TABLE OF CONTENTS

	Page
ACKNOWLEDGMENTS	iii
ABSTRACT (ENGLISH)	v
ABSTRACT (THAI)	vii
LIST OF TABLES	xiv
LIST OF ILLUSTRATIONS	xvi
ABBREVIATIONS AND SYMBOLS	xxvi
CHAPTER 1 INTRODUCTION	1
1.1 Thesis rationale	1
1.2 Purpose of the research	3
1.3 Organization of the thesis	4
CHAPTER 2 LITERATURE REVIEWS	6
2.1 Ferroelectrics crystal structure and ferroelectricity	6
2.1.1 Normal ferroelectrics	10
2.1.2 Relaxor ferroelectrics	12
2.2 Perovskite materials	17
2.2.1 Lead zirconate titanate (Pb(Zr,Ti)O ₃ or PZT)	22
2.2.2 Modification by doping	25
2.2.3 Modification PZT by relaxor ferroelectric	36
2.2.4 Lead zinc niobate (Pb(Zn _{1/3} Nb _{2/3})O ₃ or PZN)	38

	Page
2.3 Figures of merit in piezoelectrics	42
2.4 Drive/Control techniques	44
CHAPTER 3 EXPERIMENTAL PROCEDURES	46
3.1 Sample preparation	46
3.1.1 Powder preparation	46
3.1.2 Ceramic preparation	48
3.2 Sample characterization	49
3.2.1 Physical properties	49
3.2.2 Electrical properties	54
CHAPTER 4 PHYSICAL AND ELECTRICAL PROPERTIES OF	58
PZN-PZT BASED COMPOSITION	
4.1 Synthesis, formation and characterization of	58
PZN-PZT powders	
4.1.1 Experimental procedure	59
4.1.2 Results and discussion	61
4.1.2.1 Themogravimetric and Differential	62
Thermal Analysis (TG/DTA)	
4.1.2.2 X-Ray Diffraction Analysis (XRD)	63
4.1.2.3 SEM and EDX Analysis	66
4.1.3 Summary	67

Х

	Page
4.2 Effect of PZN content on properties of PZN-PZT	68
based ceramics	
4.2.1 Experimental procedure	69
4.2.2 Results and discussion	70
4.2.2.1 Crystal structure, phase formations and	70
microstructure	
4.2.2.2 Dielectric properties	74
4.2.2.3 Piezoelectric properties	80
4.2.2.4 Ferroelectric properties	82
4.2.3 Summary	85
4.3 Effect of Zr/Ti ratio content on properties of PZN-PZT	85
based ceramics	
4.3.1 Experimental procedure	86
4.3.2 Results and discussion	87
4.3.2.1 Crystal structure, phase formations and	87
microstructure	
4.3.2.2 Dielectric properties	90
4.3.2.3 Piezoelectric properties	e 0 96
4.3.2.4 Ferroelectric properties	97
4.3.3 Summary	100

CHAPTER 5 PHYSICAL AND ELECTRICAL PROPERTIES OF	101
MODIFIED PZN-PZT BASED COMPOSITION	
5.1 Effect of MnO ₂ addition on properties of PZN-PZT	101
ceramics	
5.1.1 Experimental procedure	102
5.1.2 Results and discussion	103
5.1.2.1 Crystal structure, phase formations and	103
microstructure	
5.1.2.2 Dielectric properties	107
5.1.2.3 Piezoelectric properties	109
5.1.2.4 Ferroelectric properties	111
5.1.3 Summary	114
5.2 Effect of Fe ₂ O ₃ addition on properties of PZN-PZT	114
ceramics	
5.2.1 Experimental procedure	115
5.2.2 Results and discussion	116
5.2.2.1 Crystal structure, phase formations and microstructure	116
5.2.2.2 Dielectric properties	119
5.2.2.3 Piezoelectric properties	122

