TABLE OF CONTENTS

	Page
ACKNOWLEDGEMENT	iii
ABSTRACT (ENGLISH)	v
ABSTRACT (THAI)	vii
LIST OF TABLES	xii
LIST OF FIGURES	xiv
ABBREVIATIONS AND SYMBOLS	xxvii
CHAPTER 1 INTRODUCTION	1
1.1 Overview	1
1.2 Objectives	2
CHAPTER 2 LITERATURE REVIEW	3
2.1 Perovskite Ferroelectrics	3
2.1.1 Lead Magnesium Niobate (PMN)	9
2.1.2 Lead Titanate (PT)	22
2.1.3 Lead Magnesium Niobate-Lead Titanate (PMN-PT)	36
2.2 Ceramic Nanocomposites	48
2.2.1 Nanocomposites	48
2.2.2 Perovskite ceramic nanocomposites	52

	Page
CHAPTER 3 EXPERIMENTAL PROCEDURES	58
3.1 Sample Preparation	58
3.1.1 Powder preparation	58
3.1.1.1 Preparation of PMN powders	60
3.1.1.2 Preparation of PT powders	61
3.1.1.3 Preparation of PMN-PT powders	62
3.1.2 Ceramic fabrication	64
3.1.2.1 Preparation of PMN ceramics	64
3.1.2.2 Preparation of PT ceramics	66
3.1.2.3 Preparation of PMN-PT ceramic na	nocomposites 67
3.2 Sample Characterization	67
3.2.1 Thermal analysis	68
3.2.1.1 TG and DTA	68
3.2.1.2 Thermal expansion	69
3.2.2 Phase analysis	71
3.2.3 Particle size distribution analysis	73
3.2.4 Densification analysis	801h ⁷⁴
3.2.5 Morphological and microstructural analysis	75
3.2.5.1 Scanning electron microscopy (SEN	M) 75
3.2.5.1 Transmission electron microscopy	(TEM) 76
3.2.6 Electrical analysis	77
3.2.6.1 Dielectric measurement	77
3.2.6.2 Ferroelectric measurement	79

Х

	Page
CHAPTER 4 RESULTS AND DISCUSSION (PART I): PMN	82
4.1 Magnesium Niobate Powders	82
4.2 Lead Magnesium Niobate Powders	105
4.3 Lead Magnesium Niobate Ceramics	124
CHAPTER 5 RESULTS AND DISCUSSION (PART II): PT	137
5.1 Lead Titanate Powders	137
5.2 Lead Titanate Ceramics	145
CHAPTER 6 RESULTS AND DISCUSSION (PART III): PMN-PT	176
6.1 Lead Titanate Nanopowders	176
6.2 PMN-PT Ceramic-Nanocomposites	197
CHAPTER 7 CONCLUSIONS AND SUGGESTIONS FOR	224
FURTHER WORK	
7.1 Conclusions	224
7.2 Suggestions for Further Work	225
Copyright [©] by Chiang Mai Unive	
APPENDIX ghts reserv	e ₂₄₁
VITA	248

LIST OF TABLES

Table		Page
2.1	Property differences between normal and relaxor perovskite	7
	ferroelectrics.	
2.2	Influence of processing parameters on PMN formation.	15
2.3	Effect of nonstoichiometry on the dielectric properties of PMN	16
	ceramics.	
2.4	The effect of various mixed-oxide methods on PMN formation.	17
2.5	Influence of processing parameters on PT densification	34
2.6	Dielectric and piezoelectric properties of $(1-x)$ PMN: x PT.	42
3.1	Specifications of the starting materials used in this study.	59
4.1	Calculated amount of Mg ₄ Nb ₂ O ₉ phase as a function of calcination	91
	conditions.	
4.2	Particle size range of Mg ₄ Nb ₂ O ₉ particles measured by different	96
	techniques.	
4.3	Particle size range of PMN particles measured by different	116
	techniques.	
4.4	Physical properties of singly sintered PMN ceramics.	125
5.1	Calculated PT phase as a function of calcination conditions.	143
5.2	Physical properties of singly sintered PT ceramics.	147
5.3	Physical properties of doubly sintered PT ceramics.	148
5.4	Dielectric properties (at 1MHz) of PT ceramics sintered at various	158
	conditions	

