Chapter 2

Basic Concepts and Preliminaries

2.1 Metric Spaces and Banach Spaces

Definition 2.1.1 ([17]) A metric space is a pair (X, d), where X is a set and d is a metric on X (or distance function on X), that is, a real valued function defined on $X \times X$ such that for all $x, y, z \in X$ we have:

- (1) $d(x,y) \geq 0$
- (2) d(x, y) = 0 if and only if x = y
- (3) d(x, y) = d(y, x) (symmetry)
- (4) $d(x,y) \le d(x,z) + d(z,y)$ (triangle inequality).

Definition 2.1.2 ([17]) A sequence $\{x_n\}$ in a metric space X = (X, d) is said to be *convergent* if there is an $x \in X$ such that

$$\lim_{n\to\infty}d(x_n,x)=0$$

x is called the *limit* of $\{x_n\}$ and we write

$$\lim_{n\to\infty} x_n = x$$

or, simple,
$$x_n \to x$$

we say that $\{x_n\}$ converges to x. If $\{x_n\}$ is not convergent, it is said to be divergent.

Lemma 2.1.3 ([39]) Let $\{a_n\}, \{b_n\}$ and $\{\delta_n\}$ be sequences of nonnegative real numbers satisfying the inequality

$$a_{n+1} \le (1+\delta_n)a_n + b_n, \ \forall n = 1, 2, ...,$$

If $\sum_{n=1}^{\infty} \delta_n < \infty$ and $\sum_{n=1}^{\infty} b_n < \infty$, then

- (1) $\lim_{n\to\infty} a_n$ exists.
- (2) $\lim_{n\to\infty} a_n = 0$ whenever $\liminf_{n\to\infty} a_n = 0$.

Definition 2.1.4 ([17])A sequence (x_n) in a metric space X = (X, d) is said to be Cauchy if for every $\epsilon > 0$ there is an $N(\epsilon) \in N$ such that $d(x_m, x_n) < \epsilon$ for every $m, n \geq N(\epsilon)$.

Definition 2.1.5 ([17]) A metric space (X, d) is said to be *complete* if every Cauchy sequence in X converges.

Theorem 2.1.6 ([17]) Every convergent sequence in a metric space is a Cauchy sequence.

Theorem 2.1.7 ([20]) Let $\{x_n\}$ be a sequence in \mathbb{R} . If every subsequence $\{x_{n_k}\}$ of $\{x_n\}$ has a convergent subsequence, then $\{x_n\}$ is convergent.

Definition 2.1.8 ([20]) Let X be a metric space and A be any nonempty subset of X. For each x in X, the distance d(x, A) from x to A is $\inf\{d(x, y)| y \in A\}$.

Definition 2.1.9 ([20]) Let X be a linear space (or vector space). A *norm* on X is a real-valued function $\|\cdot\|$ on X such that the following conditions are satisfied by all members x and y of X and each scalar α :

- (1) $||x|| \ge 0$ and ||x|| = 0 if and only if x = 0,
- (2) $||\alpha x|| = |\alpha|||x||$,
- (3) $||x+y|| \le ||x|| + ||y||$ (triangle inequality)

The ordered pair $(X, \|\cdot\|)$ is called a normed space or normed vector space or normed linear space.

Definition 2.1.10 ([20]) Let X be normed space. The metric induced by the norm of X is the metric d on X defined by the formula d(x,y) = ||x-y|| for all $x,y \in X$. The norm topology of X is the topology obtained from this metric.

Definition 2.1.11 ([20]) A Banach norm or complete norm is a norm that induces a complete metric. A normed space is a *Banach space* or *B-space* or *complete normed space* if its norm is a Banach norm.

