Chapter 4

Fixed Point Iterations for Asymptotically Nonexpansive Mappings

4.1 Weak and Strong Convergence to a Fixed Point of Asymptotically Nonexpansive Mapping

A new class of three-step iterative scheme is introduced and studied in this section. The scheme is defined as follows.

Let X be a normed space, C a nonempty convex subset of $X, P : X \to C$ a nonexpansive retraction of X onto C, and $T : C \to X$ a given mapping. Then for a given $x_1 \in C$, compute the sequence $\{x_n\}, \{y_n\}$ and $\{z_n\}$ by the iterative scheme

$$z_{n} = P((1 - a_{n} - b_{n})x_{n} + a_{n}T(PT)^{n-1}x_{n} + b_{n}u_{n}),$$

$$y_{n} = P((1 - c_{n} - d_{n})z_{n} + c_{n}T(PT)^{n-1}x_{n} + d_{n}v_{n}),$$

$$x_{n+1} = P((1 - \alpha_{n} - \beta_{n})y_{n} + \alpha_{n}T(PT)^{n-1}x_{n} + \beta_{n}w_{n}), \quad n \geq 1,$$

$$(4.1)$$

where $\{u_n\}$, $\{v_n\}$, $\{w_n\}$ are bounded sequences in C and $\{a_n\}$, $\{b_n\}$, $\{c_n\}$, $\{d_n\}$, $\{\alpha_n\}$, $\{\beta_n\}$ are appropriate sequences in [0,1].

The iterative schemes (4.1) are called the new three-step iterations with errors for asymptotically nonexpansive nonself-mappings.

In this section, we prove weak and strong convergence theorems for the new three-step iterative scheme (4.1) for asymptotically nonexpansive nonself-mapping in a uniformly convex Banach space.

Definition 4.1.1 ([7]) Let X be a real normed linear space and let C be a nonempty subset of X. Let $P: X \to C$ be the nonexpansive retraction of X onto C. A map $T: C \to X$ is said to be asymptotically nonexpansive nonself-mapping if there exists a sequence $k_n, k_n \ge 1$ with $\lim_{n\to\infty} k_n = 1$, such that

$$||T(PT)^{n-1}x - T(PT)^{n-1}y|| \le k_n ||x - y||, \quad \forall x, y \in C, \ n \ge 1.$$

In order to prove our main results, the following lemma is needed.

Lemma 4.1.2 Let X be a uniformly convex Banach space, and let C be a nonempty closed convex nonexpansive retract of X with P as a nonexpansive retraction. Let $T: C \to X$ be an asymptotically nonexpansive nonself-map of C with $\{k_n\}$ satisfying $k_n \ge 1$ and $\sum_{n=1}^{\infty} (k_n-1) < \infty$ and $F(T) \ne \emptyset$. Let $\{\alpha_n\}, \{\beta_n\}, \{a_n\}, \{b_n\}, \{c_n\}$ and $\{d_n\}$ be real sequences in [0,1] such that $c_n + d_n$ and $\alpha_n + \beta_n$ are in [0,1] for all $n \ge 1$ and $\sum_{n=1}^{\infty} b_n < \infty$, $\sum_{n=1}^{\infty} d_n < \infty$, $\sum_{n=1}^{\infty} \beta_n < \infty$. For a given $x_1 \in C$, let $\{x_n\}, \{y_n\}$ and $\{z_n\}$ be the sequences defined as in (4.1).

(i) If p is a fixed point of T, then $\lim_{n\to\infty} ||x_n - p||$ exists.

(ii) If $0 < \liminf_{n \to \infty} \alpha_n \le \limsup_{n \to \infty} (\alpha_n + \beta_n) < 1$, then $\lim_{n \to \infty} ||T(PT)^{n-1} x_n - y_n|| = 0$.

(iii) If $0 < \limsup_{n \to \infty} (\alpha_n + \beta_n) < 1$ and $0 < \liminf_{n \to \infty} c_n \le \limsup_{n \to \infty} (c_n + d_n) < 1$, then $\lim_{n \to \infty} ||T(PT)^{n-1}x_n - z_n|| = 0$.

(iv) If $0 < \liminf_{n \to \infty} \alpha_n \le \limsup_{n \to \infty} (\alpha_n + \beta_n) < 1$, $0 < \liminf_{n \to \infty} c_n \le \limsup_{n \to \infty} (c_n + d_n) < 1$ and $\limsup_{n \to \infty} a_n < 1$ then $\lim_{n \to \infty} ||T(PT)^{n-1}x_n - x_n|| = 0$.

Proof.(i) Let $p \in F(T)$, and

$$\begin{array}{lll} M_1 &=& \sup\{\|u_n-p\|:n\geq 1\},\\ M_2 &=& \sup\{\|v_n-p\|:n\geq 1\},\\ M_3 &=& \sup\{\|w_n-p\|:n\geq 1\},\\ M &=& \max\{M_i:i=1,2,3\}. \end{array}$$

Using (4.1) for each $n \ge 1$, we have

$$||z_{n} - p|| = ||P((1 - a_{n} - b_{n})x_{n} + a_{n}T(PT)^{n-1}x_{n} + b_{n}u_{n}) - P(p)||$$

$$\leq ||((1 - a_{n} - b_{n})x_{n} + a_{n}T(PT)^{n-1}x_{n} + b_{n}u_{n}) - p||$$

$$= ||(1 - a_{n} - b_{n})(x_{n} - p) + a_{n}(T(PT)^{n-1}x_{n} - p)$$

$$+b_{n}(u_{n} - p)||$$

$$\leq (1 - a_n - b_n) \| (x_n - p) \| + a_n \| T (PT)^{n-1} x_n - p \|
+ \| b_n (u_n - p) \|
\leq (1 - a_n - b_n) \| x_n - p \| + a_n k_n \| x_n - p \| + b_n \| u_n - p \|
\leq (1 + a_n (k_n - 1)) \| x_n - p \| + M b_n
\leq k_n \| x_n - p \| + M b_n.$$
(4.2)