Tabl	e	Page
5.5	Summary of the various important features of the thermal expansion	173
	measurements for PT ceramics.	
6.1	Effect of milling time on the variation of particle size of PT powders	181
	measured by different techniques.	
6.2	Effect of calcination conditions on the variation of crystalline size,	187
	tetragonality factor (c/a) and mean lattice strain of PT powders	
	milled for different times.	
6.3	Phase and densification characteristics of (1-x)PMN-xPT ceramic-	198
	nanocomposites from various sintering conditions.	
6.4	Dielectric properties of (1-x)PMN-xPT ceramic-nanocomposites.	207
6.5	Ferroelectric properties of (1-x)PMN-xPT ceramic-nanocomposites.	215
6.6	Various important features of the thermal expansion measurements	219
	in the selected PMN-PT ceramic-nanocomposites.	

ลิ<mark>ปสิทธิ์มหาวิทยาลัยเชียงใหม่</mark> Copyright[©] by Chiang Mai University All rights reserved

LIST OF FIGURES

Figure		Page
2.1	Two alternative representations of the perovskite (ABO ₃) structure	4
	(gray solid = A, black solid = B and red solid = O).	
2.2	(a) Normal [15] and (b) relaxor ferroelectric behavior (ε_r =	8
	dielectric constant and $\tan \delta$ = dielectric loss).	
2.3	System PbO-MgO-Nb ₂ O ₅ , $M = MgO$; $P = PbO$; $N = Nb_2O_5$; Pyc ss	11
	= pyrochlore solid solution.	
2.4	As-fired surface of PMN ceramic indicating the existence of	14
	pyrochlore (Pyro) and MgO phases.	
2.5	Preparation of PMN ceramics employing a two-stage sintering	19
	method.	
2.6	XRD patterns of PMN ceramics sintered at (a) 1025 °C, (b)	20
	1025/1050 °C, (c) 1025/1100 °C, (d) 1025/1150 °C and (e)	
	1025/1200 °C, for constant dwell times of 2 h at each stage.	
2.7	SEM micrographs of as-fired surface of PMN ceramics sintered at	21
	(a) 1025 °C, (b) 1025/1100 °C, (c) and (d) 1025/1200 °C, for	
	constant dwell times of 2 h at each stage.	
2.8	Variety of ferroelectric PT-based ceramics used in electronic applications.	Sity
2.9	Phase equilibria in the system $PbO-TiO_2$.	e ₂₄ 0

- Powder XRD patterns of tetragonal phase-pure perovskite PT 2.10 synthesized under hydrothermal pressure at 180 °C using (a) only KOH [4 mol dm⁻³] for 3 h compared to those using KOH [4 mol dm⁻³] and 30% ammonia solution for (b) 3 h (c) 6 h, and (d) KOH [4 mol dm⁻³] and 15% ammonia solution for 12 h, as well as (e) NaOH [4 mol dm⁻³] and 30% ammonia solution for 6 h.
- 2.11The electron micrographs showing various types of morphologies of the powders obtained from the reactions using 30% ammonia with the addition of (a) KOH [4 mol dm^{-3}] for 3 h (b) KOH [1 mol dm⁻³] for 2 h, (c) NaOH [1 mol dm⁻³] for 12 h, and (d) that without using any alkali hydroxide for 12 h.
- XRD patterns of PT powder calcined at 600 °C for 1 h with 2.12 29 various heating/cooling rates.
- 2.13 SEM micrographs of the PT powders calcined at (a) $600 \,^{\circ}C/1h$, (b) 30 550 °C/4h, (c) 700 °C/1h and (d) 800 °C/1h, with heating/cooling rates of 20 °C/min.
- The surface microstructure of the PbTiO₃ ceramics sintered at 1100 °C for (a) 20 h (b) 40 h (c) 60 h and (d) 80 h.
- Phase diagram of the PMN-PT system 2.15showing morphotropic phase boundary.
- 2.16 Dielectric behaviour of (1-x)PMN-xPT ceramics (at 1 kHz) as a 38 function of temperature.

