(Zr_{1/2}Ti_{1/2})O_3$ ceramics, which is the morphotropic phase boundary composition of the PZN-PZT system, were investigated. Crystal structure changes to tetragonal side with increasing Fe_2O_3 content. With the addition of Fe_2O_3 , Curie temperature T_c , the piezoelectric constant d_{33} and electromechanical coupling factor k_p were slightly decreased, but the mechanical quality factor Q_m was significantly increased. The *P*-*E* and *s*-*E* loops show that decreased P_r and strain level but increased E_c when addition amount of Fe_2O_3 . These results clearly showed the significance of Fe_2O_3 addition in the electrical properties of the PZN-PZT system with "hard" characteristics.

5.3. Comparison between Fe₂O₃ and MnO₂ addition on properties of PZN-PZT ceramics

Very small amounts addition of MnO_2 [98, 99] and Fe_2O_3 [112, 113] are well known to be effective in for improving the reliability of ceramic capacitors. The enhanced properties are expected to be due to the distribution of Mn^{2+} , Mn^{3+} , and Mn^{4+} or Fe³⁺ on B-sites. Mn, Fe incorporated on the B-sites would act as a lower valent species on a higher valent site. Accordingly, oxygen vacancies would be created for charge compensation, imparting polarization pinning and "hard" characteristics, i.e., an increase in Q_m value [102-105, 113].

In this section, we investigate the effect of Fe_2O_3 and MnO_2 addition on structure, and electrical properties of $0.2Pb(Zn_{1/3}Nb_{2/3})O_3-0.8Pb(Zr_{1/2}Ti_{1/2})O_3$ ceramics. The purpose of this section is to directly compare electrical properties of updoped with Fe_2O_3 - and MnO_2 -doped PZN-PZT ceramics, which are especially important from the viewpoint of the development of practical piezoelectric materials.

5.3.1. Experimental procedure

The specimens studied were fabricated according to the formula: $0.2Pb(Zn_{1/3}Nb_{2/3})O_3-0.8Pb(Zr_{1/2}Ti_{1/2})O_3 + 0.5 mol\%$ metal oxide, which are MnO₂ and Fe₂O₃. Raw materials of PbO, ZrO₂, TiO₂, ZnO, Nb₂O₅, MnO₂ and Fe₂O₃ with >99% purity were used to prepare samples by a conventional mixed oxide process. The starting powders were mixied by zirconia ball media with isopropanal as a medium in a polyethylene jar for 30 min via vibro-milling technique. The mixed slurry was dried and calcined at 900°C for 2h. The calcined powders were ball-milled again with additives and consolidated into disks of 12.5 mm diameter using isostatic pressing about 150 MPa. PbO-rich atmosphere sintering of the ceramics was performed in a high-purity alumina crucible at 1200 °C for 2h. The prepared specimens were then characterized, physically and electrically, with the same procedures described in previous sections.

5.3.2. Results and discussion

5.3.2.1. Crystal structure, phase formations and microstructure

The XRD patterns of updoped, and Fe_2O_3 - and MnO_2 -doped $0.2Pb(Zn_{1/3}Nb_{2/3})O_3$ -0.8Pb $(Zr_{1/2}Ti_{1/2})O_3$ specimens are shown in Fig.5.15. The pyrochlore phase is not observed in this system at all. In undoped composition, XRD pattern show the co-existence of the rhombohedral and tetragonal phase, indicating MPB composition. When adding 0.5 mol% of Fe₂O₃ and MnO₂, crystal structures were shifted away from MPB to tetragonal and rhombohedral, respectivity [98, 112].

Figure 5.15 XRD patterns of the samples sintered at 1200° C for 2h in 0.2PZN– 0.8PZT ceramics: (a)undoped, (b) doped with 0.5mol% MnO₂ and (c) doped with 0.5mol% Fe₂O₃.

Figure 5.16 shows SEM photographs of the surfaces of undoped and doped $0.2Pb(Zn_{1/3}Nb_{2/3})O_3-0.8Pb(Zr_{1/2}Ti_{1/2})O_3$ ceramics. As shown in Fig. 5.16, the average grain sizes of ceramics are increased with addition of MnO₂ and Fe₂O₃. It is believed that Mn and Fe ions are mainly incorporated into the lattice [104,113], which results in more grain-growth mechanism. The micrographs also show that the grain size of the ceramics varies considerably from 1 to 3 µm, as listed in Table 5.7. These inferences are obviously consistent with the changes mentioned above in the microstructures.

Figure 5.16 SEM images of the specimens sintered surface of 0.2PZN-0.8PZT ceramics at $1200^{\circ}C$ for 2h; (a) undoped, (b) doped with 0.5 mol% MnO₂ and (c) doped with 0.5 mol% Fe₂O₃.

able	5.7	Physical	properties	of (0.2PZN-0.8PZ1	ceramics

Composition	Density (g/cm ³)	Grain size range(µm)	Average grain size (µm)
Undoped	7.826	0.5 - 2.0	1.726
0.5 mol% MnO ₂	7.897	1.0 - 3.0	2.991
0.5 mol% Fe ₂ O ₃	7.943	1.0 - 3.0	2.617