From (4.2), we have

$$||y_{n} - p|| = ||P((1 - c_{n} - d_{n})z_{n} + c_{n}T(PT)^{n-1}x_{n} + d_{n}v_{n}) - P(p)||$$

$$\leq ||(1 - c_{n} - d_{n})(z_{n} - p) + c_{n}(T(PT)^{n-1}x_{n} - p) + d_{n}(v_{n} - p)||$$

$$\leq (1 - c_{n} - d_{n})||z_{n} - p|| + c_{n}||T(PT)^{n-1}x_{n} - p|| + d_{n}||v_{n} - p||$$

$$\leq (1 - c_{n} - d_{n})||z_{n} - p|| + c_{n}k_{n}||x_{n} - p|| + d_{n}||v_{n} - p||$$

$$\leq (1 - c_{n} - d_{n})(k_{n}||x_{n} - p|| + Mb_{n}) + c_{n}k_{n}||x_{n} - p|| + Md_{n}$$

$$\leq k_{n}||x_{n} - p|| + Mb_{n} + Md_{n}.$$

$$(4.3)$$

From (4.3), we have

$$||x_{n+1} - p|| = ||P((1 - \alpha_n - \beta_n)y_n + \alpha_n T(PT)^{n-1}x_n + \beta_n w_n) - P(p)||$$

$$\leq ||(1 - \alpha_n - \beta_n)(y_n - p) + \alpha_n (T(PT)^{n-1}x_n - p) + \beta_n (w_n - p)||$$

$$\leq (1 - \alpha_n - \beta_n)||y_n - p|| + \alpha_n ||(T(PT)^{n-1}x_n - p|| + \beta_n ||w_n - p||$$

$$\leq (1 - \alpha_n - \beta_n)||y_n - p|| + \alpha_n k_n ||x_n - p|| + \beta_n ||w_n - p||$$

$$\leq (1 - \alpha_n - \beta_n)(k_n ||x_n - p|| + Mb_n + Md_n) + \alpha_n k_n ||x_n - p|| + M\beta_n$$

$$\leq k_n ||x_n - p|| + M(b_n + d_n + \beta_n)$$

$$= (1 + (k_n - 1))||x_n - p|| + M(b_n + d_n + \beta_n).$$

Since $\sum_{n=1}^{\infty} (k_n - 1) < \infty$, the assertion (i) follows from Lemma 2.1.3.

(ii) By (i), we know that $\lim_{n\to\infty} ||x_n-p||$ exists for any $p\in F(T)$. It follow that $\{x_n-p\}, \{T(PT)^{n-1}x_n-p\}, \{y_n-p\}$ and $\{z_n-p\}$ are bounded. Also, $\{u_n-p\}, \{v_n-p\}$ and $\{w_n-p\}$ are bounded by the assumption. Now we set

$$r_{1} = \sup\{\|x_{n} - p\| : n \ge 1\},$$

$$r_{2} = \sup\{\|T(PT)^{n-1}x_{n} - p\| : n \ge 1\},$$

$$r_{3} = \sup\{\|y_{n} - p\| : n \ge 1\},$$

$$r_{4} = \sup\{\|z_{n} - p\| : n \ge 1\},$$

$$r_{5} = \sup\{\|u_{n} - p\| : n \ge 1\},$$

$$r_{6} = \sup\{\|v_{n} - p\| : n \ge 1\},$$

$$r_{7} = \sup\{\|w_{n} - p\| : n \ge 1\},$$

$$r = \max\{r_{i} : i = 1, 2, 3, 4, 5, 6, 7\}.$$

$$(4.4)$$

By using Lemma 2.2.13 and (4.4), we have

$$\begin{split} \|z_n - p\|^2 &= \|P((1 - a_n - b_n)x_n + a_n T(PT)^{n-1}x_n + b_n u_n) - P(p)\|^2 \\ &\leq \|(1 - a_n - b_n)(x_n - p) + a_n (T(PT)^{n-1}x_n - p) + b_n (u_n - p)\|^2 \\ &\leq (1 - a_n - b_n)\|x_n - p\|^2 + a_n\|T(PT)^{n-1}x_n - p\|^2 + b_n\|u_n - p\|^2 \\ &- a_n (1 - a_n - b_n)g(\|T(PT)^{n-1}x_n - x_n\|) \\ &\leq (1 - a_n - b_n)\|x_n - p\|^2 + a_n k_n^2\|x_n - p\|^2 + b_n\|u_n - p\|^2 \\ &\leq (1 - a_n + a_n k_n^2)\|x_n - p\|^2 + r^2 b_n \\ &\leq (1 + a_n (k_n^2 - 1))\|x_n - p\|^2 + r^2 b_n \\ &\leq (1 + (k_n^2 - 1))\|x_n - p\|^2 + r^2 b_n \\ &\leq k_n^2\|x_n - p\|^2 + r^2 b_n, \end{split}$$

$$\|y_n - p\|^2 &= \|P((1 - c_n - d_n)z_n + c_n T(PT)^{n-1}x_n + d_n v_n) - P(p)\|^2 \\ &\leq k_n^2\|x_n - p\|^2 + r^2 b_n, \end{split}$$

$$\|y_n - p\|^2 &= \|P((1 - c_n - d_n)z_n + c_n T(PT)^{n-1}x_n + d_n v_n) - P(p)\|^2 \\ &\leq (1 - (a_n - d_n)(z_n - p) + c_n (T(PT)^{n-1}x_n - p) + d_n (v_n - p)\|^2 \\ &\leq (1 - (a_n - d_n)(z_n - p) + c_n (T(PT)^{n-1}x_n - p) + d_n (v_n - p)\|^2 \\ &- c_n (1 - c_n - d_n)g(\|T(PT)^{n-1}x_n - z_n\|) \\ &\leq (1 - (a_n - d_n)(k_n^2\|x_n - p\|^2 + c_n k_n^2\|x_n - p\|^2 + r^2 d_n \end{split}$$

$$\leq ((1-c_n-d_n)k_n^2+c_nk_n^2)\|x_n-p\|^2+r^2b_n+r^2d_n$$

$$-c_n(1-c_n-d_n)g(\|T(PT)^{n-1}x_n-z_n\|)$$

$$= (1-d_n)k_n^2\|x_n-p\|^2+r^2b_n+r^2d_n$$

$$-c_n(1-c_n-d_n)g(\|T(PT)^{n-1}x_n-z_n\|)$$

$$\leq k_n^2\|x_n-p\|^2+r^2b_n+r^2d_n.$$

 $-c_n(1-c_n-d_n)g(||T(PT)^{n-1}x_n-z_n||)$

and so

$$||x_{n+1} - p||^{2} = ||P((1 - \alpha_{n} - \beta_{n})y_{n} + \alpha_{n}T(PT)^{n-1}x_{n} + \beta_{n}w_{n}) - P(p)||^{2}$$

$$\leq ||(1 - \alpha_{n} - \beta_{n})(y_{n} - p) + \alpha_{n}(T(PT)^{n-1}x_{n} - p) + \beta_{n}(w_{n} - p)||^{2}$$

$$\leq (1 - \alpha_{n} - \beta_{n})||y_{n} - p||^{2} + \alpha_{n}||T(PT)^{n-1}x_{n} - p||^{2} + \beta_{n}||w_{n} - p||^{2}$$

$$- \alpha_{n}(1 - \alpha_{n} - \beta_{n})g(||T(PT)^{n-1}x_{n} - y_{n}||)$$

$$\leq (1 - \alpha_{n} - \beta_{n})||y_{n} - p||^{2} + \alpha_{n}k_{n}^{2}||x_{n} - p||^{2} + \beta_{n}||w_{n} - p||^{2}$$