27

28

Figu	re	Page
2.17	XRD patterns for the mixed oxide mixtures: (a) 0.9PMN-0.1PT	44
	and (b) 0.65PMN-0.35PT milled for 2 h.	
2.18	Microstructure of (a) 0.9PMN-0.1PT and (b) 0.65PMN-0.35PT	46
	ceramics, sintered at 1100 °C for 2 h.	
2.19	Niihara's classification as (a) intergranular, (b) intragranular, (c)	50
	inter- and intra-granular and (d) nano/nano composites structural	
	models.	
2.20	Kuntz's classification of (a) nano-nano, (b) nano-micro, (c) nano-	51
	fiber and (d) nano-nanolayer composites structural models.	
2.21	Fracture surfaces of (a) the monolithic MgO and MgO/BaTiO $_3$	53
	ceramic nanocomposites with (b) 5 vol.% and (c) 20 vol.%	
	BaTiO ₃ , produced by the PECS technique.	
2.22	SEM photographs of (a) monolithic PZT, (b) PZT/0.5 vol% Al_2O_3 ,	55
	(c) PZT/0.1 vol% MgO and (d) PZT/0.5 vol% ZrO_2 ceramic	
	nanocomposites.	
2.23	SEM micrographs of as-fired ceramics of the sintered $(1-x)$ PZT-	56
	<i>x</i> BT ceramic nanocomposites with $x = (a) 0.1$, (b) 0.3 and (c) 0.5.	
2.24	Temperature and frequency dependences of dielectric properties of	57
	the $(1-x)$ PZT- <i>x</i> BT ceramic nanocomposites with $x = 0.1$.	
3.1	Mixing and calcination processes (MCP) for powder preparation.	e ₆₀
3.2	Two-stage mixed oxide processing route to perovskite PMN.	61
	powders.	

Figu	re	Page
3.3	Mixed oxide synthetic route to PT powders.	62
3.4	Flow chart for preparation of PT nanopowders.	63
3.5	Flow chart for the preparation of PMN/PT powders.	64
3.6	Sample arrangement for the sintering process.	65
3.7	Preparation of PMN ceramics employing a two-stage sintering	66
	method.	
3.8	Preparation of PT ceramics employing a two-stage sintering	67
	method.	
3.9	Thermogravimetric analysis (Perkin Elmer TGA7).	68
3.10	Differential thermal analysis (Perkin Elmer DTA7).	69
3.11	Push-Rod LVDT dilatometer system (Model 7/24DCDT-250,	71
	Hewlett-Packard).	
3.12	X-ray diffractometer (Model: Siemens D-500).	74
3.13	Laser diffraction spectrometer (Model: DIAS 1640)	75
3.14	Scanning electron microscope (Model: JEOL JSM-840A).	77
3.15	Transmission electron microscope (Model: CM30, Philips)	78
3.16	The sample holders for dielectric measurement at: (a) low	79
	temperature (-150 $^{\circ}$ C to 100 $^{\circ}$ C) and (b) high temperature (25 $^{\circ}$ C to	
	1000 °C).	
3.17	Ferroelectric test system.	81

