Chapter 4

Fixed Point Iterations for
Asymptotically Nonexpansive
Mappings

4.1 Weak and Strong Convergence to a Fixed Point
of Asymptotically Nonexpansive Mapping

A new class of three-step iterative scheme is introduced and studied in this
section. The scheme is defined as follows.

Let X be a normed space, C' a nonempty convex subset of X, P: X - C a
nonexpansive retraction of X onto C, and T': C — X a given mapping. Then
for a given z, € C, compute the sequence {z,}, {yn} and {z,} by the iterative
scheme

zn, = P{(1—ap—by)z, + anT(PT)“_lxn + bptin),
Yn P((1 — cn — dp)2n + caT(PT)" t2, + dovy), (4.1)
Tpny1 = P((l — Qi — ﬁn)yn + anT(PT)n_lxn + Jann), n 2 ]-:

I

where {u,}, {vn}, {w.} are bounded sequences in C and {a,}, {b.}, {cn}. {dn}, {@n},
{B.} are appropriate sequences in [0, 1].

The iterative schemes (4.1) are called the new three-step iterations with
errors for asymptotically nonexpansive nonself-mappings.

In this section, we prove weak and strong convergence theorems for the
new three-step iterative scheme (4.1) for asymptotically nonexpansive nonself-
mapping in a uniformly convex Banach space.
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Definition 4.1.1 ([7]) Let X be a real normed linear space and let C be a
nonempty subset of X. Let P : X — C be the nonexpansive retraction of
X onto C. Amap T : C — X is said to be asymptotically nonexpansive
nonself-mapping if there exists a sequence kp, k, > 1 with lim,_, k, = 1, such
that

|T(PTY* 'z — T(PT)" 'y < knllz — yli, Vz,y€C, n>1

In order to prove our main results, the following lemma is needed.

Lemma 4.1.2 Let X be o uniformly convexr Banach space, and let C be a nonempty
closed convex nonezpansive retract of X with P as a nonezpansive retraction.
Let T : C — X be an asymptotically nonezpansive nonself-map of C with {k,}
satisfying kn > 1 and Y o2 (kn—1) < o0 and F(T) # 0. Let {an},{Fn}, {an}, {ba},
{e.} and {d,} be real sequences in [0,1] such that ¢, + d, and o, + B, are in
[0,1] for alln > 1 and Y o2 by < 00, I oo dn < 00, 3 oo B < 00. For a
gwen z; € C, let {z,}, {yn} and {z,} be the sequences defined as in (4.1).

(i) If p is a fized point of T, then lim, .o ||zn — p|| exists.

(i3) If 0 < iminf,_e0 0ty < limsup, . (Cn+Ba) < 1, then limpo [T (PT)* 1
Tn — Yol = 0.

(i) If 0 < limsup,_, . (@a+B) < 1 and 0 < liminf, e ¢, < limsup,_,(ch+
dn) < 1, then limp,_o |T(PT)* tz, — 2,)| = 0.

(1v) If 0 < liminf, 00 tn < limsup, , (o, + Bn) < 1, 0 < liminf, e cn <
limsup,,_,(cs + dr) < 1 and limsup,_,,, an < 1 then lim, o [T(PT)* 1z, —
Ta| = 0.

Proof.(i) Let p € F(T), and

M; = sup{flu. —pll : n > 1},
My = supllion—pll:n>1),
M; = sup{|lwn—p| :n>1},
M = max{M;::=1,2,3}.

Using (4.1) for each n > 1, we have

lzn — 2l = ||1P{(1—an—bn)zn+ anT(PT)"_lxn + byuy) — P(p)l
< 1 = an = ba)To + e T(PTY 'z, + bnus) — pli
= ||(1 - an — bn)(zn — p)+ a'n(T(PT)nnlmn —p)
+bn(un - p)”
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(1 = an = bn)ll(@n — P)| + aullT(PT)" 'z — pl|

+bn(un — p)|

IAN A A

From (4.2), we have

(1—a,— bn)umn —pll + anknllmn _p” + bnfltn — pli
(1+ n(kn — 1))”-'511 - pl| + Mb,
knllzn — pll + Mb,. (4.2)

”yn —P” 7 ”P((l ~Cn —dn)zn + CnT(PT)n_lxn + dypvp) — P(p)”
< ”(1 —Cp — dn) (2, — p) + Cn(T(PT)n_lxn —p)+ dn(Vn — p)“
< (I=co—dn)llzn ~ pll + cal T(PT)" " 'z0 — pll + dalfvn — pl|
< (1—cn—di)llzn = pll + caknllzn — Pl + dnllvn —p||
< (]- —Cn — dn)(kn“xn - p” + Mbn) + annllxn - p” + Mdn
< knllzn — pl| + Mb, + Md,. ) (4.3)

From (4.3), we have

Il

llzn+1 — pll

A A A IA A

”P((l = Qn — ﬁn)yn + OfnT(PT)n_lxn + ﬂnwn) 3 P(P)”

“(1 — Gp — ﬁn)(yn - P) “+ an(T(PT)"‘_lg;n - P) -+ ﬁn(wn - p)“
(1= an = Bu)llyn — pll + cnll(T(PT)* 'z, — pl| + Ballwn — pl]

(1 = an ~ Ba)llyn — pll + anknllzn — pl| + Ballwn — pll

(1 = an — Bn) (kallza — ol + Mb, + Md,,) + cnknllzn — p|| + MBa
kallza — pll + M(by + dn + Ba)

(1 + (kn = D)[Zn — pll + M (b + du + Ba).

Since D 7, (k, — 1)} < oo, the assertion (i) follows from Lemma 2.1.3.

(ii) By (i), we know that lim,_,c ||z, — p| exists for any p € F(T). It follow
that {z, — p}, {T(PT)" 'z, — p}, {yn — p} and {2, — p} are bounded. Also,
{un — 1}, {vn — p} and {w, — p} are bounded by the assumption. Now we set

™
T2
T3
T4
75
Te
T7

r

= sup{|lz, ~pll : n > 1},

It

sup{|{T(PT)" 'z, — p|| : n > 1},
sup{lly» — pl| : n > 1},
sup{{lza — pil : n > 1},
sup{|lu. —p|l : n > 1},

= sup{flun —pll :n > 1},

sup{{lwn —p| : n > 1},

= max{r;:1=1,2,3,4,5,6,7}. (4.4)
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By using Lemma 2.2.13 and (4.4), we have

lzn —2l* = [IP((1 = an — ba)2a + anT(PT)" 2, + byuy) — P(p)l2
< (1 = an = ba)(@a = p) + an(T(PT)" 2 — D) + bn(un — p)|I?
< (1= an =)z = pIP° + anl|T(PT)" "z — p|f* + buljuin — p||?
— an(l — an = b)g(IT(PT)" "2 — z4l])
< (1~an—ba)llza — plI? + ankl||lzn — pI* + ballun — ||
< (1 — Qp -t anknz)”xn ] p”2 + Tgbn
< (I+an(k; — 1))ll2n — pl* + b,
< (4 (K = )llea — pl + %,
< E2llzn — 2l + r2bs,
9 —Pl? = [[P((1 = ca — dn)zn + eaT(PT)" ‘2, + dnv) — P(p)||?
< ”(1 —Cp — dn) (zn C p) + cn(T(PT)"'_lxn _p) + dn(Un FC p)”2
< (A =ca—di)llzn — Pl + cl T(PT)* ' — p||* + dullvm — 1|
— (1 — cn = dp)g(|T(PT)" " 2r — 2a)
< (1 —en—dn)llzn ~ plI* + cakZllzn — bl + duljvn — p||?
= el = 0 — ) g(IT(PT)"'zn — 2a))
< (I—ca— dn)(ki”fﬂn - p||2 - szn) + ani”xn —-p”2 +r?d,
= Cn(l —Cp — dn)g(”T(PT)n_lmn - zn”)
< (1= cn — du)k2 + cok2)||2n — D> + 7%, + 72d,,
= ea(l = o — du)g(IT(PT)" ' zp — 2za|))
= (1 = du)k2||zn — p|? + r2by +72d,,
- Cn(l —Cyp — dn)g(“T(PT)nqlzn - zn”)
< kallen = ol + 720, + rdy,
and so
Zne1 = plI* = [|P((1 = an — Ba)yn + cuT(PT)" 'z, + frwy) — P(p)]?
< ”(1 - Oy — ﬂn)(yn - 'P) + Q’n(T(PT)R_lzn '_p) + ﬂn(wn — p)”2
< (U= o= B)llyn — pl* + 0nlIT(PTY" 'z, — pl|* + Ballwn — pi?
— (1l = 0 = Ba)g(IT(PT)" 20 — wall)
< (1= an = Bu)llgn — plI* + ankillzs — plI* + Ballw, - pl|?
— an(l — an ~ B)g(IT(PT)* 'z — wall)
S (1 — Qn — 6n)(ki”$n - p“2 + Tan + Tzdn) + a’nkﬁ”:rn - p“2 + Tzﬂn

= @n(l = an — Ba)g(IT(PT)" " 20 — yall)
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< ((1 — Gy — ,13’,1)1?4:,21 -} ankg) lzn — 10”2 + 7%, + r2d, + 728,
— an(l = an = Bu)g(IT(PT)" 20 — all)

= (1= Bu)kgllza — | + r?b, + r?d, + B,
— an(l —on — BR)g(IT(PT)" 2, — wall)

< k2l|zn — pl|> 4 720, + r2dy + 728,
— (1 = an — Bu)g([T(PT)" " zn — yall)