xii

Page

	Page
5.2.2.4 Ferroelectric properties	123
5.2.3 Summary	126
5.3 Comparison between Fe ₂ O ₃ and MnO ₂ addition on	126
properties of PZN-PZT ceramics	
5.3.1 Experimental procedure	127
5.3.2 Results and discussion	128
5.3.2.1 Crystal structure, phase formations and	128
microstructure	
5.3.2.2 Dielectric properties	130
5.3.2.3 Piezoelectric properties	133
5.3.2.4 Ferroelectric properties	134
5.3.3 Summary	135
CHAPTER 6 CONCLUSIONS AND FUTURE WORK	136
6.1 Conclusions	136
6.1.1 PZN-PZT based compositions	136
6.1.2 Modified PZN-PZT compositions	137
6.2 Future work	139
REFERENCES	141
APPENDIX	148
VITA	150

xiii

LIST OF TABLES

Table		Page		
2.1	Crystallographic classification scheme based on polarity and the			
	presence of a center of symmetry.			
2.2	Property differences between relaxor and normal perovskite	14		
	ferroelectrics.			
2.3	Common doping effect for PZT ceramics relative to undoped PZT	26		
	ceramic.			
2.4	Radii of soft dopant ions.	29		
2.5	Radii of hard dopant ions.	31		
2.6	Advantages (+) and disadvantages (-) of soft and hard piezoelectrics			
	compared with the features of a leading electrostrictive material.			
2.7	Ternary piezoelectric ceramics compositions.	37		
3.1	Specifications of the component oxide powders used in this study.			
4.1	Percentage of perovskite phase of <i>x</i> PZN-(1- <i>x</i>)PZT; $x = 0.1-0.5$.			
4.2	Physical properties of xPZN– $(1 - x)$ PZT ceramics.	73		
4.3	Dielectric properties of x PZN– $(1-x)$ PZT ceramics.	80		
4.4	Piezoelectric, ferroelectric and strain properties of $xPZN-(1-x)PZT$	81		
	ceramics.			
4.5	Physical properties of 0.2Pb(Zn _{1/3} Nb _{2/3})O ₃ -0.8Pb(Zr _x Ti _{1-x})O ₃	90		
	ceramics.			

xiv

Table		Page
4.6	Dielectric properties of 0.2Pb(Zn _{1/3} Nb _{2/3})O ₃ -0.8Pb(Zr _x Ti _{1-x})O ₃	94
	ceramics.	
4.7	Piezoelectric properties of 0.2Pb(Zn _{1/3} Nb _{2/3})O ₃ -0.8Pb(Zr _x Ti _{1-x})O ₃	96
	ceramics.	
5.1	Physical Properties of $0.2PZN-0.8PZT + x$ wt% MnO ₂ ceramics.	105
5.2	Dielectric and piezoelectric properties of $0.2PZN-0.8PZT + x$ wt%	111
	MnO ₂ ceramics.	
5.3	Ferroelectric and strain properties of $0.2PZN-0.8PZT + x \text{ wt\% MnO}_2$	113
	ceramics.	
5.4	Physical properties of $0.2PZN-0.8PZT + x$ wt% Fe ₂ O ₃ ceramics.	119
5.5	Dielectric and piezoelectric properties of $0.2PZN-0.8PZT + x$ wt%	121
	Fe ₂ O ₃ ceramics.	
5.6	Ferroelectric and strain properties of $0.2PZN-0.8PZT + x \text{ wt\% Fe}_2O_3$	124
	ceramics.	
5.7	Physical properties of 0.2PZN–0.8PZT ceramics.	130
C 5.8	Dielectric and Piezoelectric properties of 0.2PZN-0.8PZT ceramics.	132
5.9	Ferroelectric and strain properties of 0.2PZN–0.8PZT ceramics.	135