xvii

Figure		Page
4.1	TG curves of the two MgO-Nb ₂ O ₅ mixtures derived from (a) ball-	85
	milling and (b) vibro-milling methods.	
4.2	DTA curves of the two MgO-Nb ₂ O ₅ mixtures derived from (a)	86
	ball-milling and (b) vibro-milling methods.	
4.3	Powder XRD patterns of the ball-milling powders calcined at	88
	various conditions for 2 h with constant heating/cooling rates of 10	
	^o C/min (● MgO, \bigcirc Nb ₂ O ₅ , \bigtriangledown MgNb ₂ O ₆ and \checkmark Mg ₄ Nb ₂ O ₉).	
4.4	Powder XRD patterns of the Mg ₄ Nb ₂ O ₉ powders calcined at	89
	various conditions for 2 h with constant heating/cooling rates of 10	
	^o C/min (● MgO, \bigcirc Nb ₂ O ₅ , \bigtriangledown MgNb ₂ O ₆ and \checkmark Mg ₄ Nb ₂ O ₉).	
4.5	Powder XRD patterns of the ball-milling Mg ₄ Nb ₂ O ₉ powders	92
	calcined at 1050 °C with heating/cooling rates of 10 °C/min. for	
	(a) 2 h, (b) 3 h, (c) 4 h and (d) 5 h, and at 1050 °C for 5 h with	
	heating/cooling rates of (e) 20 °C/min and (f) 30 °C/min (\bigtriangledown	
	$MgNb_2O_6$ and $\checkmark Mg_4Nb_2O_9$)	
4.6	Powder XRD patterns of the Mg ₄ Nb ₂ O ₉ powders calcined at 1050	93
	^o C with heating/cooling rates of 10 ^o C/min for (a) 1 h, (b) 2 h, (c)	
	3 h, (d) 4 h and (e) 5 h, and at 1050 °C for 5 h with heating/cooling	
	rates of (f) 20 °C/min and (g) 30 °C/min (\bigtriangledown MgNb ₂ O ₆).	
4.7	SEM micrographs of the (a) ball-milling and (b) vibro-milling	e 97
	Mg ₄ Nb ₂ O ₉ powders after calcined at their optimal conditions.	

xviii

- 4.8 The particle size distribution of (a) ball-milling and (b) vibromilling Mg₄Nb₂O₉ powders after calcined at their optimal conditions.
- 4.9 (a) TEM micrograph of ball-milling Mg₄Nb₂O₉ particles and 101
 SAED patterns of (b) the major phase of hexagonal Mg₄Nb₂O₉
 (zone axes [111]) and (c) the minor phase of orthorhombic
 MgNb₂O₆ (zone axes [010]).

4.10 (a) TEM micrograph vibro-milling of Mg₄Nb₂O₉ particles and 102
SAED patterns of (b) the major phase of hexagonal Mg₄Nb₂O₉
(zone axes[841]) and (c) the minor phase of orthorhombic
MgNb₂O₆ (zone axes [001]).

- 4.11 EDX analysis of (a) the major phase $Mg_4Nb_2O_9$ and (b) the minor 103 phase $MgNb_2O_6$ (some spectra indexed as C and Cu come from coated electrode and sample stub).
- 4.12 (a) SAED pattern of the unreacted MgO phase and (b) EDX 104 analysis of the MgO-rich phase.
- 4.13 TG curves of the mixtures derived from (a) columbite- and (b) 107 corundum-routes.
- 4.14 DTA curves of the mixtures derived from (a) columbite- and (b) 107 corundum-routes.
- 4.15 XRD patterns of the columbite-route powders calcined at various 109 conditions for 1 h with constant heating/cooling rates of 10 °C/min
 (● PbO, ⊙ MgNb₂O₆, ***** Pb₃Nb₄O₁₃ and ⊽ Pb(Mg_{1/3}Nb_{2/3})O₃).

4.21

4.16 XRD patterns of the corundum-route powders calcined at various 110 conditions for 1 h with constant heating/cooling rates of 10
^oC/min. (● PbO, ○ Mg₄Nb₂O₉, ▼ Pb_{1.86}(Mg_{0.24}Nb_{1.76})O_{6,5} and ⊽ Pb(Mg_{1/3}Nb_{2/3})O₃).