$$- \alpha_{n}(1 - \alpha_{n} - \beta_{n})g(||T(PT)^{n-1}x_{n} - y_{n}||)$$

$$\leq (1 - \alpha_{n} - \beta_{n})(k_{n}^{2}||x_{n} - p||^{2} + r^{2}b_{n} + r^{2}d_{n}) + \alpha_{n}k_{n}^{2}||x_{n} - p||^{2} + r^{2}\beta_{n}$$

$$- \alpha_{n}(1 - \alpha_{n} - \beta_{n})g(||T(PT)^{n-1}x_{n} - y_{n}||)$$

$$\leq ((1 - \alpha_{n} - \beta_{n})k_{n}^{2} + \alpha_{n}k_{n}^{2})\|x_{n} - p\|^{2} + r^{2}b_{n} + r^{2}d_{n} + r^{2}\beta_{n} - \alpha_{n}(1 - \alpha_{n} - \beta_{n})g(\|T(PT)^{n-1}x_{n} - y_{n}\|)$$

$$= (1 - \beta_{n})k_{n}^{2}\|x_{n} - p\|^{2} + r^{2}b_{n} + r^{2}d_{n} + r^{2}\beta_{n} - \alpha_{n}(1 - \alpha_{n} - \beta_{n})g(\|T(PT)^{n-1}x_{n} - y_{n}\|)$$

$$\leq k_{n}^{2}\|x_{n} - p\|^{2} + r^{2}b_{n} + r^{2}d_{n} + r^{2}\beta_{n} - \alpha_{n}(1 - \alpha_{n} - \beta_{n})g(\|T(PT)^{n-1}x_{n} - y_{n}\|)$$

$$= k_{n}^{2}\|x_{n} - p\|^{2} + r^{2}(b_{n} + d_{n} + \beta_{n}) - \alpha_{n}(1 - \alpha_{n} - \beta_{n})g(\|T(PT)^{n-1}x_{n} - y_{n}\|)$$

$$= \|x_{n} - p\|^{2} + (k_{n}^{2} - 1)\|x_{n} - p\|^{2} + r^{2}(b_{n} + d_{n} + \beta_{n}) - \alpha_{n}(1 - \alpha_{n} - \beta_{n})g(\|T(PT)^{n-1}x_{n} - y_{n}\|)$$

$$\leq \|x_{n} - p\|^{2} + r^{2}(k_{n}^{2} - 1) + r^{2}(b_{n} + d_{n} + \beta_{n}) - \alpha_{n}(1 - \alpha_{n} - \beta_{n})g(\|T(PT)^{n-1}x_{n} - y_{n}\|),$$

which leads to the following:

$$\alpha_n(1 - \alpha_n - \beta_n)g(\|T(PT)^{n-1}x_n - y_n\|) \le \|x_n - p\|^2 - \|x_{n+1} - p\|^2 + r^2(k_n^2 - 1) + r^2(b_n + d_n + \beta_n).$$
(4.5)

If $0 < \liminf_{n \to \infty} \alpha_n \le \limsup_{n \to \infty} (\alpha_n + \beta_n) < 1$, then there exists a positive integer n_0 and $\eta, \eta' \in (0, 1)$ such that $0 < \eta < \alpha_n$ and $\alpha_n + \beta_n < \eta' < 1$ for all $n \ge n_0$. Hence, by (4.5), we have

$$\eta(1-\eta')g(\|T(PT)^{n-1}x_n - y_n\|) \le \|x_n - p\|^2 - \|x_{n+1} - p\|^2 + r^2(k_n^2 - 1) + r^2(b_n + d_n + \beta_n), \tag{4.6}$$

for all $n \geq n_0$. Applying (4.6) for $m \geq n_0$, we have

$$\sum_{n=n_0}^{m} g(\|T(PT)^{n-1}x_n - y_n\|) \leq \frac{1}{\eta(1-\eta')} \left(\sum_{n=n_0}^{m} (\|x_n - p\|^2 - \|x_{n+1} - p\|^2) + r^2 \sum_{n=n_0}^{m} (b_n + d_n + \beta_n + (k_n^2 - 1)) \right)$$

$$\leq \frac{1}{\eta(1-\eta')} \left(\|x_{n_0} - p\|^2 + r^2 \sum_{n=n_0}^{m} (b_n + d_n + \beta_n + (k_n^2 - 1)) \right). \quad (4.7)$$

Since $0 \le t^2 - 1 \le 2t(t-1)$ for all $t \ge 1$, the assumption $\sum_{n=1}^{\infty} (k_n - 1) < \infty$ implies that $\sum_{n=1}^{\infty} (k_n^2 - 1) < \infty$. Let $m \to \infty$ in inequality (4.7) we get that $\sum_{n=n_0}^{\infty} g(\|T(PT)^{n-1}x_n - y_n\|) < \infty$, and therefore $\lim_{n\to\infty} g(\|T(PT)^{n-1}x_n - y_n\|)$

 $y_n||) = 0$. Since g is strictly increasing and continuous at 0 with g(0) = 0, it follows that $\lim_{n\to\infty} ||T(PT)^{n-1}x_n - y_n|| = 0$.

(iii) First, we assume that $0 < \limsup_{n \to \infty} (\alpha_n + \beta_n) < 1$ and $0 < \liminf_{n \to \infty} c_n \le \limsup_{n \to \infty} (c_n + d_n) < 1$. By Lemma 2.2.13, we have

$$||x_{n+1} - p||^{2} = ||P((1 - \alpha_{n} - \beta_{n})y_{n} + \alpha_{n}T(PT)^{n-1}x_{n} + \beta_{n}w_{n}) - P(p)||^{2}$$

$$\leq ||(1 - \alpha_{n} - \beta_{n})(y_{n} - p) + \alpha_{n}(T(PT)^{n-1}x_{n} - p) + \beta_{n}(w_{n} - p)||^{2}$$

$$\leq (1 - \alpha_{n} - \beta_{n})||y_{n} - p||^{2} + \alpha_{n}||T(PT)^{n-1}x_{n} - p||^{2} + \beta_{n}||w_{n} - p||^{2}$$

$$\leq (1 - \alpha_{n} - \beta_{n})(k_{n}^{2}||x_{n} - p||^{2} + r^{2}b_{n} + r^{2}d_{n}$$

$$-c_{n}(1 - c_{n} - d_{n})g(||T(PT)^{n-1}x_{n} - z_{n}||))$$

$$+\alpha_{n}||T(PT)^{n-1}x_{n} - p||^{2} + \beta_{n}||w_{n} - p||^{2}$$

$$\leq (1 - \alpha_{n} - \beta_{n})(k_{n}^{2}||x_{n} - p||^{2} + r^{2}b_{n} + r^{2}d_{n}$$