= knllza — pl? + r?(by + do + By)
~ ol = on — Bu)g(IT(PT)" 'z — ymll)

= llza = pl* + (& — Dllan — plI* + 7°(bn + dn + Bn)
— on(l = on — Ba)g(|T(PT)" ', — yal))

< Nz~ ol +72(k2 = 1) +7%(bn + dn + Bn)

- an(l — Oy — ﬁn)g(”T(PT)n_lxn - yn”):

which leads to the following:

o (1 ~ o — Ba)g(IT(PT)" 2 = yull) < [l2n — 2l = |Zns1 — 2l
+r2(k2 = 1) + 12 (b + dn + Bn).  (4.5)

If 0 < liminf,_ e an < limsup,_, (e + B,) < 1, then there exists a pos-
itive integer ng and 7,7’ € (0,1) such that 0 <7 < o, and a, + B, < ¥ <
1 for all n > ng. Hence, by (4.5), we have

n(1 - ﬂ')g(HT(PT)"_lﬂin — Yal]) < |iZn —p||2 — ||z — p“2
Fr2(k2 — 1) 4+ r2(by + d, + Ba), (4.6)

for all n > ng. Applying {4.6) for m > ng, we have

T;WJQ(HT(PT)n—lmn —wll) < g 1_ 7 (T;no(”x“ —pll? = [|Znss — PI?)
+7? i(bn +dy + B+ (K — 1)))

n=ng

1 2
< {12 —p
n(l _ ?7,!) (” o “

+7? Zm: (by + dn + B + (K2 — 1))). (4.7)

n=ng

Since 0 <#*—1 < 2¢(t— 1) for all ¢ > 1, the assumption 320 (kn, — 1) < 0o
implies that ) .. (k%2 — 1) < co. Let m — oo in inequality (4.7) we get that
D mene SUIT(PTY 'z, — yall]) < 00, and therefore lim,_,q0 g{||T(PT)* 1z, —

n=np
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yall} = 0. Since g is strictly increasing and continuous at 0 with g{0) = 0, it
follows that lim, e |[T(PT)* 1z, — yn|| = O.

(iii) First, we assume that 0 < limsup,,_, .,(an+Br) < 1and 0 < liminf,_,o ¢, <
limsup,,_,..(c, + dn) < 1. By Lemma 2.2.13, we have

[P((1 = on =~ Bo)yn + T (PTY* 'y + Brwn) — P(p)]|?

(1 = ctn = Bn) (¥ = D) + (T (PT)" 'z — ) + Bnlwn — p)|1?
(1 = on — Ba)llya = pl* + cwllT(PT)* 0 — pl|* + Bullwn — 2
(1 — Op — ﬁn) (kle”mn . P“2 + szn + 7'2dn

—cn(l = ¢a ~ du)g([T(PT)" 2 — 2a]}))

+n[|[T(PTY* 20 — pl|* + Ballwn — p|?

(1 — an — B (K22 — p||® + 7°bn + 72d,

—Cn(1 = ¢n — dp)g(IT(PTY" 'z, — 2za]))

ok ||z, — p||? + 7B, -

(1 — an — Bu)ki||zn — plI* + b, + 7d,,

—(1 = an — Bo)en(l — en — da)g([| T(PT)* 'z, — 24])
+G’nkr21“$n - p”2 + 12

killzn — plI* + r*(ba + dn + Ba)

—(1 = 0 = Bu)ea(l = o — du)g(|IT(PT)" tn — 2]

= |lzn — 2> + (k2 — V)|lzn — pl* + r2(bn + dn + Ba)

—(1 = an — Ba)en(l — cn — dn)g(IT(PT)* 'z, — 2,))

2 ~ pll? + (k3 ~ 1) + 7*(bn + dn + Ba)

~(1 = = Br)ea(l — o — do)g(IT(PT)" 'z — z[).  (4.8)

|Zntr — p”2

IA A IA

IA IA

IA

IA

Hence, by (4.8}, we have

(1 —an = Ba)en(l — en — da)g(IT(PTY* 20 — zl]) < |20 — plI* = ||%ns1 — I
+r2(k2 - 1)
+72(by + dy + ), (4.9)

By our assumption 0 < limsup,,_, (@, + 8,) < 1 and 0 < liminf, e ¢, <
lim sup,, o (cn +dy) < 1, there exists a positive integer ng and 6y, ds, 83 € (0,1)
such that o, + 8, <61 < 1,0 <8 < ¢y and ¢, + d, < 83 < 1 for all n > ng. It
follows from (4.9), for m > ng,
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- n—1 ! - 2
> dlITET =) S s (nzzm(nxn e
#7230 ottt (- 1)
1 2
1D Guk ot Bat (5-1)). (420

Since 0 < #2—1 < 2¢(¢—1) for all ¢ > 1, the assumption > oo (k, — 1) < o0
implies that > 7 (k2 — 1) < co. Let m — 00 in inequality (4.10) we get that
neno UIT(PT)" 'z, — y]l) < o0, and therefore lim, . g(||T(PT)* 'z, —
Yall) = 0. Since g is strictly increasing and continuous at 0 with g(0) = 0, it
follows that limy, o, [|[T(PT)" tz, — 2,]| = 0.

(iv) If 0 < liminf, e @y < limsup,_..(an + Bn) < 1, 0 < liminf, e cn <
limsup,,_, (¢, +d,) < 1 and limsup,,_, ., a, < 1, by (ii) and (iii), we have

lim ||T(PT)" 'z, — 4|l = 0 and lim [|T(PT)* 'z, — z,] = 0.  (4.11)
n—co n—o0
From y, = P{(1 — ¢y — dp)2zn + ¢, T(PT)" 'z, + dyvy), we have

llgm — 2l

= [P((1-c, - dn)zn + CnT(PT)n_lxn + davn) — zall

< (L= en — dn)zn + T (PT)" 'z + duty = 2o

= Il(zn - xn) + Cn(T(PT)n_l-Tn N Zn) + dn(vn - zn)"
lzn = 2l + allT(PT) 25 = zal} + dalln — 22|

A

1P((1— an — by)zn + an T(PT)* ta, + bpun) — Plzn)||
+en||T(PT) Y2y — 25l + dallve — 22|

(1 —an — bp)zn + an T(PT)" 'z, + bpu, — |
+Cn||T(PT)n_1$n - Zn” -+ dn””n - .'1'37,,”

= an(T(PTY" 'z — 20) + buftn — )| + || T(PT)* 2, — 24|
_{_dn”vn . xn“

an|T(PTY* 2, — Tl + bnllun — zal + Cn||T(PT)n_133n — zal
+dn”vn - xn”

an||T(PT) 'z, ~ 24| + €l T(PT)" Y2y — 2,]]

+2rb,, - 2rd,, (4.12)

[A

A



50

where 7 is defined by (4.4). From (4.12), we have

I T(PT)" 2, — .| IT(PT)" 'z — yull + ||yn — Zal|
IT(PTY* " 2y, — Y| + an||T(PT)" 'z, — 0
+eo|T(PTY @y — 20| + 270y, + 2rdy,,  (4.13)

<
<

‘Thus by the inequality (4.13), we have

(1 = @) IT(PT)" 20 — zall < NT(PTY* 2 ~ yull + ol T(PTY" ' — 22|
+2rby + 2rd,.

Since limsup,_, a, < 1 and lim, ;50 b, = limp_e0 dy, = 0, it follows from
(4.11) that lim, o [|T(PT)"* 'z, — z,|| = 0. O

Theorem 4.1.3 Let X be a uniformly convez Banach space, and let C be a
nonempty closed conver nonerpansive retract of X with P as a nonezpansive
retraction. Let T : C' — X be a completely continuous asymptotically nonezpan-
sive nonself-map of C with {kn} satisfying kn > 1 and 3 oo | (k, — 1) < 00 and
F(T) # 0. Let {an}, {Bn}, {an}: {bn}, {cn}, {dn} be sequences of real numbers
in [0, 1] with by+c, € [0,1] and an+ B, € [0,1] for alln > 1, and Yoy bn < 00,
Dy G < 00, 3.2 B, < 00, and

(1) 0 <liminf, e, <limsup,_,(0m + Ba) <1, and
(%) 0 <liminf, o ¢, < limsup, . (¢, + ds) <1 and limsup,_,  a, < 1.

Let {z,}, {yn} and {z,} be the sequences defined by the three-step iterative
scheme (4.1). Then {z,}, {y.} and {z,} converge strongly to a fized point of
T.

Proof. By Lemma 4.1.2 , we have

le | T(PTY 'z, —yall = 0,
lim |IT(PT)* 2y — 24| = 0, (4.14)
lim |1T(PT)* 'z, —z,]| = 0.