XX

- 4.17 XRD patterns of the columbite-route powders calcined at 850 °C, 113 for 3 h with heating/cooling rates of (a) 30 °C/min, (b) 20 °C/min and (c) 10 °C/min, (d) for 2 h with heating/cooling rates of 10 °C/min and for 1 h with heating/cooling rates of (e) 30 °C/min and (f) 20 °C/min (♦ Nb₂O₅ and ***** Pb₃Nb₄O₁₃).
- 4.18 XRD patterns of the corumdum-route powders calcined at 950 °C 114 for 1 h with heating/cooling rates of (a) 30 °C/min and (b) 20 °C/min, at 900 °C for (c) 2 h (d) 3 h and (e) 4 h, with heating/cooling rates of 10 °C/min, and (f) at 950 °C, for 4 h with heating/cooling rates of 30 °C/min (▼ Pb_{1.86}(Mg_{0.24}Nb_{1.76})O_{6.5}).
- 4.19 The particle size curves of (a) the columbite- and (b) corundum- 119 route PMN powders after calcined at their optimised conditions.
- 4.20SEM micrographs of the: (a) columbite- and (b) corundum-route120PMN powders after calcined at their optimised conditions.
 - (a) TEM micrograph with arrow indicates (b) SAED pattern ($[\overline{1}10]$ zone axes) and (c) reciprocal lattice pattern simulation of the columbite-route PMN particles.

Figu	re	Page
4.22	(a) TEM micrograph with arrow indicates (b) SAED pattern	123
	($[\overline{1}11]$ zone axes) and (c) reciprocal lattice pattern simulation of	
	the corundum-route PMN particles.	
4.23	XRD patterns of PMN ceramics sintered at various temperatures.	126
4.24	SEM micrographs of (a) as-sintered and (b) fracture surfaces for PMN ceramics with maximum bulk density.	129
4.25	Representative EDX spectra obtained from the dark particles	130
	(arrowed in Fig. 4.24 (a)) exist on the surface of PMN grains	
	(some spectra indexed as Au come from coated electrode).	
4.26	(a) Dielectric constants (\mathcal{E}_r) and (b) dielectric loss (tan δ) response	132
	of the PMN ceramic.	
4.27	P-E hysteresis loops PMN ceramic measured at various	133
	temperatures.	
4.28	Thermal expansion $(\Delta l/l)$ and thermal expansion coefficient (α) as	135
	a function of temperature for pure PMN ceramics (H = heating	
	cycle and C = cooling cycle).	
4.29	$(P_d^2)^{1/2}$ as a function of temperature for PMN ceramic from Eq.	136
	3.6 and the reversible ferroelectric polarizations P_r (dot lines).	
5.1	TG-DTA curves for the mixture of PbO-TiO ₂ powders.	138
5.2	XRD patterns of PT powders calcined at various temperatures for	140
	2 h with heating/cooling rates of 20 °C/min (\blacktriangledown PbO, * TiO ₂ , \bigtriangledown	
	PbTiO ₃).	

- 5.3 XRD patterns of PT powders calcined at 600 °C with 141 heating/cooling rates of 20 °C/min for various dwell times (▼ PbO and * TiO₂).
- 5.4 XRD patterns of PT powders calcined at 600 °C for 2 h with 142 various heating/cooling rates.
- 5.5 SEM micrographs of the PT powders calcined at (a) 550 °C and 144
 (b) 600 °C, for 2 h with heating/cooling rates of 20 °C/min.
- 5.6 XRD patterns of PT ceramics singly sintered at various 149 temperatures (▼ PbO).
- 5.7 XRD patterns of PT ceramics doubly sintered at various 150 conditions, with the first sintering temperature (T_1) at 700, 800 and 900 °C.
- 5.8 SEM micrographs of PT ceramics singly sintered at (a) 1150 and 154
 (b) 1225 °C.
- 5.9 SEM micrographs of PT ceramics doubly sintered at (a) 700/1100 155
 (b) 700/1200 (c) 800/1100 (d) 800/1200 (e) 900/1100 and (f)
 900/1200 °C.
- 5.10 Variation with temperature of dielectric constant and dielectric 159 loss at various frequencies for singly sintered PT ceramic.
- 5.11 Variation with temperature of dielectric constant and dielectric 160 loss at various frequencies for PT ceramic sintered at 700/1200 °C.

