Chapter 2

Basic Concepts and Preliminaries

2.1 Metric Spaces and Banach Spaces

Definition 2.1.1 ([17]) A metric space is a pair (X, d), where X is a set and d is
a metric on X (or distance function on X),that is, a real valued function defined
on X x X such that for all z,y, z € X we have:

(1) d(z,y) 2

(2) d(z,y)=0ifand only if z =y

(3} d(z,y) = d(y,z) (symmetry)

(4) d(z,y) < d(z,z) + d(z,y) (triangle inequality).

Definition 2.1.2 ([17]) A sequence {z,} in a metric space X = (X, d) is said to
be convergent if there is an x € X such that

lim d(z,,z) =0

n—co

z is called the limit of {z,} and we write

limz, =2z
n—co

or, simple, z,, = =

we say that {z,} converges to z. If {z,} is not convergent, it is said to be
divergent.

Lemma 2.1.3 ([39]) Let {a,},{b.} and {d,} be sequences of nonnegative real
numbers satisfying the inequality

ant1 < (1 + 6n)a'n +bn, Yn=1,2,..,
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If Yo 6, <ooand 3.2 b, < oo, then

(1) limy, o0 an exists .
(2) lim, e @, = 0 whenever liminf,_, a, = 0.

Definition 2.1.4 ([17])A sequence (z,) in a metric space X = (X, d) is said to
be Cauchy if for every ¢ > 0 there is an N(¢) € N such that d(zn, z,) < € for
every m,n > N(e).

Definition 2.1.5 ([17]) A metric space (X,d) is said to be complete if every
Cauchy sequence in X converges.

Theorem 2.1.6 ([17]) Every convergent sequence in a metric space is a Cauchy
sequence.

Theorem 2.1.7 ([20]) Let {z,} be a sequence in R. If every subsequence {z,,}
of {,} has a convergent subsequence, then {z,} is convergent.

Definition 2.1.8 ({20]) Let X be a metric space and A be aﬁy nonempty subset
of X. For each z in X, the distance d(z, A) from z to A is inf{d(z,y)| y € A}.

Definition 2.1.9 ([20]} Let X be a linear space (or vector space). A norm on
X is a real-valued function || - || on X such that the following conditions are
satisfied by all members z and y of X and each scalar a:

(1) ||z|| =0 and ||z|f =0 if and only if = =0,
@) llezl = lalll=l,
(3) lle +ull < llzll + [|lyl| (triangle inequality)

The ordered pair (X, | - ||) is called a normed space or normed vector space or
normed linear space.

Definition 2.1.10 ([20]) Let X be normed space. The metric induced by the
norm of X is the metric d on X defined by the formula d(z,y) = ||z — y|| for all
z,y € X. The norm topology of X is the topology obtained from this metric.

Definition 2.1.11 ([20]) A Banach norm or complete norm is a norm that in-
duces a complete metric. A normed space is a Banach space or B-space or
complete normed space if its norm is a Banach norm.

Definition 2.1.12 ([17]) An inner product space is a vector space X with an
inner product defined on X. A Hilbert space is a complete inner product space.
Here, an inner product on X is a mapping of X x X into the scalar field F = R
or C; that is, with every pair of vector z and ¥ there is associated a scalar which
is written and is called the inner product of z and y, such that for all vectors
z,y, 2 and scalar & € F we have:
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1) (z,z) > 0and (z,2) =0 z=0

(1)

@) (ez,y) = afz,y)
3) &y = (.7
4) (& +y 2) = (&,2) + (v, 2)-

An inner product on X defines a norm on X given by ||z{| = /(z, z}.

Theorem 2.1.13 ([36])(The Schwarz inequality)
If £ and y are any two vector in an inner product space X, then [(z,y)| <

{1yl

2.2 Reflexive Spaces and Geometric Properties of
Banach Space

Definition 2.2.1 ([17]) Let X be normed space, for cach z € X there corre-
sponds a unique bounded linear functional g, € X** given by g¢:(f) = f(z),
f € X*. A mapping C : X ~» X** defined by = +— g, is called the canonical

mapping.

Definition 2.2.2 ([17]) A normed space X is said to be reflerive if the canonical
mapping C' : X — X™** is surjective.