It follows from (4.12) and (4.14) that lim,, , ||y — Za|| = 0.
Since

[Znt1 — Znll = IP((1 = o — Ba)yn + anT(PT)" 20 + Buawn) — P(z,}||
< (1 = on = Ba)yn + e T(PT) Lz + Brwy — 2]
= |[(yn — Zn) + an(T(PT)n_lxn ~ Yn) + Br{wn — ya)l
< My = zall + el T(PT)" 20 — yall + Ballwn — all,

it follows that lim,_e [|Zn41 — Zn|| = 0.
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Thus

[2a+1 = T(PT)" " Znsall < l1Zas1 = Zall + I T(PT)* 2nss — T(PT)" z,|
+[T(PT)* 'z — ]

< Znrs — zall + kallzng — zall
HIT(PT)* 'z, — 2] — 0 (as n — o) (4.15)

and

[Za41 = T(PTY 21| = [|Zne1 — Tn + 2o — T(PT)" 22,
+ T(PT)"*z, — T(PT)™ 22,.4||
S izna1 — zall + IT(PTY* 2, — 20|
+HT(PT)" 2011 — T(PT)" zy|
< 2ns1 = zall + [TPT)" 22, — 2|
+ Li|zns1 — za|| = 0 (as _n — o0), (4.16)

where L = sup{k, : n > 1}. We denote (PT)'"! to be the identity maps from
C onto itself. Thus by the inequality (4.15) and (4.16), we have

|Zn+1 = T(PT)" Znsa|l + I T(PT) " Zni1 — Ty |
”xn+1 - T(PT)n_lxn-f-l“
"'”T(PT)l_l(PT)n_lxn+1 T T(PT)I_lxn-i-l”

||-'13n+1 - T$n+1”

1A

< @i = TPT)"  znll + LI(PT)" Tnsr — 2l
= #ne1 = T(PT)" 'znal + LIPTYPT)" *2ns1 — P(Tns)]
< N#ntr = T(PT) ' wp]l + LIT(PT)* *2p41 — Snya|

=0 (as n — o0),

which implies that
lim ||Tz, — z,|| = 0. (4.17)

Since T is completely continuous and {z,} C C is bounded, there exists a
subsequence {z,} of {2,} such that {7z, } converges. Therefore from (4.17),
{%n,} converges. Let ¢ = limy.,o0 Zn,. By continuity of T" and (4.17) we have
that Tq = ¢, so ¢ is a fixed point of T. By Lemma 4.1.2 (i), lim, s [|2n — ¢||
exists. But limg_,o |20, —¢|| = 0. Thus lim,_, ||z, —q]| = 0. Since [jy,—z.]| =
0 as n — oo, and

1P((1 = an — ba)zn + anT(PT)" 'z, + byu,) — Plzy)||
(1 = an = bp)2n + @ T(PT)* 'z, + bptty — 2|
| T(PT)* ' zp — | + byl — 2,]| = 0 as n — oo,

”zn - :En”

<
<

it follows that limg, 0 4n = ¢ and lim, 400 2, = q . O



52

For a, = b, = 0, then Theorem 4.1.3 reduces to the two-step iteration with
€rrors.

Corollary 4.1.4 Let X be a uniformly conver Banach space, and let C be a
nonempty closed convezr nonezpansive retract of X with P as a nonezpansive
retraction. Let T : C — X be a completely continuous asymptotically nonez-
pansiwe nonself-map of C with {k,} satisfying k, > 1 and Y oo (ks — 1) < 00
and F(T) #0. Let {c,}, {dn}, {om}, {Bn} be real sequences in [0,1] satisfying

(?) 0 <liminf, o an < limsup, . (a, + B) <1, and

(#) 0 <liminf, e ¢, < limsup,,_, (¢, +d,) < 1.

For a given 2, € C, define

Yn = P((1—cn—dp)zn + caT(PT)" 'z, + dpoy),
Tnr1 = P((1—an— Boyn + anT(PTY 'z, + Brw,), n>1.

Then {z,} and {yn} converge strongly to a fized point of T.

In the next result, we prove weak convergence of the new three-step iterative
scheme (4.1} for asymptotically nonexpansive nonself-mapping in a uniformly
convex Banach space satisfying Opial’s condition.

Theorem 4.1.5 Let X be a uniformly conver Banach space which satisfies Opial’s
condition, and C' a nonempty closed conver nonezpansive retract of X with P
as a nonerpansive retraction. Let T : C — X be an asymptotically nonezpan-
sive nonself-map of C with {k,} satisfying k, > 1 and 3 o2 (ka — 1) < c0 and
F(T) #0. Let {an}, {Bn}, {an}, {b:}, {cn}, {dn} be sequences of real numbers in
[0, 1] with b, + ¢, € [0,1] and an + B, €[0,1] for alln > 1, and 322 b, < oo,
Doy ln <00, 302 B, < 00 and

(i) 0 <liminf, . 0, < limsup, ,(an + B} <1, and
(4) 0 <liminf, o cp, < limsup, . (c: +dn) < 1 and limsup,,_,., an < 1.

Let {zn} be the sequence defined by three-siep iterative scheme (4.1). Then
{z,} converges weakly to a fired point of T

Proof. By using the same proof as in Theorem 4.1.3, it can be shown that
limp_y00 [T2, —2n]| = 0. Since X is uniformly convex and {z,} is bounded,
we may assume that z, — u weakly as n — oo, without loss of generality.
By Lemma 2.4.2, we have v € F(T). Suppose that subsequences {z,, } and
{#m,} of {z,} converge weakly to u and v, respectively. From Lemma 2.4.2,
u,v € F(T}. By Lemma 4.1.2 (i), imp e ||Zn — u|| and lim,_, || 7, ~ v|] exist.
It follows from Lemma 2.2.16 that v = v. Therefore {z,} converges weakly to
a fixed point of 7. 0

When a, = b, = 0 in Theorem 4.1.5, we obtain weak convergence theorem
of the two-step iteration with errors as follows:
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Corollary 4.1.6 Let X be a uniformly convez Banach space which satisfies Opial’s
condition, and C a nonempty closed convexr nonezpansive retract of X with P
as a nonezpansive retraction. Let T : C — X be an asymptotically nonezpan-
sive nonself-map of C with {k,} satisfying k, > 1 and Y oo {kn — 1) < 0o and
F(T) # 0. Let {c,}, {dn}, {an}, {Bn} e sequences of real numbers in [0,1] such
that

(i) 0 <liminf, o ¢, <limsup, (0 + 5n) <1, and

(it) 0 <liminf, e ¢y < limsup, (s + dpn) < 1.

For a given x, € C, define

Yn = P((]- — Cn — dn)xn + CnT(PT)n_lxn + dn’Un),
Tusr = P((1—ay— Bu)un + o T(PTY 2, + frwn), n>1,

Then {z,} converges weakly to a fized point of T

Next, we will consider and study the modified Noor iterations with errors
for asymptotically nonexpansive nonself-mapping. This scheme can be viewed
as an extension for three-step and two-step iterative schemes of Noor [22, 23],
Xu and Noor [45], Suantai [35], Ishikawa, [11] and Nammanee, Noor and Suantai
[21]. The scheme is defined as follows.

Let X be a normed space, C' a nonempty convex subset of X, P: X — C a
nonexpansive retraction of X onto C, and T : C — X a given mapping. Then
for a given z; € C, compute the sequence {z,},{yn} and {z,} by the iterative
scheme

zn = P(a,T(PT)" 'z + (1 — ap — V) ZTn + Yalta)
Un Pb,T(PT)" 2, 4 caT(PT)" 2y + (1 — by — Cn — fin) T + i)
Tpop1 PlanT(PT)" Yyp + BT (PT)" 1z + (1 — @ — B — An)Tn + Ann),
n>1, (4.18)

I

where {a,},{ba}, {€n}; {@n}, {Bn}, {7}, {ttn}, {An} are appropriate sequences
in [0,1] and {u,}, {vr} and {w,} are bounded sequences in C.

The iterative schemes (4.18) are called the modified Noor iterations with
errors for asymptotically nonexpansive nonself mappings.

T :C — C, then the iterative schemes (4.18) reduces to the modified Noor
iterations with errors defined by Nammanee, Noor and Suantai {21],

Zn = GuI"Zn 4+ (1 — @n — Yn)Zn + Ynln
Yn bnTnzn + chnxn + (1 - bn —Cp — .}u’n)xn + HnUn (419)
Tpylr = OfnTnyn + IBnTnzn + (]- — O — /Bn - )\n)xn + /\n'wna n>1,
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where {a,}, {00}, {cn}, {@n}, {Bn}, {1}, {tin}, {An} are appropriate sequences
in [0,1] and {un}, {vn} and {w,} are bounded sequences in C.

UT:C — Cand vy, =y, = Ay = 0, then (4.18) reduces to the modified
Noor iterations defined by Suantai [35]

zp = Tz, + (1 —an)zn
Yn = bpT"2p +cnTan + (1 — by — ) Tn (4.20)
$n+1 = O—’nTnyn + 6nTnzn + (1 — O — ﬁn)mn: n 2 11

where {a,}, {bn}, {cn}, {on}, {6n} are appropriate sequences in [0, 1].

We note that the usual Ishikawa and Mann iterations are special cases of
(4.18) and if T: C — C and ¢, = B = Y = ftn = An = 0, then (4.18) reduces
to the Noor iterations defined by Xu and Noor [45]

Zp = Tz, + (1 — an)zn B
Yn = b0, T2, + (1 = by)z, (4.21)
Tpy1 — anTﬂyn + (1 B, an)mna n 21,

where {an}, {bn}, {on} are appropriate sequences in [0, 1].
ForT:C — C and a, = ¢, = B = Yn = tin = An = 0, then (4.18) reduces
to the usual Ishikawa iterative scheme
Yn = b T2y + (1 i~ bn)mn (422)
o1 = Ty + (1 —o)2n, n2>1,
where {b,}, {o,} are appropriate sequences in [0, 1].

In this section, we prove weak and strong convergence theorems of modified
Noor iterations with errors for asymptotically nonexpansive nonself-mapping in
a Banach space.

Definition 4.1.7 ([7]) Let X be a real normed linear space and let C be a
nonempty subset of X. Let P : X — C be the nonexpansive retraction of
X onto C. A map T : C — X is said to be asymptotically nonexpansive
nonself-mapping if there exists a sequence ky, k, > 1 with lim,_, ks, = 1, such
that

|T(PT)" 'z — T(PT)" || < kullz — %], Vz,y€C, n>1.