$$-c_{n}(1 - c_{n} - d_{n})g(||T(PT)^{n-1}x_{n} - z_{n}||))$$

$$+\alpha_{n}k_{n}^{2}||x_{n} - p||^{2} + r^{2}\beta_{n}$$

$$\leq (1 - \alpha_{n} - \beta_{n})k_{n}^{2}||x_{n} - p||^{2} + r^{2}b_{n} + r^{2}d_{n}$$

$$-(1 - \alpha_{n} - \beta_{n})c_{n}(1 - c_{n} - d_{n})g(||T(PT)^{n-1}x_{n} - z_{n}||)$$

$$+\alpha_{n}k_{n}^{2}||x_{n} - p||^{2} + r^{2}(b_{n} + d_{n} + \beta_{n})$$

$$-(1 - \alpha_{n} - \beta_{n})c_{n}(1 - c_{n} - d_{n})g(||T(PT)^{n-1}x_{n} - z_{n}||)$$

$$= ||x_{n} - p||^{2} + (k_{n}^{2} - 1)||x_{n} - p||^{2} + r^{2}(b_{n} + d_{n} + \beta_{n})$$

$$-(1 - \alpha_{n} - \beta_{n})c_{n}(1 - c_{n} - d_{n})g(||T(PT)^{n-1}x_{n} - z_{n}||)$$

$$\leq ||x_{n} - p||^{2} + r^{2}(k_{n}^{2} - 1) + r^{2}(b_{n} + d_{n} + \beta_{n})$$

$$-(1 - \alpha_{n} - \beta_{n})c_{n}(1 - c_{n} - d_{n})g(||T(PT)^{n-1}x_{n} - z_{n}||).$$
(4.8)

Hence, by (4.8), we have

$$(1 - \alpha_n - \beta_n)c_n(1 - c_n - d_n)g(\|T(PT)^{n-1}x_n - z_n\|) \leq \|x_n - p\|^2 - \|x_{n+1} - p\|^2 + r^2(k_n^2 - 1) + r^2(b_n + d_n + \beta_n), (4.9)$$

By our assumption $0 < \limsup_{n \to \infty} (\alpha_n + \beta_n) < 1$ and $0 < \liminf_{n \to \infty} c_n \le \limsup_{n \to \infty} (c_n + d_n) < 1$, there exists a positive integer n_0 and $\delta_1, \delta_2, \delta_3 \in (0, 1)$ such that $\alpha_n + \beta_n < \delta_1 < 1$, $0 < \delta_2 < c_n$ and $c_n + d_n < \delta_3 < 1$ for all $n \ge n_0$. It follows from (4.9), for $m \ge n_0$,

$$\sum_{n=n_0}^{m} g(\|T(PT)^{n-1}x_n - z_n\|) \leq \frac{1}{(1-\delta_1)\delta_2(1-\delta_3)} \left(\sum_{n=n_0}^{m} (\|x_n - p\|^2 - \|x_{n+1} - p\|^2) + r^2 \sum_{n=n_0}^{m} (b_n + d_n + \beta_n + (k_n^2 - 1)) \right) \\
\leq \frac{1}{(1-\delta_1)\delta_2(1-\delta_3)} \left(\|x_{n_0} - p\|^2 + r^2 \sum_{n=n_0}^{m} (b_n + d_n + \beta_n + (k_n^2 - 1)) \right). \tag{4.10}$$

Since $0 \le t^2 - 1 \le 2t(t-1)$ for all $t \ge 1$, the assumption $\sum_{n=1}^{\infty} (k_n - 1) < \infty$ implies that $\sum_{n=1}^{\infty} (k_n^2 - 1) < \infty$. Let $m \to \infty$ in inequality (4.10) we get that $\sum_{n=n_0}^{\infty} g(\|T(PT)^{n-1}x_n - y_n\|) < \infty$, and therefore $\lim_{n\to\infty} g(\|T(PT)^{n-1}x_n - y_n\|)$ $y_n||)=0$. Since g is strictly increasing and continuous at 0 with g(0)=0, it follows that $\lim_{n\to\infty} ||T(PT)^{n-1}x_n - z_n|| = 0$.

(iv) If $0 < \liminf_{n \to \infty} \alpha_n \le \limsup_{n \to \infty} (\alpha_n + \beta_n) < 1, 0 < \liminf_{n \to \infty} c_n \le 1$ $\limsup_{n\to\infty} (c_n+d_n) < 1$ and $\limsup_{n\to\infty} a_n < 1$, by (ii) and (iii), we have

$$\lim_{n \to \infty} ||T(PT)^{n-1}x_n - y_n|| = 0 \text{ and } \lim_{n \to \infty} ||T(PT)^{n-1}x_n - z_n|| = 0.$$
 (4.11)

From
$$y_n = P((1 - c_n - d_n)z_n + c_n T(PT)^{n-1}x_n + d_n v_n)$$
, we have

$$||y_n - x_n|| = ||P((1 - c_n - d_n)z_n + c_nT(PT)^{n-1}x_n + d_nv_n) - x_n||$$

$$\leq \|(1-c_n-d_n)z_n+c_nT(PT)^{n-1}x_n+d_nv_n-x_n\|$$

$$= ||(z_n - x_n) + c_n(T(PT)^{n-1}x_n - z_n) + d_n(v_n - z_n)||$$

$$\leq ||z_n - x_n|| + c_n ||T(PT)^{n-1}x_n - z_n|| + d_n ||v_n - x_n||$$

$$= ||P((1-a_n-b_n)x_n+a_nT(PT)^{n-1}x_n+b_nu_n)-P(x_n)||$$

$$+c_n||T(PT)^{n-1}x_n-z_n||+d_n||v_n-x_n||$$

$$+c_n ||T(PT)^{n-1}x_n - z_n|| + d_n ||v_n - x_n||$$

$$\leq ||(1 - a_n - b_n)x_n + a_n T(PT)^{n-1}x_n + b_n u_n - x_n||$$

$$+c_n||T(PT)^{n-1}x_n-z_n||+d_n||v_n-x_n||$$

$$= \|a_n(T(PT)^{n-1}x_n - x_n) + b_n(u_n - x_n)\| + c_n\|T(PT)^{n-1}x_n - z_n\|$$

$$+d_n||v_n-x_n||$$

$$+d_{n}\|v_{n}-x_{n}\|$$

$$\leq a_{n}\|T(PT)^{n-1}x_{n}-x_{n}\|+b_{n}\|u_{n}-x_{n}\|+c_{n}\|T(PT)^{n-1}x_{n}-z_{n}\|$$

$$+d_n||v_n-x_n||$$

$$\leq a_n ||T(PT)^{n-1}x_n - x_n|| + c_n ||T(PT)^{n-1}x_n - z_n|| + 2rb_n + 2rd_n, \tag{4.12}$$

where r is defined by (4.4). From (4.12), we have

$$||T(PT)^{n-1}x_{n} - x_{n}|| \leq ||T(PT)^{n-1}x_{n} - y_{n}|| + ||y_{n} - x_{n}|| \leq ||T(PT)^{n-1}x_{n} - y_{n}|| + a_{n}||T(PT)^{n-1}x_{n} - x_{n}|| + c_{n}||T(PT)^{n-1}x_{n} - z_{n}|| + 2rb_{n} + 2rd_{n},$$
(4.13)