Definition 2.2.3 ([17]) Let = be an element and {z.} a sequence in a normed
space X. Then {z,} converges strongly to z written by z, — z, if lim,_,c ||2n —
z{| =0.

Definition 2.2.4 ([17]) Let z be an element and {z,} a sequence in a normed
space X. Then {z,} converges weakly to z written by z, — z, if f(z,) = f(z)
wherever f € X™.

Theorem 2.2.5 ([36]) A normed space X is reflexive if and only if each of its
bounded sequence has a weakly convergent subsequence.

Definition 2.2.6 ([36]) A nonempty subset C of a Banach space X is called
weakly sequentially compact if every sequence {z,} in C has a subsequence
converging to a point of X in the weak topology.

Theorem 2.2.7 ([36]) Let X be a reflexive Banach space. Then a nonempty
subset C of X is weakly sequentially compact if and only if C is bounded.
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Definition 2.2.8 ([17]) A subset C of a vector space X is said to be convez if
z,y € Cimplies M ={z€ X|z=tz+(1—-t)y, 0<t <1} CC.

Definition 2.2.9 ([36]) A Banach space X is uniformly convez if for any two
sequences {z,} and {y,} in X such that ||z,|| = {lyzl| = 1 and lim,_,q ||zn +
Ynll = 2, imply limy 00 |2 — 3]l = 0.

Theorem 2.2.10 {[36]) If a Banach space X is uniformly convex, then X is
reflexive.

Definition 2.2.11 ([36]) Let X be a linear space and let C' be a convex subset
of X. A function F': C — (—oc,00] is convez on C if for any z,y € C and
te [0: 1]: then f(tx + (1 iy t)y) < tf(x) + (1 \ t)f(y)

Lemma 2.2.12 ([42]) Let p > 1, r > 0 be two fixed numbers. Then a Banach
space X is uniformly convex if and only if there exists a continuous, strictly
increasing, and convex function g : [0, 00) — [0, o), ¢{0) = 0 such that

1Az + (1 = NylPP < All=lP + (1~ M[ylP — wp(Mglllz = wll),
forall z,yin B, ={z € X : ||z} < r}, A € [0,1], where
wp(A) = A1~ AP + AP(1 — A).

Lemma 2.2.13 ({9]) Let X be a uniformly convex Banach space and B, = {z €
X :|jz]] € r}, 7 > 0. Then there exists a continuous, strictly increasing, and
convex function g : [0, c0) — [0, 00), g(0) = 0 such that

Az + By + vzI” < Allzlf® + Bllyll® +vli=l® — ABg(llz — ),
forall z,y,2 € B, and all A\, B,y € [0,1]) with A+ S+ y=1.

Lemma 2.2.14 ([21], Lemma 1.4) Let X be a uniformly convex Banach space
and B, = {z € X : [|z|| £ r}, r > 0. Then there exists a continuous, strictly
increasing, and convex function g : [0, 00) — [0, 00), g(0) = 0 such that

lox + By + pz + dwll* < allzl® + Bllyll* + pllz)l> + Allw]® — aBg(iz - ),
forall z,y,z,w € By, and all o, 8, u, A € [0,1] with e+ S+ p+ A =1

Definition 2.2.15 ([25]) A Banach space X is said to satisfy Opial’s condition
if z, — = weakly as n — oo and x # y imply that

limsup ||z, — z|| < limsup ||z, — ¥||-
n—ro0 n—ro0
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A Banach space X is said to have the Kadec-Klee property if for every
sequence {z,} in X, z, — z and ||z,]| — ||z together imply ||z, — z|| — 0.
The mapping 7' : ¢ — X with F(T) # 0 is said to satisfy condition(A)} [32]
if there is a nondecreasing function f : [0,00) — [0,00) with f(0) = 0 and
f(r) > 0 for all r € (0,00) such that for all z € C

lz — Tzl] = f(d(z, F(T))).

A family {T; : 4 € J} of N self-mappings of C with F = N, F(T}) # @

is said to satisfy condition (B) on C [8] if there is a nondecreasing function

f:[0,00) = [0,00) with £{0) =0 and f(r) > 0 for all r € (0, c0) such that
max {[lz — Tiz(} 2 f(d(z, F))

1IN

for all z € C.