Definition 2.1.12 ([17]) An inner product space is a vector space X with an inner product defined on X. A Hilbert space is a complete inner product space. Here, an inner product on X is a mapping of $X \times X$ into the scalar field $\mathbb{F} = \mathbb{R}$ or \mathbb{C} ; that is, with every pair of vector x and y there is associated a scalar which is written and is called the inner product of x and y, such that for all vectors x, y, z and scalar $\alpha \in \mathbb{F}$ we have:

- (1) $\langle x, x \rangle \ge 0$ and $\langle x, x \rangle = 0 \Leftrightarrow x = 0$
- (2) $\langle \alpha x, y \rangle = \alpha \langle x, y \rangle$
- (3) $\langle x, y \rangle = \overline{\langle y, x \rangle}$
- (4) $\langle x + y, z \rangle = \langle x, z \rangle + \langle y, z \rangle$.

An inner product on X defines a norm on X given by $||x|| = \sqrt{\langle x, x \rangle}$.

Theorem 2.1.13 ([36])(The Schwarz inequality) If x and y are any two vector in an inner product space X, then $|\langle x, y \rangle| \le ||x|| ||y||$.

2.2 Reflexive Spaces and Geometric Properties of Banach Space

Definition 2.2.1 ([17]) Let X be normed space, for each $x \in X$ there corresponds a unique bounded linear functional $g_x \in X^{**}$ given by $g_x(f) = f(x)$, $f \in X^*$. A mapping $C: X \to X^{**}$ defined by $x \mapsto g_x$, is called the *canonical mapping*.

Definition 2.2.2 ([17]) A normed space X is said to be *reflexive* if the canonical mapping $C: X \to X^{**}$ is surjective.

Definition 2.2.3 ([17]) Let x be an element and $\{x_n\}$ a sequence in a normed space X. Then $\{x_n\}$ converges strongly to x written by $x_n \to x$, if $\lim_{n\to\infty} ||x_n - x|| = 0$.

Definition 2.2.4 ([17]) Let x be an element and $\{x_n\}$ a sequence in a normed space X. Then $\{x_n\}$ converges weakly to x written by $x_n \rightharpoonup x$, if $f(x_n) \rightarrow f(x)$ wherever $f \in X^*$.

Theorem 2.2.5 ([36]) A normed space X is reflexive if and only if each of its bounded sequence has a weakly convergent subsequence.

Definition 2.2.6 ([36]) A nonempty subset C of a Banach space X is called weakly sequentially compact if every sequence $\{x_n\}$ in C has a subsequence converging to a point of X in the weak topology.

Theorem 2.2.7 ([36]) Let X be a reflexive Banach space. Then a nonempty subset C of X is weakly sequentially compact if and only if C is bounded.

Definition 2.2.8 ([17]) A subset C of a vector space X is said to be *convex* if $x, y \in C$ implies $M = \{z \in X | z = tx + (1-t)y, 0 \le t \le 1\} \subseteq C$.

Definition 2.2.9 ([36]) A Banach space X is uniformly convex if for any two sequences $\{x_n\}$ and $\{y_n\}$ in X such that $||x_n|| = ||y_n|| = 1$ and $\lim_{n\to\infty} ||x_n + y_n|| = 2$, imply $\lim_{n\to\infty} ||x_n - y_n|| = 0$.

Theorem 2.2.10 ([36]) If a Banach space X is uniformly convex, then X is reflexive.

Definition 2.2.11 ([36]) Let X be a linear space and let C be a convex subset of X. A function $F: C \to (-\infty, \infty]$ is *convex* on C if for any $x, y \in C$ and $t \in [0, 1]$, then $f(tx + (1 - t)y) \le tf(x) + (1 - t)f(y)$.

Lemma 2.2.12 ([42]) Let p > 1, r > 0 be two fixed numbers. Then a Banach space X is uniformly convex if and only if there exists a continuous, strictly increasing, and convex function $g: [0, \infty) \to [0, \infty)$, g(0) = 0 such that

$$\|\lambda x + (1-\lambda)y\|^p \le \lambda \|x\|^p + (1-\lambda)\|y\|^p - w_p(\lambda)g(\|x-y\|),$$