Thus by the inequality (4.13), we have

$$(1-a_n)\|T(PT)^{n-1}x_n - x_n\| \le \|T(PT)^{n-1}x_n - y_n\| + c_n\|T(PT)^{n-1}x_n - z_n\| + 2rb_n + 2rd_n.$$

Since $\limsup_{n\to\infty} a_n < 1$ and $\lim_{n\to\infty} b_n = \lim_{n\to\infty} d_n = 0$, it follows from (4.11) that $\lim_{n\to\infty} ||T(PT)^{n-1}x_n - x_n|| = 0$.

Theorem 4.1.3 Let X be a uniformly convex Banach space, and let C be a nonempty closed convex nonexpansive retract of X with P as a nonexpansive retraction. Let $T: C \to X$ be a completely continuous asymptotically nonexpansive nonself-map of C with $\{k_n\}$ satisfying $k_n \ge 1$ and $\sum_{n=1}^{\infty} (k_n - 1) < \infty$ and $F(T) \ne \emptyset$. Let $\{\alpha_n\}, \{\beta_n\}, \{a_n\}, \{b_n\}, \{c_n\}, \{d_n\}$ be sequences of real numbers in [0,1] with $b_n + c_n \in [0,1]$ and $\alpha_n + \beta_n \in [0,1]$ for all $n \ge 1$, and $\sum_{n=1}^{\infty} b_n < \infty$, $\sum_{n=1}^{\infty} d_n < \infty$, $\sum_{n=1}^{\infty} \beta_n < \infty$, and

- (i) $0 < \liminf_{n \to \infty} \alpha_n \le \limsup_{n \to \infty} (\alpha_n + \beta_n) < 1$, and
- (ii) $0 < \liminf_{n \to \infty} c_n \le \limsup_{n \to \infty} (c_n + d_n) < 1$ and $\limsup_{n \to \infty} a_n < 1$.

Let $\{x_n\}, \{y_n\}$ and $\{z_n\}$ be the sequences defined by the three-step iterative scheme (4.1). Then $\{x_n\}, \{y_n\}$ and $\{z_n\}$ converge strongly to a fixed point of T.

Proof. By Lemma 4.1.2, we have

$$\lim_{n \to \infty} ||T(PT)^{n-1}x_n - y_n|| = 0,$$

$$\lim_{n \to \infty} ||T(PT)^{n-1}x_n - z_n|| = 0,$$

$$\lim_{n \to \infty} ||T(PT)^{n-1}x_n - x_n|| = 0.$$
(4.14)

It follows from (4.12) and (4.14) that $\lim_{n\to\infty} ||y_n - x_n|| = 0$. Since

$$||x_{n+1} - x_n|| = ||P((1 - \alpha_n - \beta_n)y_n + \alpha_n T(PT)^{n-1}x_n + \beta_n w_n) - P(x_n)||$$

$$\leq ||(1 - \alpha_n - \beta_n)y_n + \alpha_n T(PT)^{n-1}x_n + \beta_n w_n - x_n||$$

$$= ||(y_n - x_n) + \alpha_n (T(PT)^{n-1}x_n - y_n) + \beta_n (w_n - y_n)||$$

$$\leq ||y_n - x_n|| + \alpha_n ||T(PT)^{n-1}x_n - y_n|| + \beta_n ||w_n - y_n||,$$

it follows that $\lim_{n\to\infty} ||x_{n+1} - x_n|| = 0$.

Thus

$$||x_{n+1} - T(PT)^{n-1}x_{n+1}|| \leq ||x_{n+1} - x_n|| + ||T(PT)^{n-1}x_{n+1} - T(PT)^{n-1}x_n|| + ||T(PT)^{n-1}x_n - x_n||$$

$$\leq ||x_{n+1} - x_n|| + k_n||x_{n+1} - x_n|| + ||T(PT)^{n-1}x_n - x_n|| \to 0 \text{ (as } n \to \infty)$$
 (4.15)

and

$$||x_{n+1} - T(PT)^{n-2}x_{n+1}|| = ||x_{n+1} - x_n + x_n - T(PT)^{n-2}x_n + T(PT)^{n-2}x_n - T(PT)^{n-2}x_{n+1}||$$

$$\leq ||x_{n+1} - x_n|| + ||T(PT)^{n-2}x_n - x_n||$$

$$+ ||T(PT)^{n-2}x_{n+1} - T(PT)^{n-2}x_n||$$

$$\leq ||x_{n+1} - x_n|| + ||T(PT)^{n-2}x_n - x_n||$$

$$+ L||x_{n+1} - x_n|| \to 0 \quad \text{(as } ... n \to \infty), \tag{4.16}$$

where $L = \sup\{k_n : n \ge 1\}$. We denote $(PT)^{1-1}$ to be the identity maps from C onto itself. Thus by the inequality (4.15) and (4.16), we have

$$||x_{n+1} - Tx_{n+1}|| \leq ||x_{n+1} - T(PT)^{n-1}x_{n+1}|| + ||T(PT)^{n-1}x_{n+1} - Tx_{n+1}||$$

$$= ||x_{n+1} - T(PT)^{n-1}x_{n+1}||$$

$$+ ||T(PT)^{1-1}(PT)^{n-1}x_{n+1} - T(PT)^{1-1}x_{n+1}||$$

$$\leq ||x_{n+1} - T(PT)^{n-1}x_{n+1}|| + L||(PT)^{n-1}x_{n+1} - x_{n+1}||$$

$$= ||x_{n+1} - T(PT)^{n-1}x_{n+1}|| + L||(PT)(PT)^{n-2}x_{n+1} - P(x_{n+1})||$$

$$\leq ||x_{n+1} - T(PT)^{n-1}x_{n+1}|| + L||T(PT)^{n-2}x_{n+1} - x_{n+1}||$$

$$\to 0 \text{ (as } n \to \infty),$$

which implies that

$$\lim_{n \to \infty} ||Tx_n - x_n|| = 0. (4.17)$$

Since T is completely continuous and $\{x_n\} \subseteq C$ is bounded, there exists a subsequence $\{x_{n_k}\}$ of $\{x_n\}$ such that $\{Tx_{n_k}\}$ converges. Therefore from (4.17), $\{x_{n_k}\}$ converges. Let $q = \lim_{k \to \infty} x_{n_k}$. By continuity of T and (4.17) we have that Tq = q, so q is a fixed point of T. By Lemma 4.1.2 (i), $\lim_{n \to \infty} ||x_n - q||$ exists. But $\lim_{k \to \infty} ||x_{n_k} - q|| = 0$. Thus $\lim_{n \to \infty} ||x_n - q|| = 0$. Since $||y_n - x_n|| \to 0$ as $n \to \infty$, and