In order to prove our main results, the following lemma is needed.
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Lemma 4.1.8 Let X be a uniformly conver Banach space, and let C be a nonempty
closed conver nonezpansive retract of X with P as a nonezpansive retraction.
Let T : C — X be an asymptotically nonezpansive nonself-map of C with {k,}
satisfyingk, > 1 and ) 7 | (k,—1) < 00 and F(T) # 0. Let {an}, {bn}, {ca}, {an},
{Ba}, {7} {1} and {A} be real sequences in [0, 1] such that an+7n, by+cotfin
and ay + B + Ay are in [0,1] for alln > 1, and 300 7, < 00, D00 iy <
00, D ono An < 00, and let {u,}, {v,} and {w,} be the bounded sequences in C.
For a given z, € C, let {zn},{un} and {z,} be the sequences defined as in

(4.18).

(i) If q is a fized point of T, then lim,_ ||22 — g ewists.

(4) If 0 < liminf,,. 0 0 < limsup, , (0n + Bn + M) < 1,
then limp_,o0 [T (PT)* ly, —zof = 0.

(ii) If 0 < liminfryeo B < limsup, ,oo(@n + B + X)) < 1 orif 0 <
liminf, yoo ¢y, and 0 < liminf, b, < limsup, ,(bn + o + tn) < 1, then
limyp o0 |T(PT)* 12, — 24| = 0.

(iv) If condition in (%) and (iii) are true, then lim, o ||T(PT)* 'z, —z, || =
0.

Proof. Let ¢ € F(T'), by boundedness of the sequence {u,}, {v.} and {w,},
we can put

M = max{sup ||, — ¢||,sup ||v. — ql|, sup ||w, — ql|}.
n>1 n>l n>1

(i) For each n > 1, we have

12041 — gll = |P{anT(PT)"  y + BT (PT)" 2
+ (1 ~ O — fn — /\n)xn + )\n'wn) - P(Q)”
< || T(PTY* 'y, — gl + Bl T(PT)* 2 —~ gl
+ (1 — O — 611 - An)“mn == ‘I” -+ /\H”wn - QH
< ankn“yn = gl + Buknllzn — Q||
+ (1 — o — B — /\n)uxn I QH + MA,. (4'23)

Consider,

llzn — gll = [|1P(axT(PT)" '%n + (1 = an = Ya)Zn + Yalta) — P(q)|]
< an||[T(PT)" 'zn — gl + (1 = an = ¥a)l|2n — ¢l + Yallun — gl
< ankallzn — gll + (1 — a0 — ma)llzn — ol + M7a
S (Gakin + (1 — az))||zn — ql| + M1s
= (an(kn - 1)+ 1)”$n —qll + M
< knllzn — qlf + Moy (4.24)
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and

19 = gll = |P(GnT(PT)* 2 + e T(PT)" 2
+ (1 —bp — ¢p — fn)Tn + faUn) — P(q)l]
< bl T(PT)* 20 — gl + el T(PT)" 2 — gl
+ (1= bp — e — pa)l|Tn — gl + pinllvn — qll
< bnkollzn — gqll + crkallzn — gl + (1 = by — co — pa)ll2n — gl + M.

From (4.24), we have
%2 = all £ baknlkal|za — gll + M) + cnknllzn — ¢l
+ (1= by — o — pn)llzn — gqll + M pin
< (boki + ko + (1 — by — cn))||za — gl + 6?1)
< (ba(k — 1) + calky — 1) + Dz — all + €y
= (k2 — 1){bn + ca) + Dlzn — gl + €y
= k}llzn — gl + €3y, (4.25)

where €fyy = Mb,kqYs + Mpu,, and we note here that 3577, €7y < oo since {k,}
is bounded and Y o2 Yn < 00, Do phn < 00.

From (4.23), (4.24) and (4.25) we get

%041 = gll < cnkn(killzn — all + €fsy) + Bukn(knllza — qll + Mrya)
+ {1 -t — Bn— Aa)llza — gl + MA,
(k3 + Bok2 + (1 — an — Bad)l|zn — ¢ll + €l
o (k3 — 1) + Ba(k] — 1) + 1)z — gl + €3y
(atn + Ba) (k3 — 1) + 1) ]|z — gl + €y

<
<

= (

<1+ (k3 = D)llzn — gll + €y (4.26)

where €y = ankncyy + MBukayn + M, Since 300, (k) — 1) < oo and
D o1 €y < 00 we obtained by (4.26) and Lemma 2.1.3 that limp.soo |20 — ¢
exists.

(ii) By (i), we know that lim,_, ||z, — ¢|| exists for any ¢ € F(T). It follows
from (4.24) and (4.25) that {z,—q}, {T(PT)" 'z,—q}, {zn—q}, {T(PT)" '2p—
g}, {ya — ¢} and {T(PT)" 'y, — q} are bounded sequence. This allows us to
put

K = max{M,sup||z, — ql|,sup [T(PT)" "'z, — g, 5up ||z — qll,
n>1 nzx1 n>1

sup |T(PT)" 'z, — g||,sup ||yn — gll, sup | T{(PT)* 'y — qlf}-
n>1 n>1 n>1
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Since 0 < liminf, o 0 < limsup,,_, . (0n + Bn + An) < 1. It follows from
(4.24) and (4.25) that

12 = glI* < k2llza = all? + €, (4.27)
lva ~ all* < knllzn — gll* + €fyy, (4.28)

where €y = M?2 + 2M Kok, and €y, = () + 2K}, ki and also observe
that > 77, efyy < oo and 3} 72, €7y < oo by bounded of {kn} and 322, 7. <
00, Y oo €y < oo By lemma 2.2.14, there is a continuous strictly increasing

convex function g : [0, 00) — [0,00), ¢(0) = 0 such that

1Az + By + vz + ww|* < Ml||* + Bllyll* + +lll® + wlwl® - Mg(llz - ylI)
(4.29)
for all z,y, z,w € B, and all A, B,v, p € [0, 1] with A+ S+ = 1. It follows that
12041 = ql* = | P(@nT(PT)" 'y + BT (PT)" "2
+ (1= an — B — An)Tn -+ Anwn) — P(g)|f?
< Nan(T(PT)" yn — @) + Ba(T(PT)* 'z — )
+ (1= an = Ba = Aa)(Tn — @) + dalwn — @)1 (4.30)
From (4.27), (4.28), (4.29) and (4.30), we have
201 — alI* € @ul|T(PT)* g — glf* + B} T(PT)* 20 — gl®
+ (]‘ - a'ﬂ u 611 - ATL)”:I:'I"'L — QHZ + }‘n”wn - QHQ
u an(l — Qp — ﬁn - )\n)g(”T(PT)n_lyn - mn”)
< ankiflyn — gll® + Bukillze — all* + (1 — @n ~ Ba —~ An)l|zn — ¢f?
+ KM — a1 — o — B — Aa)g(IT(PT)" iy — 2l
< ankp(kpllzn ~ qll® + efy) + Bakl (k2llzn — glI” + €f))
+ (1= an = Bn— An)llzn — ql* + KA
—on{l —an— P — An)g(llT(P:Z-I)n_l'!)'n )
< (O’nkz + ﬁnk:. +(1—0n—Bn— An))llzn — q”2 + 6?5)
T O«’n(l —n — B — /\n)g(“T(PT)n_lyn " $n||)
< (an(ky — 1) + Ba(ky — 1) + Dllzn — gl* + €5
= an(l = o — B — M)GUIT(PT)" yn — 2n|)
= |lzn — gll® + (em + Ba) (k5 — Dllzs — gll* + €5,
— (1 = o = B = M)g(IT(PT)" i — zal|)
< lza — gl + K3(k; — 1) + )
— (1 = e = B — X)g(IT(PT)" 'y — 2

= &y — gl + €l — (1 — o — B — A)g(IT(PT)" 'y — znl]),
(4.31)
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where €f;, = ankrely) + Bakiely + K 2, and €fy = K (ky = 1) + ¢y and its
worth to note here that }°77, efy < 0o by boundedness of {ka}s 2t €y <
00, Y ooy €(ay < 00, 3% An < oo, and Yo7 (kS—1) < cc. Since 0 <liminfy oo
0y < limsup,,_, o (0m + Bn + An) < 1, there exists ng € N and 43,6, € (0, 1) such
that 0 < 6; < @, and @, + Bn + An < &2 < 1 for all n > ng. Thus we obtain
(4.31) that |

5(1=02) > gIT(PT)" g = zall) € D 20 — al* = Imnsa — o) + > ey

n=ng n=ng n=nop
m
= fltno — all> + D €y (4.32)
n=ng
Since Y7, €l < 00, by letting m — oo in (4.32), we get
(a0}
Z Q(HT(PT)ﬂdlyn — zp[|) < o0,
n=no

and therefore limy,_,c0 g(||T(PT)* 'y, — ||} = 0. Since g is strictly increasing
and continuous at 0 with ¢(0) = 0, it follows that lim,_e | T(PT)* 'yn — 24| =
0.