5.12	Variation with temperature of dielectric constant and dielectric	161
	loss at various frequencies for PT ceramic sintered at 800/1200 °C.	
5.13	Variation with temperature of dielectric constant and dielectric	162
	loss at various frequencies for PT ceramic sintered at 900/1200 °C.	
5.14	Thermal expansion $(\Delta l/l)$ and thermal expansion coefficient (α) of	165
	unpoled PT ceramic sintered by two stage process at 700/1200 $^{\circ}$ C	
	as a function of temperature (H = heating cycle and C = cooling	
	cycle).	
5.15	Thermal expansion $(\Delta l/l)$ and thermal expansion coefficient (α) of	166
	unpoled PT ceramic sintered by two stage process at 800/1200 $^{\circ}C$	
	as a function of temperature (H = heating cycle and C = cooling	

5.16 Thermal expansion $(\Delta l/l)$ and thermal expansion coefficient (α) of 167 unpoled PT ceramic sintered by two stage process at 900/1200 °C as a function of temperature (H = heating cycle and C = cooling cycle).

17 Thermal expansion (along the length direction) as a function of temperature for PT ceramic poled at 30 kV/cm and parallel to the length direction (H = heating cycle and C = cooling cycle).

5.18 Thermal expansion (along the length direction) as a function of temperature for PT ceramic poled at 45 kV/cm and perpendicular to the length direction (H = heating cycle and C = cooling cycle).

Figure

cycle).

Page

168

169

- 5.19 Thermal expansion as a function of temperature for PT ceramics 170 (sample 900/1200 °C) and of different poling states: (1) unpoled,
 (2) poled parallel to the length direction and (3) poled perpendicular to the length direction, (measurements in heating cycles).
- 5.20 P_s as a function of temperature for PT ceramics with and without 174 poling: (1) unpoled, (2) poled parallel to the length direction, (3) poled perpendicular to the length direction, (4) depoled parallel to the length direction and (5) depoled perpendicular to the length direction; figures a, b, c are for (a) sintered at 700/1200 °C, (b) sintered at 800/1200 °C and (c) sintered at 900/1200 °C
- 6.1 TG analysis of the PbO-TiO₂ mixtures milled at different times. 178
- 6.2 DTA analysis of the PbO-TiO₂ mixtures milled at different times. 178
- KRD patterns of PT powders milled at different times (calcined at 182 600 °C for 1 h with heating/cooling rates of 20 °C/min) (▼ PbO, * TiO₂ and ∇ PbTi₃O₇).

5.4Enlarged zone of XRD patterns showing (002) and (200) peaks183broadening as a function of milling times.

- 6.5 Variation of crystalline size and lattice strain of PT powders as a 184 function of milling times.
- 6.6 XRD patterns of PT powders milled for 20 h and calcined at 188 various conditions.