$$||z_{n} - x_{n}|| = ||P((1 - a_{n} - b_{n})x_{n} + a_{n}T(PT)^{n-1}x_{n} + b_{n}u_{n}) - P(x_{n})||$$

$$\leq ||(1 - a_{n} - b_{n})x_{n} + a_{n}T(PT)^{n-1}x_{n} + b_{n}u_{n} - x_{n}||$$

$$\leq a_{n}||T(PT)^{n-1}x_{n} - x_{n}|| + b_{n}||u_{n} - x_{n}|| \to 0 \text{ as } n \to \infty,$$

it follows that $\lim_{n\to\infty} y_n = q$ and $\lim_{n\to\infty} z_n = q$.

For $a_n = b_n \equiv 0$, then Theorem 4.1.3 reduces to the two-step iteration with errors.

Corollary 4.1.4 Let X be a uniformly convex Banach space, and let C be a nonempty closed convex nonexpansive retract of X with P as a nonexpansive retraction. Let $T: C \to X$ be a completely continuous asymptotically nonexpansive nonself-map of C with $\{k_n\}$ satisfying $k_n \ge 1$ and $\sum_{n=1}^{\infty} (k_n - 1) < \infty$ and $F(T) \ne \emptyset$. Let $\{c_n\}, \{d_n\}, \{\alpha_n\}, \{\beta_n\}$ be real sequences in [0,1] satisfying

- (i) $0 < \liminf_{n \to \infty} \alpha_n \le \limsup_{n \to \infty} (\alpha_n + \beta_n) < 1$, and
- (ii) $0 < \liminf_{n \to \infty} c_n \le \limsup_{n \to \infty} (c_n + d_n) < 1$.

For a given $x_1 \in C$, define

$$y_n = P((1 - c_n - d_n)x_n + c_nT(PT)^{n-1}x_n + d_nv_n),$$

$$x_{n+1} = P((1 - \alpha_n - \beta_n)y_n + \alpha_nT(PT)^{n-1}x_n + \beta_nw_n), \quad n \ge 1.$$

Then $\{x_n\}$ and $\{y_n\}$ converge strongly to a fixed point of T.

In the next result, we prove weak convergence of the new three-step iterative scheme (4.1) for asymptotically nonexpansive nonself-mapping in a uniformly convex Banach space satisfying Opial's condition.

Theorem 4.1.5 Let X be a uniformly convex Banach space which satisfies Opial's condition, and C a nonempty closed convex nonexpansive retract of X with P as a nonexpansive retraction. Let $T: C \to X$ be an asymptotically nonexpansive nonself-map of C with $\{k_n\}$ satisfying $k_n \ge 1$ and $\sum_{n=1}^{\infty} (k_n - 1) < \infty$ and $F(T) \ne \emptyset$. Let $\{\alpha_n\}, \{\beta_n\}, \{a_n\}, \{b_n\}, \{c_n\}, \{d_n\}$ be sequences of real numbers in [0,1] with $b_n + c_n \in [0,1]$ and $\alpha_n + \beta_n \in [0,1]$ for all $n \ge 1$, and $\sum_{n=1}^{\infty} b_n < \infty$, $\sum_{n=1}^{\infty} d_n < \infty$, $\sum_{n=1}^{\infty} \beta_n < \infty$ and

- (i) $0 < \liminf_{n \to \infty} \alpha_n \le \limsup_{n \to \infty} (\alpha_n + \beta_n) < 1$, and (ii) $0 < \liminf_{n \to \infty} c_n \le \limsup_{n \to \infty} (c_n + d_n) < 1$ and $\limsup_{n \to \infty} a_n < 1$.
- Let $\{x_n\}$ be the sequence defined by three-step iterative scheme (4.1). Then $\{x_n\}$ converges weakly to a fixed point of T.

Proof. By using the same proof as in Theorem 4.1.3, it can be shown that $\lim_{n\to\infty} ||Tx_n - x_n|| = 0$. Since X is uniformly convex and $\{x_n\}$ is bounded, we may assume that $x_n \to u$ weakly as $n \to \infty$, without loss of generality. By Lemma 2.4.2, we have $u \in F(T)$. Suppose that subsequences $\{x_{n_k}\}$ and $\{x_{m_k}\}$ of $\{x_n\}$ converge weakly to u and v, respectively. From Lemma 2.4.2, $u, v \in F(T)$. By Lemma 4.1.2 (i), $\lim_{n\to\infty} ||x_n - u||$ and $\lim_{n\to\infty} ||x_n - v||$ exist. It follows from Lemma 2.2.16 that u = v. Therefore $\{x_n\}$ converges weakly to a fixed point of T.

When $a_n = b_n \equiv 0$ in Theorem 4.1.5, we obtain weak convergence theorem of the two-step iteration with errors as follows:

Corollary 4.1.6 Let X be a uniformly convex Banach space which satisfies Opial's condition, and C a nonempty closed convex nonexpansive retract of X with P as a nonexpansive retraction. Let $T: C \to X$ be an asymptotically nonexpansive nonself-map of C with $\{k_n\}$ satisfying $k_n \ge 1$ and $\sum_{n=1}^{\infty} (k_n - 1) < \infty$ and $F(T) \ne \emptyset$. Let $\{c_n\}, \{d_n\}, \{\alpha_n\}, \{\beta_n\}$ be sequences of real numbers in [0, 1] such that

- (i) $0 < \liminf_{n \to \infty} \alpha_n \le \limsup_{n \to \infty} (\alpha_n + \beta_n) < 1$, and
- (ii) $0 < \liminf_{n \to \infty} c_n \le \limsup_{n \to \infty} (c_n + d_n) < 1$.

For a given $x_1 \in C$, define

$$y_n = P((1 - c_n - d_n)x_n + c_nT(PT)^{n-1}x_n + d_nv_n),$$

$$x_{n+1} = P((1 - \alpha_n - \beta_n)y_n + \alpha_nT(PT)^{n-1}x_n + \beta_nw_n), \quad n \ge 1,$$

Then $\{x_n\}$ converges weakly to a fixed point of T.