(iii) First, we assume that 0 < liminf,_,0 fn < limsup, ool Bnt+ M) <
1. By (4.29) and(4.30), we have
2041 — all* < ank2llyn — all* + Bukzllze — all®
+ (1 —Op — ﬁn [ An)”x'n O QHZ + K2/\n
= Bl = e — B~ M) (IT(PT)" ™ 20 — Zaf])-
From this point we follow step by step as in (ii) we will get results

lim \T(PT)* 'z — zal| =0

as required. Next, we assume that 0 < liminf, , @, and lim infroeebn <
lim Sup,_yoo(bn + cn + ia) < L.
By (4.27) and (4.29), we have
lyn — qli? = §P(onT(PT)" " 20 + caT(PT)" 'n
4 (1= by — € — fin)Tn + pn¥n) — P(@)?
< Nou(T{PT)" 20 — q) + a(T(PT)" " 2a — q)
+ (L= b — o = pin)(@n — Q) + (v — DI?
< bu|[T(PT)" 2 — gl + cali T(PT)" 20 — gI*
+ (1= by — o — pn)[|Tn — all® + ptallvn — al?
— (1 = by — cn — pn)9(IT(PT)* 20 — 7))
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< bakillzn — 4l + cakplizn — al?
+ (1= bp = ¢ — pa)lln — all® + pn K
— bn(1 = b — & = ta)g(|T(PT)" 20 — znll)
< bukZ(k2||T0 — g’ + €y)) + akillzn — gl
+ (1= bn = cn — pin)llzn — Q'“2 +1U‘nK2
—bp(l —bp —Cn — Nn)g(”T(PT)n_lzn — Zn|)
< (bnkfz + ani + (1 — b — callzn — Q||2 + 6?7)
— ba(1 — by = Cn = ) (T (PT)" " 20 = znl)
< kﬁ”xn P Q||2 + 6?7) ~bp(L = by —Cn — F‘n)g(”T(PT)n_lzn — zn|)), (4.33)
where €f, = bukZcly + pn K7

By (4.27), (4.29) and (4.33), we also have

(a1 — all* < @nk2llgn — all® + Bakillza — alf?
+ (1 -y = JBn - /\n)||$n ~ QH2 + Kz’\ﬂ
< okl (Kallzn — gli® + €y
~ ba(1 = by — € — ) g(IT(PT)* 2 — 2al]))
+ Bk (2|2 — gl|? + €fy) + (1 — @n — B — An)llzn — alf” + K*Xa
< (kS + Bukh + (1 — an — B — A))llza = all” + )
— Qnk2bn(1 = bn — = ) g([IT(PT)Y" 20 — Zull)
< ||Za — glf? + (@a(kS — 1) + Ba (kS — 1)) l}za — al* + €5
- anbn(l — by —Cn— f—bn)g(”T(PT)n_lzn - xn”)
< ||lza — qll” + €fo) — Omba(l — b —Cn — pn)g(IT(PT)* 2 — zall),
(4.34)

where €y = ankiely) ;l: Brkiely + K2, anoci €y = €5y + K2 (k5 — 1). Tt is worth
to 0xsote here that Zogzl €fg) < oo and gnzl €lgy < 00 since {kn} is bounded,
D e €y <00, Dol €y < 00 and Yoo 4 An < 0O

By our assumption 0 < liminf, e 0 and 0 < liminf, e b, < limsup, —oolbn
+ o + a) < 1, there exists ng € N and 6,82 € (0,1) such that 0 < & < o,
0 < &) < by and by, + ¢u + pn, < 62 < 1 for all n > ng. Hence, by (4.34), we have

81— 6) 3 g(ITPT) 2 = zal) < D (lon — all® = flzwer = alP) + 3 o
n=ng n=np n=np

. T
= [l — ali* + > oy-

n=ng
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Since 3 77 €foy < 00, by letting m — oo, we get S gl TPyt

n=ng
Zn — Tnll) < oo, and therefore lim, o0 g{||[7(PT)* 2, — %,]|) = 0. Since
¢ is strictly increasing and continuous at 0 with ¢g{0) = 0, it follows that
limy, 00 || T(PT)" L2, — za]| = 0.

(iv) Suppose that the conditions (ii) and (iii) are satisfied, we have

T}Lm |T(PTY Yy — o = 0 and lim || T(PT)" '2n — 2| = 0.  (4.35)

From y, = P(b,T(PTY* 1z, + e, T(PT)" tay + (1 — by — o — fin)Tn + fan),s
we have

fyn — znl|l < bn”T(PT)n"lzn — ]| + cn”T(PT)”_lxn — || + pin||vn — za||-

It follows that

|T(PT)* 'z — 24| < [T(PT)" ' — T(PT)* 'yl + | T(PT)" 'y — zal|
< knumn - yn” + ”T(PT)n_lyn — Ty |
< k(|| T(PTY ™ 20 — | + ol T (PTY" 2y — 4|
+ pinllvn — zall) + “T(PT)H_lyn — |
= knbn|T(PT)" 2 — 24| + Cokin||T(PT)" 2, — 2, ||
+ pinknlun — zo|| + | T(PTY yn — Tl|- (4.36)

By Lemma 2.2.17, there exists positive integer n; and v € (0,1) such that
Cnky < 7y for all n > n,;. This together with (4.36) implies that for n > n,

T (PT)" 2 — nll < knbnl|T(PT)* 20 — 2ol + | T(PT)" 20 — 2al|
+ pinkalltn — Zall + [T(PT)" g — 2all.

Hence

(1- '}')”T(PT)H_Imn — 2| £ knbn”T(PT)n_lzn — zaf] + Pkl v — Zal|
+ |[T(PTY ¢ — 2all.

It follows from (4.35) that lim,_,e [[T(PT)" 'z, — 2| = 0. O

Theorem 4.1.9 Let X be a uniformly convez Banach space, and let C be a
nonempty closed convex nonezpansive retract of X with P as a nonezpansive
retraction. Let T': C — X be a completely continvous asymplotically nonez-
pansive nonself-map of C with {k,} satisfying kn > 1,3 - (kn — 1) < 00 and
F(T) # 0. Let {an}’ {bﬂ}! {Cn}v {an}: {611}3 {'Yn}r {.un} and {)\n} be sequences of
real numbers in [0, 1] with a, +v, € [0, 1], by +cn-+ta € [0,1] and ay + B+ A €
[0,1] for alln > 1, and 3 2% | v, < 00, D oor ) fhn < 00, D01 Ay < 00 and
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(1) 0 < min{liminf, e @, liminf, y00 Sn} < limsup, o (0n+Fr+As) <1,
or

(ii) 0 < liminf, e an < limsup,_,oo(@n+BatAn) <1 and0 < liminf, o by
< limsup, o (bn + o + pin) < L.

Let {zn}, {yn} and {z,} be the sequences defined by the modified Noor itera-
tions with errors (4.18). Then {z,}, {yn} and {zn} converge strongly to a fized
point of T".

Proof. By Lemma 4.1.8 , we have

lim |T(PT)" 'yn —za]] = 0,

n—roo

lim [|T(PT)* 'z, —zal] = O, (4.37)
n—oo

lim ||T(PTY* 'z, —zall = 0.

n—oc

Since R P(an(T(PT)n—lyn + ﬁn(T(PT)n_Izn + (1-; Oy — ﬁn N }\n)zn i
Antty). By (4.37), we have
2041 = Zall = [|Pan(T(PT)" g + Ba(T(PT)" 20
+ (1 — Gp — ﬁn 1 /\n)xn + )\nwn) - P(Q?n)”
< o [[T(PTY*  yn — Zall + Bull T(PT)" 2 — 24
+ Apllwn — zn]| = 0 (as n — 00).

Thus

Zns1 = T(PT)" ' Tnp1 || < fTns1 — zall + | T(PT)" 21 — T(PT)" 'z,
+ |T(PT)* 'z, — z,]]
< a1 = Zall + knl|Zasr — Za| + ”T(PT)R—IZETL — ||
= (1+ kz)l|Tnt1 — zal| + ”T(PT)n_lmn — Z]
—0 (as n— ).

Hence

|Tns1 — T(PT)”'an_,_l” S |[#n41 — Tn + T — T(PT)n_zxn
+ T(PT)" %z, — T(PT)" 22,4
1241 — zal| + |T(PT)" 220 — 2nl]
+ |T(PT)* 2wpyy — T(PTY 2z, ||
< [tmss = 7all + IT(PT)" 22 — 2]
+ L||Zpe1 — zall 0 (a8 7 — 00),

where L = sup,, kn. We denote (PT)'~! to be the identity maps from C onto
itself. It follows that
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2041 = TTnpall € Y1 — T(PT)* g |
+ | T(PT) ' 2py1 — TTnpa ]l
= |Tas1 — T(PT)" ' znp]
+[|[T(PT) " PT)*  @nyr — T(PT) ' Zpa [
<@g = T(PT) ' anpall + LI(PT)"  Tns1 — Tnsa |
= |Zng1s = T(PT)"'zpsa || + LNPTYPT)* *20s1 — P(2np1)l]
< |#as1 = T(PT)* *Tasa|l + LIT(PT)* 2ps1 = Tt
—0 (as n— 00),

which implies that
lim [Tz, — z,|| = 0. (4.38)
n—o0

Since T is completely continuous and {z,} is bounded, -there exists a subse-
quence {zn, } of {z,} such that {Tz,, } converges. Therefore from (4.38), {zn,}
converges. Let limg_,oo Zn, = ¢. By continuity of T and (4.38) we have that
Tq = g, so ¢ is a fixed point of 7. By Lemma 4.1.8 (i), lim,_, ||, — ¢ exists.
But limy 0 [[2n, — ¢]] = 0. Thus lim, . ||z, — ¢|| = 0. Since

¥ — Tl = [|PonT(PT) 2 + caT(PT)* 2,
+ (1 — by —Cp — .U'n)xn -+ P"n'Un) - P(xn)”
< bn”T(PT)n_lzn T xn” 3 Cn”T(PT)n—l-Tn. - mn”
+ tinllvn — 2a|| = 0 (as n — o0),

and
ll2n — zall = [P(axT(PT)" 2 + (1 — an — Ya)Ta + Yala) — P(za)||
L an||T(PT)" 'z — zp]| + al|tin — 7a]| = 0 (as n — 00),
it follows that lim, 0. ¥, = ¢ and lim, ;0 2, = ¢ - U

For v, = ptn, = Ap, =0 in Theorem 4.1.9 , we obtain the following result.