Lemma 2.2.16 ([35]) Let X be a Banach space which satisfies Opial’s condition
and let {z,} be a sequence in X . Let u,v € X be such that lim,_, ||z, — u||
and limp 0 ||Tn — v| exists. If {z,,} and {z,,} are subsequences of {z,} which
converge weakly to u and v, respectively, then v = v.

Lemma 2.2.17 ([21}, Lemma 2.1) If {b,}, {¢.} and {y,} are sequences in [0, 1]
such that limsup,,_,..(b, + ¢, + pn) < 1 and {k,} is a sequence of real number
with k, > 1 for all n > 1 and lim,,_,, &, = 1, then there exist a positive integer
Ny and v € (0,1) such that ¢ k, <y for all n > N;.

2.3 Fixed Points of Nonexpansive Mappings

Definition 2.3.1 ([44]) Let C be subset of a Banach space X. A mapping T :
C' — C is called nonezpansive if ||[Tz — Ty|| < ||z — y|| for all z, € C. The set
of all fixed points of T is denoted by F'(T), i.e. F(T) = {z € C|z = Tz}.

Definition 2.3.2 ([44]) Let C be subset of a Banach space X. A self-mapping
f:C — C is called contraction on C if there exists a constant « € (0, 1) such
that ||f{z) — f(W)|| < «llz — y|| for all z,y € C. We use II¢ to denote the
collection of all contraction on C.

Theorem 2.3.3 ([36])(The Banach contraction principle)
Let X be complete metric space and let f be a contraction of X. Then f has
a unique fixed point.

Definition 2.3.4 ([4]) A mapping T : C — X is called demiclosed with respect
to y if for each sequence {z,} in C and each z € X, z, — 7 weakly and
Tz, — y imply that z € C and Tz = y.
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Lemma 2.3.5 ([2]) Let X be a uniformly convex Banach space, C' a nonempty
closed convex subset of X and T : C — X be a nonexpansive mapping. Then
I — T is demiclosed at 0, i.e., if 2, — z weakly and z, — Tz, — 0 strongly,
then z € F(T), where F(T)} is the set of fixed point of 7.

Lemma 2.3.6 ({14]) Let X be a real reflexive Banach space such that its dual
X* has the Kadec-Klee property. Let {z,} be a bounded sequence in X and
Z*,y* € wy(Ts); here wy(z,) denote the set of all weak subsequential limits of
{z.}. Suppose limp, e [[tz, + (1 — t)z* — y*|| exists for all ¢ € [0,1]. Then
Tt =y

We denote by I' the set of strictly increasing, continuous convex function
v : R — R* with 4(0) = 0. Let C be a convex subset of the Banach space X.
A mapping T : C — C is said to be type (y) ifyeTand 0 < a < 1,

1Tz + (1 - a)Ty — T(ez + (1~ &)y)|) < llz - yl} = | Tz — Tyl
for all z,y in C.

Lemma 2.3.7 ([5], [24]) Let X be a uniformly convex Banach space and C a
convex subset of X. Then there exists ¥ € I' such that for each mapping
S : C — C with Lipschitz constant L,

) 1
Sz + (1 - )Sy — S(ex + (1 - ay)ll < Ly ' (l|lz — ¢l - 7Sz = Syl)

forallz,ye€e Cand 0 < o < 1.

2.4 Fixed Points of Asymptotically Nonexpansive Map-
pings

Lemma 2.4.1 ([9]) Let X be a uniformly convex Banach space, C be a nonempty
closed convex subset of X and T : C — C be an asymptotically nonexpansive
mapping. Then I —T is demi-closed at zero, i.e., for each sequence {z,} in C, if
{zn} converges weakly to ¢ € C and {(I — T)z,} converges strongly to 0, then
(I-T)g=0.

Lemma 2.4.2 ([7], Theorem 3.4) Let X be a uniformly convex Banach space, ¢
a nonempty closed convex subset of X, and let 7 : C' — X be an asymptotically
nonexpansive mapping with a sequence {k,} C [1,00) and k&, — 1 as n — co.
Then I — T is demiclosed at zero, i.e., if 2, — z weakly and z, — 7'z, — 0
strongly, then x € F'(T"), where F(T) is the set of fixed point of 7.