Next, we will consider and study the modified Noor iterations with errors for asymptotically nonexpansive nonself-mapping. This scheme can be viewed as an extension for three-step and two-step iterative schemes of Noor [22, 23], Xu and Noor [45], Suantai [35], Ishikawa [11] and Nammanee, Noor and Suantai [21]. The scheme is defined as follows.

Let X be a normed space, C a nonempty convex subset of $X, P: X \to C$ a nonexpansive retraction of X onto C, and $T: C \to X$ a given mapping. Then for a given $x_1 \in C$, compute the sequence $\{x_n\}, \{y_n\}$ and $\{z_n\}$ by the iterative scheme

$$z_{n} = P(a_{n}T(PT)^{n-1}x_{n} + (1 - a_{n} - \gamma_{n})x_{n} + \gamma_{n}u_{n})$$

$$y_{n} = P(b_{n}T(PT)^{n-1}z_{n} + c_{n}T(PT)^{n-1}x_{n} + (1 - b_{n} - c_{n} - \mu_{n})x_{n} + \mu_{n}v_{n})$$

$$x_{n+1} = P(\alpha_{n}T(PT)^{n-1}y_{n} + \beta_{n}T(PT)^{n-1}z_{n} + (1 - \alpha_{n} - \beta_{n} - \lambda_{n})x_{n} + \lambda_{n}w_{n}),$$

$$n > 1,$$

$$(4.18)$$

where $\{a_n\}, \{b_n\}, \{c_n\}, \{\alpha_n\}, \{\beta_n\}, \{\gamma_n\}, \{\mu_n\}, \{\lambda_n\}$ are appropriate sequences in [0, 1] and $\{u_n\}, \{v_n\}$ and $\{w_n\}$ are bounded sequences in C.

The iterative schemes (4.18) are called the *modified Noor iterations with* errors for asymptotically nonexpansive nonself mappings.

If $T: C \to C$, then the iterative schemes (4.18) reduces to the modified Noor iterations with errors defined by Nammanee, Noor and Suantai [21],

$$z_{n} = a_{n}T^{n}x_{n} + (1 - a_{n} - \gamma_{n})x_{n} + \gamma_{n}u_{n}$$

$$y_{n} = b_{n}T^{n}z_{n} + c_{n}T^{n}x_{n} + (1 - b_{n} - c_{n} - \mu_{n})x_{n} + \mu_{n}v_{n}$$

$$x_{n+1} = \alpha_{n}T^{n}y_{n} + \beta_{n}T^{n}z_{n} + (1 - \alpha_{n} - \beta_{n} - \lambda_{n})x_{n} + \lambda_{n}w_{n}, \quad n \geq 1,$$

$$(4.19)$$

where $\{a_n\}, \{b_n\}, \{c_n\}, \{\alpha_n\}, \{\beta_n\}, \{\gamma_n\}, \{\mu_n\}, \{\lambda_n\}$ are appropriate sequences in [0,1] and $\{u_n\}, \{v_n\}$ and $\{w_n\}$ are bounded sequences in C.

If $T: C \to C$ and $\gamma_n = \mu_n = \lambda_n \equiv 0$, then (4.18) reduces to the modified Noor iterations defined by Suantai [35]

$$z_{n} = a_{n}T^{n}x_{n} + (1 - a_{n})x_{n}$$

$$y_{n} = b_{n}T^{n}z_{n} + c_{n}T^{n}x_{n} + (1 - b_{n} - c_{n})x_{n}$$

$$x_{n+1} = \alpha_{n}T^{n}y_{n} + \beta_{n}T^{n}z_{n} + (1 - \alpha_{n} - \beta_{n})x_{n}, \quad n \ge 1,$$

$$(4.20)$$

where $\{a_n\}, \{b_n\}, \{c_n\}, \{\alpha_n\}, \{\beta_n\}$ are appropriate sequences in [0, 1].

We note that the usual Ishikawa and Mann iterations are special cases of (4.18) and if $T: C \to C$ and $c_n = \beta_n = \gamma_n = \mu_n = \lambda_n \equiv 0$, then (4.18) reduces to the Noor iterations defined by Xu and Noor [45]

$$z_{n} = a_{n}T^{n}x_{n} + (1 - a_{n})x_{n}$$

$$y_{n} = b_{n}T^{n}z_{n} + (1 - b_{n})x_{n}$$

$$x_{n+1} = \alpha_{n}T^{n}y_{n} + (1 - \alpha_{n})x_{n}, \quad n \ge 1,$$

$$(4.21)$$

where $\{a_n\}, \{b_n\}, \{\alpha_n\}$ are appropriate sequences in [0, 1].

For $T: C \to C$ and $a_n = c_n = \beta_n = \gamma_n = \mu_n = \lambda_n \equiv 0$, then (4.18) reduces to the usual Ishikawa iterative scheme

$$y_n = b_n T^n x_n + (1 - b_n) x_n$$

$$x_{n+1} = \alpha_n T^n y_n + (1 - \alpha_n) x_n, \quad n \ge 1,$$
(4.22)

where $\{b_n\}, \{\alpha_n\}$ are appropriate sequences in [0, 1].

In this section, we prove weak and strong convergence theorems of modified Noor iterations with errors for asymptotically nonexpansive nonself-mapping in a Banach space.

Definition 4.1.7 ([7]) Let X be a real normed linear space and let C be a nonempty subset of X. Let $P: X \to C$ be the nonexpansive retraction of X onto C. A map $T: C \to X$ is said to be asymptotically nonexpansive nonself-mapping if there exists a sequence $k_n, k_n \ge 1$ with $\lim_{n\to\infty} k_n = 1$, such that

$$||T(PT)^{n-1}x - T(PT)^{n-1}y|| \le k_n ||x - y||, \quad \forall x, y \in C, \ n \ge 1.$$

In order to prove our main results, the following lemma is needed.

Lemma 4.1.8 Let X be a uniformly convex Banach space, and let C be a nonempty closed convex nonexpansive retract of X with P as a nonexpansive retraction. Let $T: C \to X$ be an asymptotically nonexpansive nonself-map of C with $\{k_n\}$ satisfying $k_n \ge 1$ and $\sum_{n=1}^{\infty} (k_n-1) < \infty$ and $F(T) \ne \emptyset$. Let $\{a_n\}, \{b_n\}, \{c_n\}, \{\alpha_n\}, \{\beta_n\}, \{\gamma_n\}, \{\mu_n\} \text{ and } \{\lambda_n\} \text{ be real sequences in } [0,1] \text{ such that } a_n+\gamma_n, b_n+c_n+\mu_n \text{ and } \alpha_n+\beta_n+\lambda_n \text{ are in } [0,1] \text{ for all } n \ge 1, \text{ and } \sum_{n=1}^{\infty} \gamma_n < \infty, \sum_{n=1}^{\infty} \mu_n < \infty, \sum_{n=1}^{\infty} \lambda_n < \infty, \text{ and let } \{u_n\}, \{v_n\} \text{ and } \{w_n\} \text{ be the bounded sequences in } C.$ For a given $x_1 \in C$, let $\{x_n\}, \{y_n\}$ and $\{z_n\}$ be the sequences defined as in (4.18).