LIST OF ILLUSTRATIONS

Figure		Page	
2.1	Microscopic origins of the electric polarization.	7	
2.2	Polarization of the material depends on the frequency of the		
	applied field.		
2.3	Venn diagram of electroceramics properties.	9	
2.4	A typical ferroelectric hysteresis loop.	10	
2.5	A general depiction of the temperature dependences of the	11	
	spontaneous polarization, the dielectric constant, and the inverse		
	dielectric constant for a ferroelectric. (a) second-order phase		
	transitions and (b) first-order phase transitions		
2.6	Crystal structure models of the $A(B_{1/2}^{I}B_{1/2}^{II})O_3$ type perovskite:(a) the	16	
	ordered structure with a small rattling space and (b) the disordered		
	structure with a large rattling space [open circle = B^{I} (lower valence		
	cation) and solid circle = B^{II} (higher valence cation)].		
2.7	The temperature dependence of the permittivity and tan δ	17	
	in $Pb(Mg_{1/3}Nb_{2/3})O_3$ for the various measuring frequencies from		
	0.1kHz-1MHz by Chiang Mai Univers		
2.8	The perovskite crystal structure.	18	
2.9	Classification of the perovskite $A^{2+}B^{4+}O^{2-}_{3}$ – type compounds	19	
	according to the constituent ionic radii.		

xvi

Figure		Page		
2.10	0 Order arrangement of B-site ions in complex perovskites: (a) simple			
	type, (b) 1:1 order type, (c) 1:2 order type.			
2.11	Electronegativity difference versus tolerance factor for ABO3	21		
	perovskite compounds.			
2.12	PbTiO ₃ -PbZrO ₃ sun-solidus phase diagram.	22		
2.13	Lattice parameters at room temperature for the PbZrO ₃ -PbTiO ₃	23		
	system.			
2.14	Possible orientation state in perovskites.	24		
2.15	Composition dependence of dielectric constant and	24		
	elecctromechanical coupling factor in PZT system.			
2.16	(a) Variation of piezoelectric coeffecient d_{ij} and (b) remanent	25		
	polarization P_r with composition of PZT near the morphotropic phase			
	boundary.			
2.17	Crystal deficiencies in PZT for acceptor (a) and donor (b) dopants.	26		
2.18	Variation of the coupling factor k_p in Pb(Zr _{0.52} Ti _{0.48})O ₃ piezoelectric	27		
	ceramics with various doping amounts of Nb ₂ O ₅			
2.19	Variation of the piezoelectric properties in the $0.05Pb(Sc_{1/2}Ta_{1/2})O_3$ -	30		
	0.455PbTiO ₃ -0.495PbZrO ₃ ceramics with various doping amounts of			
	MnO ₂ .			

xvii

Figure		Page
2.20	Variation of the dielectric loss in a PZT piezoelectric ceramics with	31
	difference doping amounts of Fe ₂ O _{3.}	
2.21	Effect of poling temperature on the coupling factor k_p in the	33
	Pb(Zr _{0.52} Ti _{0.48})O ₃ piezoelectric ceramics with various doping amounts	
	of Cr ₂ O ₃ .	
2.22	Effect of complex doping of both NiO and MnO ₂ on the piezoelectric	34
	properties of the Pb($Zn_{1/3}Nb_{2/3}$) _{0.2} Ti _{0.36} Zr _{0.44} O ₃ ceramics.	
2.23	Ternary diagram depicting MPBs in Pb(Zr,Ti)O ₃ and relaxor	37
	ferroelectric systems for piezoelectric ceramics.	
2.24	Possible range of planar coupling k_p and mechanical quality factor Q_m	38
	for modified PZT and ternary composition.	
2.25	Classification of piezoelectric/electrostrictive actuators.	45
3.1	Diagram of experimental procedure on powder preparation.	48
3.2	Diagram of experimental procedure on ceramic preparation.	49
3.3	Diagram of experimental procedure on sample characterization.	49
3.4	Differential thermal analysis (Perkin Elmer DTA7)	50
3.5	Thermogravimetric analysis (Perkin Elmer TGA7)	50
3.6	X-ray diffractometer	51
3.7	Scanning electron microscope.	52
3.8	Dielectric Measurements system.	54