Theorem 4.1.10 Let X be a uniformly conver Banach space, and let C be a
nonempty closed conver nonexpansive retract of X with P as a nonezpansive
retraction. Let T : C — X be a completely continuous asymptotically nonez-
pansive nonself-map of C with {k,} satisfying kn > 1 and Y oo {kn — 1) < 00
and F(T) # 0. Let {an}, {b.}, {¢n}, {@n}, {Bn} be sequences of real numbers in
(0,1) with by +¢n, € [0,1] and & + B, € {0,1] for alin > 1, and

(i) 0 < min{liminf,_,e, an,liminf, e Br} < limsup,_, . (. + Bn) <1, or
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(1) 0 <liminf, , 0, < limsup, . (0n+08n) <1 and0 < liminf,_, o b, <
limsup,,_, e (bn + ¢p) < 1.

Let {zn}, {yn} and {2,} be the sequences defined by the modified Noor itera-
tions with errors (4.18). Then {z,},{y.} and {2.} converge strongly to o fized
point of T.

For ¢, = Bn = Yn = pin = Ap = 0 in Theorem 4.1.9 , we obtain the following
result.

Theorem 4.1.11 Let X be a uniformly conver Banach space, and let C be a
nonempty closed conver nonerpansive retract of X with P as a nonezpansive
retraction. Let T : C — X be a completely continuous asympiotically nonez-
pansive nonself-map of C with {k,} satisfying k. > 1 and 3y oo {kn — 1) < o0

n=1

and F(T) # 0 . Let {an}, {bn}, {an} be real sequences in [0,1) satisfying

() 0 < liminf, ¢ b, < limsup, , b, <1, and
(i) 0 < liminf, o oy < limsup, ., o, < 1,

For a given z, € C, define

Zn = P(anT(PT)n_lxn + (1 — az)zn)
Yo = P(bnT(PT)”"lzn + (1 — b,)z,)

Tnyr = P(anT(PT)n_lyn - (1 T an)xn): n > L

Then {zn}, {yn} and {z,} converge strongly to a fixed point of T

For ap, = ¢y, = B = Yo = tn = Ap = 0 in Theorem 4.1.9 , we obtain the
following result. ‘

Theorem 4.1.12 Let X be o uniformly convex Banach space, and let C be a
nonempty closed convexr nonexpansive retract of X with P as o nonezpansive
retraction. Let T : C — X be o completely continuous asymptotically nonez-
pansive nonself-map of C with {k,} satisfying kn, > 1 and 3_o2 (ko — 1) < o0
and F(T) £ 0. Let {b,}, {on} be a real sequence in [0,1] satisfying

(?) 0 < liminf, e bn < limsup, ., b < 1,and
(#7) 0 < liminf, o 0 < limsup,, . 0, < 1.

For a given x1 € C, define

Yo = Pb,T(PT)" 'z, + (1 — by)zn)
Int1 = P(aﬂT(PT)n_lyn + (1 - an)xn): n =1

Then {z,} and {y.} converge strongly to a fized point of T.
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If T is a self-mapping, then the iterative scheme (4.18) reduces to that of
{4.19) and the following result is directly obtained by Theorem 4.1.9.

Theorem 4.1.13 ([21, Theorem 2.3]) Let X be a uniformly conver Banach space,
and C a nonempty closed, bounded and convez subset of X. Let T be a com-
pletely continuous asymptotically nonezpansive self-map of C with {k,} satisfy-
ing kn > 1 and Eioﬂ(kn —1) <o0o. Let {ax}, {ba}, {cn}, {an}: {Bn}s {m}: {1n}
and {\.} be sequences of real numbers in [0,1] with by, + ¢n + pa € [0,1]
and an + B Ay € [0,1] for all m > 1, and >0 va < 00, oo fn <
00, Y oo Ap < 00 and

(;) 0 <liminf, o b, < limsup, ,oo(bn + o+ un) <1, and
(i1) 0 < liminf, , @, < limsup, ,.(x + G+ An) < 1.

Let {z,}, {un} and {z,} be the sequences defined by (4.19). Then {zn}, {yn}
and {z,} converge strongly to a fized point of T.

For T is a self-mapping and v, = p, = A, = 0 in Theorem 4.1.9 , we
obtain the following result.

Theorem 4.1.14 ([35, Theorem 2.3]) Let X be a uniformly conver Banach space,
and C a nonempty closed, bounded and convezr subset of X. Let T be a com-
pletely continuous asymptotically nonespansive self-map of C with {k,} satisfy-
ingk, > 1 and oo (kn—1) < co. Let {an}, {bn}, {cn}, {0}, {Bn} be sequences
of real numbers in [0, 1] with b, +c, € [0,1] and an, + B € [0,1] for alln > 1,
and

(i) 0<liminf, b, <limsup, ,.(bs+cs) <1, and
(ii) 0 < liminf, e &t < limsup,_, {0 + Bn) < 1.

Let {zn}, {yn} and {z,} be the sequences defined by (4.20). Then {zn}, {yn}
and {2,} converge strongly to a fized point of T'.

For T is a self-mapping and ¢, = fn = Yo = Un = Ay = 0, then the
iterative scheme (4.18) reduces to that of (4.21) and the following result is
directly obtained by Theorem 4.1.9.

Theorem 4.1.15 ([45, Theorem 2.1]) Let X be a uniformly convez Banach space,
and let C be a closed, bounded and convexr subset of X. Let T be a com-
pletely continuous asymptotically nonexpansive self-map of C with {k,} sat-
isfying kn > 1 and 3 oo (ko — 1) < 00. Let {an}, {bn}, {an} be real sequences
in [0, 1] satisfying

() 0 < liminf, 0 b, < limsup,_, . b, <1, and
(1) 0 < liminf, o @, < limsup,,_, o, 0n < 1,
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For a given z, € C, define

Zn = anTn-rn -+ (]- - an)mn
Yo = 0Tz + (1 —brlzy, n>1
Tpy1 = pT"Yn + (1 — ap)2s-

Then {zn}, {yn}, and {z,} converge strongly to a fized point of T.

When T is a self-mapping and ¢, = ¢4 = Bn = Ta = fn = An = 0
in Theorem 4.1.9 , we can obtain Ishikawa-type convergence result which is a
generalization of Theorem 3 in [29].

Theorem 4.1.16 Let X be e uniformly convezr Banach space, and let C be a

closed, bounded and convez subset of X. Let T be a completely continuous

asymptotically nonezpansive self-map of C with {k,} satisfying k, > 1 and
> (k= 1) < 0o. Let {bp}, {an} be a real sequence in {0, 1] satisfying

() 0 < liminf, e b, < limsup,_, . bn < 1,and
(1) 0 < liminf, oo 0y < limsup,_, o, 0 < 1.

For a given x; € C, define

Yo = 0,T"2, + (1 — bn)zn
Tnt1 = OfnTm'yn + (1 i an)xm n 2 1.

Then {z,} and {y,} converge strongly to a fized point of T.

In the next result, we prove weak convergence of the modified Noor iterations
with errors for asymptotically nonexpansive nonself-mapping in a uniformly
convex Banach space satisfying Opial’s condition.

Theorem 4.1.17 Let X be a uniformly conver Banach space which satisfies
Opial’s condition, and C a nonempty closed conver nonezpansive retract of X
with P as a nonezpansive retraction. Let T : C — X be an asymptotically
nonegpansive nonself-map of C with {k,} satisfying k, > 1 and > oo (kn,—1) <
oo and F(T) # 0. Let {an}, {ba},{cn}: {@n}, {Bn}: {tin}, {An} be sequences of
real numbers in [0, 1] with a, + Y, by + ¢ + tn and o + By + A are in [0, 1]
foralln >1,and Y o Yn < 00, I oo tin < 00, Doy An < 00 and

(z) 0 < min{liminf,. 0o Gpn, liminf, ,e0 fn} < limsup,_, o (0n+8+An) < 1,
or

(i) 0 < liminf, o 0n < limsup, . (@at+Batin) <1 and0 < liminf, e by
< limsup,,_, o (br + o + 1n) < 1.

Let {z,} be the sequence defined by modified Noor iterations with errors
(4.18). Then {zn} converges weakly to a fized point of T.
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Proof. It follows from Lemma 4.1.8 (iv) that lim, e |[T(PT)* 1z, — z,|| =
0. Since X is uniformly convex and {z,} is bounded, we may assume that
z, — u weakly as n — oo, without loss of generality. By Lemma 2.4.2, we
have u € F(T'). Suppose that subsequences {zn, } and {zn, } of {z,} converge
weakly to v and v, respectively. From Lemma 2.4.2, u,v € F(T). By Lemma
4.1.8 (i), limpo0 [|Zn — uf| and limg, o ||z, — v|| exist. It follows from Lemma
2.2.16 that u = v. Therefore {z,} converges weakly to fixed point of T'. O

For 7y, = tp = Ap = 0 in Theorem 4.1.17, we obtain the following result.