for all x, y in $B_r = \{x \in X : ||x|| \le r\}, \lambda \in [0, 1]$, where

$$w_p(\lambda) = \lambda (1 - \lambda)^p + \lambda^p (1 - \lambda).$$

Lemma 2.2.13 ([9]) Let X be a uniformly convex Banach space and $B_r = \{x \in X : ||x|| \le r\}, r > 0$. Then there exists a continuous, strictly increasing, and convex function $g: [0, \infty) \to [0, \infty), g(0) = 0$ such that

$$||\lambda x + \beta y + \gamma z||^2 \le \lambda ||x||^2 + \beta ||y||^2 + \gamma ||z||^2 - \lambda \beta g(||x - y||),$$

for all $x, y, z \in B_r$, and all $\lambda, \beta, \gamma \in [0, 1]$ with $\lambda + \beta + \gamma = 1$.

Lemma 2.2.14 ([21], Lemma 1.4) Let X be a uniformly convex Banach space and $B_r = \{x \in X : ||x|| \le r\}, r > 0$. Then there exists a continuous, strictly increasing, and convex function $g: [0, \infty) \to [0, \infty), g(0) = 0$ such that

$$\|\alpha x + \beta y + \mu z + \lambda w\|^2 \le \alpha \|x\|^2 + \beta \|y\|^2 + \mu \|z\|^2 + \lambda \|w\|^2 - \alpha \beta g(\|x - y\|),$$

for all $x, y, z, w \in B_r$, and all $\alpha, \beta, \mu, \lambda \in [0, 1]$ with $\alpha + \beta + \mu + \lambda = 1$.

Definition 2.2.15 ([25]) A Banach space X is said to satisfy *Opial's condition* if $x_n \to x$ weakly as $n \to \infty$ and $x \neq y$ imply that

$$\limsup_{n\to\infty} ||x_n - x|| < \limsup_{n\to\infty} ||x_n - y||.$$

A Banach space X is said to have the Kadec-Klee property if for every sequence $\{x_n\}$ in X, $x_n \to x$ and $||x_n|| \to ||x||$ together imply $||x_n - x|| \to 0$. The mapping $T: C \to X$ with $F(T) \neq \emptyset$ is said to satisfy condition(A) [32] if there is a nondecreasing function $f: [0, \infty) \to [0, \infty)$ with f(0) = 0 and f(r) > 0 for all $r \in (0, \infty)$ such that for all $x \in C$

$$||x - Tx|| \ge f(d(x, F(T))).$$

A family $\{T_i : i \in J\}$ of N self-mappings of C with $F := \bigcap_{i=1}^N F(T_i) \neq \emptyset$ is said to satisfy *condition* (B) on C [8] if there is a nondecreasing function $f: [0, \infty) \to [0, \infty)$ with f(0) = 0 and f(r) > 0 for all $r \in (0, \infty)$ such that

$$\max_{1 \leqslant l \leqslant N} \{ ||x - T_l x|| \} \geqslant f(d(x, F))$$

for all $x \in C$.

Lemma 2.2.16 ([35]) Let X be a Banach space which satisfies Opial's condition and let $\{x_n\}$ be a sequence in X. Let $u, v \in X$ be such that $\lim_{n\to\infty} ||x_n - u||$ and $\lim_{n\to\infty} ||x_n - v||$ exists. If $\{x_{n_k}\}$ and $\{x_{n_j}\}$ are subsequences of $\{x_n\}$ which converge weakly to u and v, respectively, then u = v.

Lemma 2.2.17 ([21], Lemma 2.1) If $\{b_n\}$, $\{c_n\}$ and $\{\mu_n\}$ are sequences in [0, 1] such that $\limsup_{n\to\infty} (b_n+c_n+\mu_n) < 1$ and $\{k_n\}$ is a sequence of real number with $k_n \geq 1$ for all $n \geq 1$ and $\lim_{n\to\infty} k_n = 1$, then there exist a positive integer N_1 and $\gamma \in (0,1)$ such that $c_n k_n < \gamma$ for all $n \geq N_1$.