Figure	Figure	
3.9	Poling system.	54
3.10	Quasi-static piezoelectric d_{33} meter.	55
3.11	Impedance analyzer HP4294A.	55
3.12	Ferroelectric and strain measurements.	57
3.13	Conceptual block diagram	57
4.1	Diagram of experimental procedure.	61
4.2	TG-DTA curves for the mixture of PbO-ZnO-Nb ₂ O ₅ -ZrTiO ₂ -TiO ₂	62
	powder.	
4.3	XRD patterns of 0.5PZN-0.5PZT powder calcined at various	63
	temperatures for 2 h. with heating/cooling rates of 20°C/min.	
4.4	XRD patterns of the xPZN -(1-x)PZT powders (when $x = 0.1, 0.2,$	64
	0.3, 0.4, and 0.5) calcined at 900°C with heating/cooling rates of	
	20°C/min and soaking time of 2 h.	
4.5	SEM micrographs of the xPZN- $(1-x)$ PZT powders calcined at 900°C	66
	with heating/cooling rates of 20°C/min and soaking time of 2 h for	
	(a) x=0.1, (b) x=0.2, (c) x=0.3, (d) x=0.4 and (e) x=0.5.	
4.6	EDX analysis of the 0.2PZN-0.8PZT powders calcined at 900°C with	67
	heating/cooling rates of 20°C/min and soaking time of 2 h	
4.7	(a) XRD diffraction patterns of sintered x PZN- $(1 - x)$ PZT ceramics.	72
	(b) selected region of the diffraction patterns.	

4.8 SEM micrographs of xPZN-(1-x)PZT ceramics with various 74 compositions: (a) x = 0.1, (b) x = 0.2, (c) x = 0.3, (d) x = 0.4, and (e) x = 0.5.

Page

4.9 Temperature and frequency dependence of dielectric properties of 75 xPZN-(1-x)PZT ceramics ;(a) x = 0.1, (b) x = 0.2, (c) x = 0.3, (d) x = 0.4, and (e) x = 0.5.

- **4.10** Temperature dependence of dielectric properties of xPZN-(1-x)PZT 76 ceramics at 1kHz.
- **4.11** $T_{\rm m}$ calculated and $T_{\rm m}$ from maximum $\varepsilon_{\rm r}$ as a function of composition x 77 at kHz.
- **4.12** Dependence of log $[(\varepsilon_m / \varepsilon)-1]$ with log $(T-T_m)$ for xPZN-(1-x)PZT 79 ceramics.
- **4.13** Dependence of diffusivity (γ) and diffuseness parameter (δ) for 79 *x*PZN-(1-*x*)PZT ceramics.
- **4.14** Density, dielectric constant (ε_r) , piezoelectric constant (d_{33}) , 81 electromechanical coupling factor (k_p) , and mechanical quality factor (Q_m) of *x*PZN-(1-*x*)PZT ceramics.
- **4.15** Polarization and electric filed of xPZN-(1-x)PZT ceramics with 83 x = 0.1-0.5.

Page

- **4.16** Strain and electric filed of xPZN-(1-x)PZT ceramics with 84 x = 0.1-0.5.
- **4.17** (a) XRD diffraction patterns of sintered $0.2Pb(Zn_{1/3}Nb_{2/3})O_3$ 88 0.8Pb(Zr_xTi_{1-x})O₃ ceramics. (b)selected region of the diffraction patterns.
- **4.18** SEM micrographs $0.2Pb(Zn_{1/3}Nb_{2/3})O_3-0.8Pb(Zr_xTi_{1-x})O_3$ ceramics 89 with various compositions: (a) x = 0.40, (b) x = 0.45, (c) x = 0.50, (d) x = 0.52, (e) x = 0.55, and (f) x = 0.60.
- **4.19** Temperature and frequency dependence of dielectric properties of 91 $0.2Pb(Zn_{1/3}Nb_{2/3})O_3-0.8Pb(Zr_xTi_{1-x})O_3$ ceramics; (a) x = 0.40, (b) x = 0.45, (c) x = 0.50, (d) x = 0.52, (e) x = 0.55, and (f) x = 0.60.
- **4.20** Temperature dependence of dielectric properties of92 $0.2Pb(Zn_{1/3}Nb_{2/3})O_3 0.8Pb(Zr_xTi_{1-x})O_3$ ceramics at 1kHz.
- **4.21** $T_{\rm m}$ calculated and $T_{\rm m}$ from maximum $\varepsilon_{\rm r}$ as a function of composition x 93 at 1 kHz.
- **4.22** Dependence of log $[(\varepsilon_m/\varepsilon)-1]$ with log $(T-T_m)$ for 0.2Pb $(Zn_{1/3}Nb_{2/3})O_3$ 95 0.8Pb $(Zr_xTi_{1-x})O_3$ ceramics.
- **4.23** Dependence of diffusivity (γ) and diffuseness parameter (δ) 95 for 0.2Pb(Zn_{1/3}Nb_{2/3})O₃-0.8Pb(Zr_xTi_{1-x})O₃ ceramics