Corollary 4.1.18 Let X be a uniformly conver Banach space which satisfies
Opial’s condition, and C a nonempty closed convexr nonezpansive retroct of X
with P os a nonexpansive retraction. Let T : C — X be an asymptotically non-
ezpansive nonself-map of C with {k,} satisfying k, > 1 and > o0, (kn—1) < 00
and F(T) # 0. Let {an}, {ba}, {cu}s {an}: {Bn} be sequences of real numbers in
[0, 1] with b, + ¢, € [0,1] and @, + B, € [0,1] for alln> 1, and

(i) 0 < min{liminf, . oy, liminf, 0o Ba} < limsup, . (0n + Bn) <1, or
(1) 0 < liminf, e o < Hmsup, . (0n+8:) <1 and0 < liminf, ., b, <
limsup,, . (bn + ¢n) < 1.

Let {z,} be the sequence defined by modified Noor iterations with errors
(4.18). Then {z,} converges weakly to a fized point of T.

For ¢, = B, = ¥n = ptn = An = 0 in Theorem 4.1.17, we obtain the following
result.

Corollary 4.1.19 Let X be a uniformly conver Banach space which satisfies
Opial’s condition, and C a nonempty closed convezr nonezpansive retract of X
with P as a nonezpansive retraction. Let T : C' — X be an asymptotically non-
expansive nonself-map of C with {k,} satisfying k, > 1 and > oo\ (kn—1) < o0
and F(T) # 0. Let {an}, {ba}, {on} be real sequences in [0, 1] satisfying

() 0 < liminf, ,o b, < limsup,,_,., bn < 1, and
(1) 0 < liminf, o o < limsup,_,, o < 1,

For a given x, € C, define

zn = Pla,T(PT)" 'z, + (1 — an)zs)
Yn = P(bnT(PT)n_lzn +(1=bp)zp), n21
In4l = P(anT(PT)n_lyn + (1 — aa)Ta).

Then {x,} converges weakly to a fized point of T

For a, = ¢, = Bn = Yo = pin = An = 0 in Theorem 4.1.17, we obtain the
following result.
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Corollary 4.1.20 Let X be a uniformly convexr Banach space which satisfies
Opial’s condition, and C o nonemply closed convexr nonexpansive retract of X
with P as a nonezpansive retraction. Let T : C — X be an asymptotically non-
ezpansive nonself-map of C with {k,} satisfying k, > 1 and > o (kn—1) < 00
and F(T) # 0. Let {b,}, {an} be real sequences in [0, 1] satisfying

(1) 0 < liminf, ,o b, < limsup,_,,, b < 1,and
(#1) 0 < liminf, ,e @ < limsup,,_, . @, < 1.

For a gwven z1 € C, define
Yn = P(bnT(PT)n_lzn + (1 = by)zn)
Tpr1 = PlenT(PT)" lyp+ (1 — an)zs), n>1

Then {z,} converges weakly to a fized point of T.

4,2 Common Fixed Points of Asymptoiiica]ly Nonex-
pansive Mappings

In 2001, Xu and Ori [46] introduced the following implicit iteration pro-
cess for a finite family of nonexpansive mappings {T; : ¢ € J} (here J =
{1,2,...,N}) with {@,} is a real sequence in (0, 1), and an initial point =y € C:

Iy = Ty + (]. ~ Ofl)Tl.’Bl,
Tog = aX1 + (1 — Olz)Tzﬂiz,
zy = anyzyo+ (1 —on)Tnzy,
Zntr = onpZy + (1 —ana)TnviThen,

which can be written in the following compact form:
Tn = Qpn_y + (1 — o) ThZn, VR 21, (4.39)

where Ty, = Tr(mea ) (here the mod N function takes values in J). Xu and Ori
also proved the weak convergence of this process to a common fixed point of
the finite family of nonexpansive mappings in a Hilbert space.

In [50], Zhou and Chang studied the weak and strong convergence of this
implicit process to a common fixed point for a finite family of nonexpansive map-
pings in a uniformly convex Banach space. Recently, Chidume and Shahzad [8]
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proved that Xu and Ori’s iteration process converges strongly to a common
fixed point for a finite family of nonexpansive mappings if one of the mappings
is semi-compact. Inspired and motivated by these facts, we will extend the pro-
cess (4.39) to a process for a finite family of asymptotically quasi-nonexpansive
mappings in a uniformly convex Banach spaces, which is defined as follows:

Let X be a normed linear space, C' a nonempty convex subset of X, {7} :
i € J} a finite families of asymptotically quasi-nonexpansive mappings of C.
Suppose that {e;,} and {#,} are two real sequences in [0, 1] such that sup{%,(1—
on—PBr) 1 n > 1} < 1. Then for arbitrary zq € C, the sequence {z,} is generated
as follows:

z; = oz + fiTize + (1 —oq — fi) Tz,
Ty = gty + Pz + (1 — g — F2) 127,

oy = aysyn-1+ BnTnzy—1 + (1 —an — BTNy,
IN+1 = QNH1ZNF ﬂN+1T12$N + (1 —ant1— ﬁN+1)T12$N+1,
TaN = QoaNTon_1 -+ ﬂ2NTKr$2N—1 + (1 — agn — ﬁZN)Tf%($2Na
Tons1 = Ooni1Zan + BaviTozonss + (1 — canyr — Bowt1)TiTan+1,

is called the implicit iterative sequence for a finite family of asymptotically
quasi-nonexpansive mappings {71, 73, ...,Twn}. Since for each n > 1, it can be
written as n = (k — 1)N + ¢, where 1 = i(n) € J, k = k(n) > 1 is positive
integer and k(n) — oo, as n — co. Hence we can write the above table in the
following compact form:

Tpn = OQpZp_1+ ﬂnTi"mﬂ_l +(1-a,— 6n)Tikxn, Yn > 1. (4.40)

In this section, we prove weak and strong convergence of the implicit itera-
tion process (4.40) to a common fixed point for a finite family of asymptotically
quasi-nonexpansive mappings in a uniformly convex Banach space.

Theorem 4.2.1 Let X be a uniformly convezr Banach space and let C be a
nonempty closed convex subset of X. Let {T; : i € J} be N asymptotically
quasi-nonezpansive self-mappings of C, i.e., ||[Tlz — q|| < (1 + um)llz — gf| for
dlzeC,qe F(Ty),ie Jwith F =N F(T;) #0 (here F(T;) denotes the set
of fized points of T;). Let {a,} and {Bn} be real sequences in [0,1] such that oy,
On + Bn are in (5,1 —s) for some s € (0,1), foralln > 1, and 3 07 ; Uin < 00
for all i € J. Then the implicitly iterative sequence {x,} generated by (4.40)
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converges to a common fired point in F if and only if liminf, o d(zn, F) = 0,
where d(z, F') denotes the distance of z to set F, i.e., d(z, F) = infyer d(z,y).

Proof. The necessity of the conditions is obvious. Thus, we will only prove
the sufficiency. For any p € F, from

Tp = Qply_1+ ﬁn’-—[-;:kxn-—l + (1 — Qp — 611),1—;"’63::1:
where n = (k — 1)N +14, T, = Tp(mod N) =T;, 1 € J, it follows that

zn — DIl = @@t + BuTFzaes + (1 — an — Ba) T¥2n — 1|
< ol|ns — pll + Ball TFBns — pl| + (1 — an — Bl T 20 — 1]
< g ||Zn-1 — plf + Bn(1 + Ui )| Zno1 — 2l
+ (1 = ap — Ba) (1 + uir)|zn — 2l
< (@ + Ba + Bruie)l|Ta—1 — Pl + (1 — 0 — B — Batti + uix) |7 — 2.

Transposing and simplifying above inequality, and noticing that s < o, +
B, <1—35<1, we have

(tn + B + Botti)||Zn — Dl < (n + Ba + Batii}||Zn—1 — DIl + wirllzn — 2l
< (an + ﬁn + ﬁnuik)“xﬂ—l - p”
Cn + ﬁn + ﬁnuz'k
y )

+uik( ”xn ""p”'

Hence
S5 — Uik

lzn =2l € l|Zn-1 —pll- (4.41)

Since S po, uix < oo for all i € J, thus limy—e usx = 0, there exists a natural
number ng, as k > ng/N + 1, i.e., n > ng such that s —ug > 0 and uy, < 3.
Then (4.41) becomes
8

lzn —pll < —— o |#n-1 — pll- (4.42)

Let 1+ vy = ;25— = 1+ ;2% Then vy = (s—_lu—k)udC < 2y, therefore
S vk < 235 ug < oo for all i € J and (4.42) becomes

lzn —pll < (Q+vw)lza-r —pll,VPEF (4.43)

This implies that d(z,, F) < (1+vi)d{Tn-1, F). From Lemma 2.1.3 we have
limy, 00 d(Zn, F') = 0. Hereafter, we will prove that {zn} is a Cauchy sequence.
Notice that when z > 0, 1 + z < €%, from (4.43) we have

[Znim =PIl < exp{D D vi}lzn -7l

i=1 k=1

< Mlzn—pl. VpEF, (4.44)
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for all natural number m,n, where M = exp{Y ., > r0, vix} + 1 < 0o. For all
€ > 0, there exists a natural number 7, such that when n > ny, d(zn, F) < 537
as iMoo (T, F) = 0; specifically, d(zna,, F) < 537 Thus there exists a point
p; € F such that [[z,, — p1]] < d(Tn,, 1) < 555 by the definition of d(zn, F). It
follows, from (4.44), that when n > n;, for all m,

”-'L'n-l-m - xn” S ||$n+m “'pl” -+ ”zn - pl”
< M“:Eﬂl —P1|| +M”"‘Uﬂ1 _p1||
<

€ €
5 + -2~ = €.