5.3.2.2. Dielectric properties

Figure 5.17 shows the dielectric constant (ε_r) and dielectric loss tangent (tan δ) as a function of temperature and frequency for all the compositions. Fig. 5.17 (b-c) shows strong frequency dependence of the maximum dielectric constant in MnO₂-doped and Fe₂O₃- doped. This observation is attributed to the creation of oxygen vacancies and conducting regions near grain boundaries [108]. In Table 5.8, doping of Fe₂O₃ and MnO₂ decreases ε_r at room temperature, but increases ε_m at Curie temperature. This may be explained by grain size effect, as reported earlier for BaTiO₃ [111]. The Curie temperature (T_c) of the specimens decreases with MnO₂ and Fe₂O₃-doped and Fe₂O₃-doped, the T_c are 332.9 °C and 335.9 °C, indicating that these two compositions move away from MPB region.

opyright[©] by Chiang Mai University II rights reserved

(b)

Figure 5.17 Temperature and frequency dependence of dielectric properties of 0.2PZN-0.8PZT ceramics at $1200^{\circ}C$ for 2h : (a) undoped, (b) doped with 0.5 mol% MnO₂ and (c) doped with 0.5 mol% Fe₂O₃.

Composition T _C (°C)		Dielectric properties (at 25 °C, 1 kHz)		Dielectric properties (at T _{Max})		Piezoelectric properties		
		٤ _r	tanð	٤r	tanð	<i>d</i> ₃₃ (pC/N)	k _p	Qm
Undoped	339.7	1575	0.0249	21047	0.0420	430	0.583	90
0.5 mol%MnO ₂	332.9	837	0.0310	25551	0.3765	e ³²⁰	0.551	735
0.5 mol% Fe ₂ O ₃	335.9	1272	0.0997	33941	0.1907	331	0.513	110

Table 5.8 Dielectric and piezoelectric properties of 0.2PZN-0.8PZT ceramics

5.3.2.3. Piezoelectric properties

Table 5.8, shows the changes in density, dielectric constant (ε_r), the piezoelectric constant (d_{33}) the electromechanical coupling factor (k_p) and the mechanical quality factor (Q_m). With addition of Fe₂O₃ and MnO₂, density slightly increased. The ε_r , k_p and d_{33} show a decrease with addition of Fe₂O₃ and MnO₂. It is well known that the substitutions of acceptor dopant Mn and Fe ions will lead to the creation of oxygen vacancies [31,74], which pin the movement of the ferroelectric domain walls and result in a decrease of ε_r , k_p and d_{33} . The mechanical quality factor (Q_m) are slightly increased with additional of dopants [98, 105].

5.3.2.4. Ferroelectric properties

The polarization-field (*P*–*E*) hysteresis loops of 0.2PZN–0.8PZT ceramics are shown in Fig. 5.18. The well-developed and fairly symmetric hysteresis loops with the field are observed for all compositions. To further assess ferroelectric characteristics in Fe₂O₃ and MnO₂ modified PZT ceramics, the ferroelectric parameters, i.e. the remnant polarization (P_r) and the coercive field (E_c), have been extracted from the experimental data given in Table 5.9. It can be seen clearly that P_r decreases but E_c increases with an addition of Fe₂O₃ and MnO₂ into the 0.2PZN– 0.8PZT composition. The ferroelectric characteristics of the ceramics can also be assessed with the hysteresis loop squareness (R_{sq}), as mentioned previously. As listed in Table 5.9, the loop squareness parameter R_{sq} increases with addition of Fe₂O₃ and MnO₂.

Figure 5.18 Polarization as a function of electric field of 0.2PZN-0.8PZT ceramics in condition of undoped, doped with 0.5 mol% MnO₂ and doped with 0.5 mol% Fe₂O₃.

Figure 5.19 Strain as a function of electric field of 0.2PZN-0.8PZT ceramics in condition of undoped, doped with 0.5 mol% MnO₂ and doped with 0.5 mol% Fe₂O₃.

Strain of specimens as function of the electric filed, displayed in Fig. 5.19, show decreasing strain and increasing coercive field addition of Fe_2O_3 and MnO_2 as also listed in Table 5.9.

Composition	Ferroelec	tric properti	es (at 25 °C)	Loop squareness	Strain %
Composition	$P_{\rm r}$ (C/m ²)	$P_{\rm s}({ m C/m^2})$	$E_{\rm C}$ (MV/m)	(<i>R</i> _{sq})	@ 4MV/m
Undoped	0.287	0.300	1.97	1.483	0.278
0.5 mol% MnO ₂	0.208	0.213	2.37	1.712	0.188
0.5 mol% Fe ₂ O ₃	0.253	0.262	2.25	1.732	0.254

Table 5.9 Ferroelectric and strain properties of 0.2PZN-0.8PZT ceramics

These results show that influence of Mn-ion is more effective in harden properties of PZN-PZT than Fe-ion because MnO_2 may create Mn^{2+} , and Mn^{3+} at high temperature [114], that leads to the creation of oxygen vacancies in higher concentration, as compared to Fe-ion.

5.3.3. Summary

In this section, the dielectric piezoelectric and ferroelectric properties of Fe₂O₃ and MnO₂-doped 0.2Pb(Zn_{1/3}Nb_{2/3})O₃-0.8Pb(Zr_{1/2}Ti_{1/2})O₃ were investigated. In case of addition of Fe₂O₃, the crystal structure was shifted to tetragonal phase. On the other hand, addition of MnO₂ shifted the crystal structure to rhombohedral. With addition of Fe₂O₃ or MnO₂, Curie temperature T_c , the piezoelectric constant d_{33} and electromechanical coupling factor k_p were slightly decreased, but the mechanical quality factor Q_m was significantly increased. Polarization and strain characteristics were shown with increasing E_c , decreasing of P_r , P_s and strain indicating hardening effect with Fe₂O₃ and MnO₂ addition.