- **4.24** Density, dielectric constant (ε_r) , piezoelectric constant (d_{33}) , 97 electromechanical coupling factor (k_p) , and mechanical quality factor (Q_m) of 0.2Pb(Zn_{1/3}Nb_{2/3})O₃- 0.8Pb(Zr_xTi_{1-x})O₃ ceramics.
- **4.25** Polarization and electric filed of $0.2Pb(Zn_{1/3}Nb_{2/3})O_3$ 98 $0.8Pb(Zr_xTi_{1-x})O_3$ ceramics
- **4.26** Strain and electric filed of $0.2Pb(Zn_{1/3}Nb_{2/3})O_3-0.8Pb(Zr_xTi_{1-x})O_3$ 99 ceramics
- 5.1 XRD patterns of the samples sintered at 1200°C for 2h in of 0.2PZN- 104
 0.8PZT + x wt% MnO₂ ceramics: (a) x =0, (b) x =0.1, (c) x =0.3, (d) x =0.5, (e) x =0.7 and (f) x =0.9.
- 5.2 SEM images of the specimens sintered surface of 0.2PZN-0.8PZT 106
 + x wt% MnO₂ ceramics at 1200°C for 2h;(a) x =0, (b) x =0.1,
 (c) x =0.3, (d) x =0.5, (e) x =0.7 and (f) x =0.9.
- 5.3 Temperature and frequency dependence of dielectric properties of 108 0.2PZN-0.8PZT + x wt% MnO₂ ceramics at 1200°C for 2h; (a) x =0, (b) x =0.1, (c) x =0.3, (d) x =0.5, (e) x =0.7 and (f) x =0.9.
 5.4 Curie temperature of the specimens sintered at 1200°C for 2h of 109 0.2PZN-0.8PZT + x wt% MnO₂ ceramics when x = 0, 0.1, 0.3 0.5, 0.7 and 0.9.

FigurePage5.5Density, dielectric constant
$$(e_t)$$
, piezoelectric constant (d_{33}) , 110
electromechanical coupling factor (k_p) , and mechanical quality factor
 (Q_m) of the specimens sintered at 1200°C for 2h of 0.2PZN-0.8PZT
 $+ x$ wt% MnO2 ceramics when $x = 0$, 0.1, 0.3, 0.5, 0.7 and 0.9.5.6Polarization and electric field of 0.2PZN-0.8PZT + x wt% MnO2
ceramics.112
ceramics.5.7Strain and electric field of 0.2PZN-0.8PZT + x wt% MnO2 ceramics.1135.8XRD patterns of the samples sintered at 1200°C for 2h in 0.2PZN-
0.8PZT + x wt% Fe₂O₃ ceramics : (a) $x = 0$, (b) $x = 0.1$, (c) $x = 0.3$,
(d) $x = 0.5$, (c) $x = 0.7$ and (f) $x = 0.9$.118
 $+ x$ wt% Fe₂O₃ ceramics at 1200°C for 2h; (a) $x = 0.3$, (d) $x = 0.5$, (e) $x = 0.7$ and (f) $x = 0.9$.120
0.2PZN-0.8PZT + x wt% Fe₂O₃ ceramics at 1200°C for 2h; (a) $x = 0.3$, (d) $x = 0.5$, (e) $x = 0.7$ and (f) $x = 0.9$.120
0.2PZN-0.8PZT + x wt% Fe₂O₃ ceramics at 1200°C for 2h; (a) $x = 0.3$, (d) $x = 0.5$, (e) $x = 0.3$, (d) $x = 0.5$, (e) $x = 0.7$ and (f) $x = 0.9$.121
condector for 2h; (a) $x = 0.6$, (b) $x = 0.1$, (c) $x = 0.3$, (d) $x = 0.5$, (e) $x = 0.7$ and (f) $x = 0.9$.5.10Temperature and frequency dependence of dielectric properties of
0.2PZN-0.8PZT + x wt% Fe₂O₃ ceramics at 1200°C for 2h; (a) $x = 0.6$, (b) $x = 0.1$, (c) $x = 0.3$, (d) $x = 0.5$, (e) $x = 0.7$, and (f) $x = 0.7$ and (d) $x = 0.9$.5.11Curie temperature of the specimens sintered at 1200°C for 2h
of 0.2PZN-0.8PZT + x wt% Fe₂O₃ ceramics when $x = 0$, 0.1, 0.3
o.5, 0.7 and 0.9.