Figu	re	Page
6.7	XRD patterns of PT powders milled for 20 h and calcined at	189
	various conditions.	
6.8	XRD patterns of PT powders milled for 30 h and calcined at (a)	190
	500 °C for 2 h, (b) 550 °C for 1 h, (c) 550 °C for 2 h, (d) 550 °C	
	for 3 h, (e) 600 °C for 2 h, with heating/cooling rates of 5 °C/min	
	and 550 °C for 3 h with heating/cooling rates of (f) 10 °C/min, (g)	
	20 °C/min and (h) 30 °C/min.	
6.9	SEM micrographs of PT powders milled at different times.	193
6.10	Particle size distributions of PT powders milled at different times.	194
6.11	(a) TEM micrograph, (b) SAED pattern ($[13\overline{1}]$ zone axis) and (c)	196
	reciprocal lattice pattern simulation of PT powders milled for 25 h	
	and calcined at 600 $^{\circ}$ C for 2 h with heating/cooling rates of 30	
	°C/min.	
6.12	XRD patterns of the (1-x)PMN-xPT ceramic-nanocomposites	199
	sintered at 1100 °C for 2 h with heating/cooling rates of 5 °C/min	
6.13	XRD patterns of (002)-(200) reflections for the (1-x)PMN-xPT	200
	ceramic-nanocomposites with different <i>x</i> -values.	
6.14	Variation of density with compositions for (1-x)PMN-xPT	201
	ceramic-nanocomposites.	
6.15	SEM micrographs of the (1-x)PMN-xPT ceramic-nanocomposites	204
	sintered at 1100 °C, (a) $x = 0.1$, (b) $x = 0.3$ and (c) $x = 0.5$ and	
	sintered at 1250 °C, (d) $x = 0.1$, (e) $x = 0.3$ and (f) $x = 0.5$.	

Figure		
6.16	Temperature and frequency dependences of dielectric properties of	208
	the (1-x)PMN-xPT ceramic-nanocomposites sintered at 1100 °C,	
	(a and b) $x = 0.1$, (c and d) $x = 0.3$ and (e and f) $x = 0.5$.	
6.17	Temperature and frequency dependences of dielectric properties of	211
	the (1-x)PMN-xPT ceramic-nanocomposites sintered at 1250 °C,	
	(a and b) $x = 0.1$, (c and d) $x = 0.3$ and (e and f) $x = 0.5$.	
6.18	<i>P-E</i> hysteresis loops of $(1-x)$ PMN- <i>x</i> PT ceramic-nanocomposites.	216
6.19	s-E hysteresis loops of (1-x)PMN-xPT ceramic-nanocomposites.	216
6.20	Thermal expansion $(\Delta l/l)$ and thermal expansion coefficient (α) as	220
	a function of temperature for (1-x)PMN-xPT ceramic-	
	nanocomposites: (a) $x = 0.20$, (b) $x = 0.30$ and (c) $x = 0.35$.	
6.21	$(P_d^2)^{1/2}$ as a function of temperature for (1-x)PMN-xPT ceramic-	222

6.21 $(P_d^2)^{1/2}$ as a function of temperature for (1-x)PMN-xPT ceramicnanocomposites from Eq. (3.6) and the reversible ferroelectric polarizations P_r (dot lines): (a) x = 0.20, (b) x = 0.30 and (c) x = 0.35.

ลิขสิทธิ์มหาวิทยาลัยเชียงใหม่ Copyright[©] by Chiang Mai University All rights reserved

ABBREVIATIONS AND SYMBOLS

BT	Barium titanate
c/a	Tetragonality factor
DTA	Differential thermal analysis
E _C	Coercieve field
EDX	Energy dispersive X-ray
ICDD	International center for diffraction data
JCPDS	Joint committee for powder diffraction standards
k _t	Coupling factor of thickness
k_p	Coupling factor of planar
МСР	Mixing and calcination processes
MLC	Multilayer capacitor
MPB	Morphotropic phase boundary
P_S	Spontaneous polarization
P_r	Remnant polarization
P-E	Polarization-field
РТ	Lead titanate
PMN	Lead magnesium niobate
PZT	Lead zircornate titanate
Q_{ijkl}	Electrostrictive coefficient
SEM	Scanning Electron Microscopy
s-E	Strain-electric field
TEM	Transmission Electron Microscopy

xxviii

$T_{\rm C}$	Curie temperature
T_m	Maximum temperature
T_d	Burn temperature
$\mathrm{Tan}\delta$	Dielectric loss
TG	Thermal gravimetric
XRD	X-ray diffraction
Er	Dielectric constant
	Thermal expansion

ลิขสิทธิ์มหาวิทยาลัยเชียงใหม่ Copyright[©] by Chiang Mai University All rights reserved