This implies that {z,} is a Cauchy sequence. Because the space is complete,
the sequence {z,} is convergent. Let lim, ;o0 Z, = p. Moreover, since the set
of fixed points of an asymptotically quasi-nonexpansive mapping is closed, so is
F, thus p € F from lim,_,e0 d{(Z,, F) = 0, ie., p is a common point of F(T3),
for all i € J. This completes the proof. O

Corollary 4.2.2 Suppose the conditions are as same as in Theorem 4.2.1. Then
the implicitly iterative sequence {z,} generated by (4.40) converges to a common
fized point p € F if and only if there exists some infinite subsequence {zn;} of
{z,} which converges to p.

The main purpose of this paper is to prove the following convergent result
for the process (4.40).

Theorem 4.2.3 Let X be a uniformly conver Banach space and let C be a

bounded closed convex subset of X. Let {T; : i € J} be N uniformly L-Lipschitzian
asymptotically quasi-nonezpansive self-mappings of C with F = N F(T)#0

and there ezists one member T in {T; : i € J} to be semi-compact. Let {an} and

{B.} be real sequences in [0, 1] such that on, om + Pn are in (5,1 —s) for some

s€(0,1), for alln > 1, and Y oe Uin < 00 for all i € J. Then sequence {zn}

defined by the implicit iteration process (4.40) strongly converges to a common

fized point of the mappings {T; :i € J}.

Proof. Since C is bounded, take r > 0 such that C C B(0,r), where B(0,r)
is the closed ball of X with center zero and radius r. By Lemma 2.2.13, we get
for any ¢ € F

||$n T QH2 = ”anmn—l + ﬂnﬂkmn—l + (1 - Oy — ﬁn)ﬂk-’rn > B q||2
= |len{Tn-1 — ) + ﬁn(ﬂkxn—l —q)+(1—an— ﬁn)(ﬂkxn - Q)H?
< anllza-1 — gl + Bull T w01 — alf?
+(1—an— ﬁn)”Tikxn - QI[2 —on(l —an — Bn)g(on),
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where 0, = || T¥z, — 21| = | T 20 — 2nall, n=(k—1)N+i, ieJ
Since T, is asymptotically quasi-nonexpansive, it follows that

lzn — q”2 < anllzn-y = ‘1”2 + Bn(1+ uik)zumn—l - QH2
+ (1 — Qp — ﬁn)(l + uz‘k)zllxn 3 (I”2 "~ aﬂ(l — Qn — 611)9(0'11)
< anllTaoy —gl* + Ballza-1 — QH2 + Brvikl|Tn-1 — q”2
+ (1= an — Bn — Bovie + Vit )||Tn — QHQ — (1l = an — Br)g(on),
(4.45)

where vy, = 2uy, + v, Hence > ey vir < oo for all 2 € J. Thus, from (4.45) and
s < o+ Bn < an + Bn + Brvi, we have

(0t + B + Bavit) |zn — qlf* < (@n + Ba + Bavik) |51 — g|?
(an + ;Bn + ﬁnvik)

+ Uik | — Q‘”2
s

— {1l — o — Br}g(on). (4.46)

Hence [|z, — ¢l]* < |lzn—1 — ¢l + %%||zn — ¢]|*>. Therefore, as in Theorem
4.2.1, we can show that lim, 1 ||z, —¢||? exists and let lim,_, o [z, —¢]|* = d.
From (4.46) and s < a, < ap, + fn < 1 — 5, Vn € N, we have

82 Odn(l = Qp, ~— Bn)
——glo,} < o
1—s5+ JBn'Uikg( n.) Gn + ﬁn + ﬁnvik g( n)

Vik
< ||Za—1 = qlI* = llzn — gl + e gll>.

—s+ 6nvlk

e (e | + 2 len al)-

g(om) S

Since ;7 vir < 00, there exists K > 0 such that,

1-34+K Uik
9(0a) < — 5 (llon-1 = gl* = llzn — all” + =l — all”).
Hence
s+ K
Zg (0n) < ——Z(nzn_1 —q|? = ||Zn — gll? + vis M), (4.47)

n=I1

where M = 25—’" < o0, 1 is the ball radius. Since ) o v < o0, by letting
m — oo in (4.47) we get > o, g(0,) < 00, and therefore lim, .o g(cn) = 0.
Since g is strictly increasing and continuous at 0 with g(0), it follows that

lim o, = lim ||T¥z, — z,_;]| = 0.
n—oo n—eo
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Since T¥ is asymptotically quasi-nonexpansive, we have

“:En - -’L‘n—1|| = Hﬁn(Tikxn"l - mn—l) + (1 - Gp — /Bn)(j—;'kxn - xn—l)“
S ﬁn”’rika:n-l — xn-—l” + (1 = Qi = ﬁn)l'ﬂkxn - xn—l”
< ﬁnHTikmn—l - Tikmn“ + ﬁn”ﬂkmn - $n—1“
+{1-a, - ﬁn)”ﬂkmn - -'Bn—IH
< ﬂn(l + Uik)”xn—l - -'En” + 611“Tik$n i xn-l”
+ (1 — &n — ﬁn)”ﬂkmn ~ 5511—1”
S
< Ba(l+ 5)”311—1 — 2|+ ﬁn”Trfxn — Tl
+ (1 = ap = Bu)llTFzn — zooa|l-
This implies that
S
(1 - /Bn Tl 6n§)”$n I -an—l” S ﬁn”T:mn — xn—-l” + (1 — Gy . ﬂn)”T:xn ) | mn—l”-

From 8, < a, + 8, <1 —s, ¥n € N, we have
s
(5= (1= $)3)[7 — Tl < (1= ) [T470 = o]

It follows that lim, e [|ZTn — Za_1]| = 0. Also limy—yeq [|Zn — Za|| = 0 for all
{ < 2N. Hence, when n > N, we have

[Zn-1 = TnZall £ [[£a-1 = Taall + 1Tz — Tuza|
< on+ LT 2y — T N zn_w|l+

“T,I::jbicn-—N - $(n—N)—1|| + ”E(n—N)—l — Zal|)-

Notice that n = (n — N)(mod N). Thus T, = T,,_y and above inequality
becomes

1Znet =~ Tnznll < 07 + L |20 — Znen|l + Lon_n + Lz, — T(n—N)-1l,
which yields lim, 0 ||Zn—1 — TnZy|| = 0. From
[#n = Tozall £ fl#n ~ Tacall + [[2a-1 — Tnzall,
it follows that im0 |2, — Thznl| = 0. Hence for alll € J

l|zn — n+-!33n” < ”xn - $n+l” + ”xn+l — Tn+l$n+l” + || TnsiZngt — Tn-{—lxn”
< (1 + D)l|#n = Tagill + [|T0+t — TnriZnwills

we have that lim, o [[£n — Thyza|| = 0 (VI € J). Since for each [ € J,
{llzn — Trs1zal|} is a subset of U, {||z, — Tntizn||}, we have
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lim ||z, — Tiza|| =0 (V1 € J). (4.48)

By hypothesis that there exists T in {7; : ¢ € J} to be semi-compact, we
may assume that 7} is semi-compact without loss of generality. Therefore by
(4.48), we have lim,_,c ||z — T12,]] = 0 and by the definition of semi-compact
there exists a subsequence {z,;} of {z,} such that z,, — z* € C. By (4.48)
again, we have

[z* — Tiz*|| = lim |[z,, — Tizn || =0 (V1 <1 N).
nj—oo

It shows that z* € F and lim inf,_, o d(z,, F') = 0, therefore by Theorem
4.2.1 and Corollary 4.2.2 we have that z, converges to a common fixed point ¢
in F. This completes the proof. O

Theorem 4.2.4 Let X be o uniformly conver Banach space and let C be a
bounded closed convez subset of X. Let T;, i €, J be N asymptotically nonezpan-
sive self-mappings of C with F = N, F(T;) # § and there ezists one member
T in {T; : i € J} to be semi-compact. Let {c,} and {B,} be real sequences in
[0,1] such that oy, an + Bn are in (5,1 — 5) for some s € (0,1), for alin > 1,
and 3 7 Uin < 00 for alli € J. Then the sequence {z,} defined by the im-
plicit iteration process (4.40) strongly converges to a common fized point of the
mappings {13 :i € J}.

In the next results, we prove weak convergence of the sequence {z,} defined
by (4.40) in uniformly convex Banach space satisfying Opial’s condition.

Lemma 4.2.5 Let X be a uniformly conves Banach space which satisfies Opial’s
condition, and C be a nonempty closed convez subset of X. Let {T;,i €,J} be N
asymptotically nonezpansive self-mappings of C with F = N, F(T;) # 0. Let
{an} and {B.} be real sequences in [0,1] such that oy, o, + B, are in (5,1 — s)
for some s € (0,1), for alln > 1, and 377, uin < 00 for all i € J. Then the
sequence {z,} defined by the implicit iteration process (4.40) weakly converges
to a common fized point of the mappings {T; : i € J}.

Proof. Since X is uniformly convex and {z,} is bounded, we may assume
that z, = =* weakly as n — oo, with out loss of generality. By Lemma 2.4.1,
we have z* € F(T;) for all : € J. Hence z* € F. Suppose that there exist
subsequence {zn, } and {z,,} of {z,} converge weakly to y* and z* respectively.
By Lemma 2.4.1, y*,2z* € F. As in Theorem 4.2.1, we have lim,_, ||z, — ¥*||
and lim, , ||Z, — 2*|| exists. It follows from Lemma 2.2.16 we have y* = z*.
Therefore {z,} converges weakly to a common fixed point z* in F. O