Page

- 5.12 Density, dielectric constant (ε_r) , piezoelectric constant (d_{33}) , 123 electromechanical coupling factor (k_p) , and mechanical quality factor (Q_m) of the specimens sintered at 1200°C for 2h in 0.2PZN-0.8PZT $+ x \text{ wt% Fe}_2O_3$ ceramics; when x = 0, 0.1, 0.3, 0.5, 0.7 and 0.9.
- **5.13** Polarization and electric field 0.2PZN-0.8PZT + x wt% Fe₂O₃ 125 ceramics.
- **5.14** Strain and electric field of 0.2PZN-0.8PZT + x wt% Fe₂O₃ ceramics. 125
- 5.15 XRD patterns of the samples sintered at 1200°C for 2h in 128
 0.2PZN-0.8PZT ceramics: (a)undoped, (b) doped with 0.5mol%
 MnO₂ and (c) doped with 0.5mol% Fe₂O₃.
- 5.16 SEM images of the specimens sintered surface of 0.2PZN-0.8PZT 129 ceramics at 1200°C for 2h; (a) undoped, (b) doped with 0.5 mol% MnO₂ and (c) doped with 0.5 mol% Fe₂O₃
- 5.17 Temperature and frequency dependence of dielectric properties of 131
 0.2PZN-0.8PZT ceramics at 1200°C for 2h : (a) undoped, (b) doped with 0.5 mol% MnO₂ and (c) doped with 0.5 mol% Fe₂O₃.
- **5.18** Polarization as a function of electric field of 0.2PZN–0.8PZT 134 ceramics in condition of undoped, doped with 0.5 mol% MnO₂ and doped with 0.5 mol% Fe₂O₃.

ลิขสิทธิ์มหาวิทยาลัยเชียงใหม่ Copyright[©] by Chiang Mai University All rights reserved

ABBREVIATIONS AND SYMBOLS

a	lattice parameter a
ac	alternating current
A	area
C	Curie-Weiss constant
с	capacitance
dc	direct current
d_{ij}	piezoelectric coefficients
E	electric field (V m ⁻¹); strain
ΔEN	electronegativity
Ec	Coercive field
e	electron charge
f	frequency
f_{a}	anti-resonance frequency
fr S	resonance frequency
Iperov	maximum intensity of perovskite phase
I _{pyro}	maximum intensity of pyrochlore phase
Kα	radiation of K series
k_{ij}	electromechanical coupling
LCR	Inductance/Capacitance/Resistance
MPB	Morphotropic Phase Boundaries
Р-Е	Polarization versus electric field

xxvi

xxvii

P_{s}	spontaneous polarization
$P_{\rm r}$	remanent polarization
SEM	scanning electron microscopy
s _{ij}	field-induced strain
To	Curie-Weiss temperature
Tm	temperature at maximum permittivity
T _c	Curie point
t	thickness; tolerance factor
tan δ	loss tangent
XRD	x-ray diffraction
X ₄₋₀	electronegativity differences of cation A and oxygen
X _{B-O}	electronegativity differences of cation B and oxygen
δ	diffuseness parameter
\mathcal{E}_0	permittivity of free space
\mathcal{E}_r	relative permittivity
$\mathcal{E}_{ ext{max}}$	the permittivity at T_{max}
avans	critical exponent or diffusivity
Copyright	diffuseness Chiang Mai University