2.3 Fixed Points of Nonexpansive Mappings

Definition 2.3.1 ([44]) Let C be subset of a Banach space X. A mapping $T: C \to C$ is called *nonexpansive* if $||Tx - Ty|| \le ||x - y||$ for all $x, y \in C$. The set of all fixed points of T is denoted by F(T), i.e. $F(T) = \{x \in C | x = Tx\}$.

Definition 2.3.2 ([44]) Let C be subset of a Banach space X. A self-mapping $f: C \to C$ is called *contraction* on C if there exists a constant $\alpha \in (0,1)$ such that $||f(x) - f(y)|| \le \alpha ||x - y||$ for all $x, y \in C$. We use Π_C to denote the collection of all contraction on C.

Theorem 2.3.3 ([36])(The Banach contraction principle) Let X be complete metric space and let f be a contraction of X. Then f has a unique fixed point.

Definition 2.3.4 ([4]) A mapping $T: C \to X$ is called *demiclosed* with respect to y if for each sequence $\{x_n\}$ in C and each $x \in X$, $x_n \to x$ weakly and $Tx_n \to y$ imply that $x \in C$ and Tx = y.

Lemma 2.3.5 ([2]) Let X be a uniformly convex Banach space, C a nonempty closed convex subset of X and $T:C\to X$ be a nonexpansive mapping. Then I-T is demiclosed at 0, i.e., if $x_n\to x$ weakly and $x_n-Tx_n\to 0$ strongly, then $x\in F(T)$, where F(T) is the set of fixed point of T.

Lemma 2.3.6 ([14]) Let X be a real reflexive Banach space such that its dual X^* has the Kadec-Klee property. Let $\{x_n\}$ be a bounded sequence in X and $x^*, y^* \in \omega_w(x_n)$; here $\omega_w(x_n)$ denote the set of all weak subsequential limits of $\{x_n\}$. Suppose $\lim_{n\to\infty} ||tx_n+(1-t)x^*-y^*||$ exists for all $t\in[0,1]$. Then $x^*=y^*$.

We denote by Γ the set of strictly increasing, continuous convex function $\gamma: \mathbb{R}^+ \to \mathbb{R}^+$ with $\gamma(0) = 0$. Let C be a convex subset of the Banach space X. A mapping $T: C \to C$ is said to be type (γ) if $\gamma \in \Gamma$ and $0 \leqslant \alpha \leqslant 1$,

$$\gamma(\|\alpha Tx + (1-\alpha)Ty - T(\alpha x + (1-\alpha)y)\|) \leq \|x-y\| - \|Tx - Ty\|$$
 for all x, y in C .

Lemma 2.3.7 ([5], [24]) Let X be a uniformly convex Banach space and C a convex subset of X. Then there exists $\gamma \in \Gamma$ such that for each mapping $S: C \to C$ with Lipschitz constant L,

$$\|\alpha Sx + (1 - \alpha)Sy - S(\alpha x + (1 - \alpha)y)\| \le L\gamma^{-1}(\|x - y\| - \frac{1}{L}\|Sx - Sy\|)$$
 for all $x, y \in C$ and $0 < \alpha < 1$.

2.4 Fixed Points of Asymptotically Nonexpansive Mappings

Lemma 2.4.1 ([9]) Let X be a uniformly convex Banach space, C be a nonempty closed convex subset of X and $T:C\to C$ be an asymptotically nonexpansive mapping. Then I-T is demi-closed at zero, i.e., for each sequence $\{x_n\}$ in C, if $\{x_n\}$ converges weakly to $q\in C$ and $\{(I-T)x_n\}$ converges strongly to 0, then (I-T)q=0.

Lemma 2.4.2 ([7], Theorem 3.4) Let X be a uniformly convex Banach space, C a nonempty closed convex subset of X, and let $T:C\to X$ be an asymptotically nonexpansive mapping with a sequence $\{k_n\}\subset [1,\infty)$ and $k_n\to 1$ as $n\to\infty$. Then I-T is demiclosed at zero, i.e., if $x_n\to x$ weakly and $x_n-Tx_n\to 0$ strongly, then $x\in F(T)$, where F(T) is the set of fixed point of T.