(i) If q is a fixed point of T, then $\lim_{n\to\infty} ||x_n-q||$ exists.

(ii) If $0 < \liminf_{n \to \infty} \alpha_n \le \limsup_{n \to \infty} (\alpha_n + \beta_n + \lambda_n) < 1$, then $\lim_{n \to \infty} ||T(PT)^{n-1}y_n - x_n|| = 0$.

(iii) If $0 < \liminf_{n \to \infty} \beta_n \le \limsup_{n \to \infty} (\alpha_n + \beta_n + \lambda_n) < 1$ or if $0 < \liminf_{n \to \infty} \alpha_n$ and $0 < \liminf_{n \to \infty} b_n \le \limsup_{n \to \infty} (b_n + c_n + \mu_n) < 1$, then $\lim_{n \to \infty} ||T(PT)^{n-1}z_n - x_n|| = 0$.

(iv) If condition in (ii) and (iii) are true, then $\lim_{n\to\infty} ||\tilde{T}(PT)^{n-1}x_n - x_n|| = 0$.

Proof. Let $q \in F(T)$, by boundedness of the sequence $\{u_n\}, \{v_n\}$ and $\{w_n\}$, we can put

$$M = \max \{ \sup_{n \ge 1} \|u_n - q\|, \sup_{n \ge 1} \|v_n - q\|, \sup_{n \ge 1} \|w_n - q\| \}.$$

(i) For each $n \ge 1$, we have

$$||x_{n+1} - q|| = ||P(\alpha_n T(PT)^{n-1} y_n + \beta_n T(PT)^{n-1} z_n + (1 - \alpha_n - \beta_n - \lambda_n) x_n + \lambda_n w_n) - P(q)||$$

$$\leq \alpha_n ||T(PT)^{n-1} y_n - q|| + \beta_n ||T(PT)^{n-1} z_n - q||$$

$$+ (1 - \alpha_n - \beta_n - \lambda_n) ||x_n - q|| + \lambda_n ||w_n - q||$$

$$\leq \alpha_n k_n ||y_n - q|| + \beta_n k_n ||z_n - q||$$

$$+ (1 - \alpha_n - \beta_n - \lambda_n) ||x_n - q|| + M\lambda_n.$$
(4.23)

Consider,

$$||z_{n} - q|| = ||P(a_{n}T(PT)^{n-1}x_{n} + (1 - a_{n} - \gamma_{n})x_{n} + \gamma_{n}u_{n}) - P(q)||$$

$$\leq a_{n}||T(PT)^{n-1}x_{n} - q|| + (1 - a_{n} - \gamma_{n})||x_{n} - q|| + \gamma_{n}||u_{n} - q||$$

$$\leq a_{n}k_{n}||x_{n} - q|| + (1 - a_{n} - \gamma_{n})||x_{n} - q|| + M\gamma_{n}$$

$$\leq (a_{n}k_{n} + (1 - a_{n}))||x_{n} - q|| + M\gamma_{n}$$

$$= (a_{n}(k_{n} - 1) + 1)||x_{n} - q|| + M\gamma_{n}$$

$$\leq k_{n}||x_{n} - q|| + M\gamma_{n}$$

$$(4.24)$$

and

$$||y_{n} - q|| = ||P(b_{n}T(PT)^{n-1}z_{n} + c_{n}T(PT)^{n-1}x_{n} + (1 - b_{n} - c_{n} - \mu_{n})x_{n} + \mu_{n}v_{n}) - P(q)||$$

$$\leq b_{n}||T(PT)^{n-1}z_{n} - q|| + c_{n}||T(PT)^{n-1}x_{n} - q||$$

$$+ (1 - b_{n} - c_{n} - \mu_{n})||x_{n} - q|| + \mu_{n}||v_{n} - q||$$

$$\leq b_{n}k_{n}||z_{n} - q|| + c_{n}k_{n}||x_{n} - q|| + (1 - b_{n} - c_{n} - \mu_{n})||x_{n} - q|| + M\mu_{n}.$$

From (4.24), we have

$$||y_{n} - q|| \leq b_{n}k_{n}(k_{n}||x_{n} - q|| + M\gamma_{n}) + c_{n}k_{n}||x_{n} - q|| + (1 - b_{n} - c_{n} - \mu_{n})||x_{n} - q|| + M\mu_{n} \leq (b_{n}k_{n}^{2} + c_{n}k_{n} + (1 - b_{n} - c_{n}))||x_{n} - q|| + \epsilon_{(1)}^{n} \leq (b_{n}(k_{n}^{2} - 1) + c_{n}(k_{n}^{2} - 1) + 1)||x_{n} - q|| + \epsilon_{(1)}^{n} = ((k_{n}^{2} - 1)(b_{n} + c_{n}) + 1)||x_{n} - q|| + \epsilon_{(1)}^{n} = k_{n}^{2}||x_{n} - q|| + \epsilon_{(1)}^{n},$$

$$(4.25)$$

where $\epsilon_{(1)}^n = M b_n k_n \gamma_n + M \mu_n$, and we note here that $\sum_{n=1}^{\infty} \epsilon_{(1)}^n < \infty$ since $\{k_n\}$ is bounded and $\sum_{n=1}^{\infty} \gamma_n < \infty$, $\sum_{n=1}^{\infty} \mu_n < \infty$.

From (4.23), (4.24) and (4.25) we get

$$||x_{n+1} - q|| \le \alpha_n k_n (k_n^2 ||x_n - q|| + \epsilon_{(1)}^n) + \beta_n k_n (k_n ||x_n - q|| + M \gamma_n)$$

$$+ (1 - \alpha_n - \beta_n - \lambda_n) ||x_n - q|| + M \lambda_n$$

$$\le (\alpha_n k_n^3 + \beta_n k_n^2 + (1 - \alpha_n - \beta_n)) ||x_n - q|| + \epsilon_{(2)}^n$$

$$\le (\alpha_n (k_n^3 - 1) + \beta_n (k_n^3 - 1) + 1) ||x_n - q|| + \epsilon_{(2)}^n$$

$$= ((\alpha_n + \beta_n) (k_n^3 - 1) + 1) ||x_n - q|| + \epsilon_{(2)}^n$$

$$\le (1 + (k_n^3 - 1)) ||x_n - q|| + \epsilon_{(2)}^n ,$$

$$(4.26)$$

where $\epsilon_{(2)}^n = \alpha_n k_n \epsilon_{(1)}^n + M \beta_n k_n \gamma_n + M \lambda_n$. Since $\sum_{n=1}^{\infty} (k_n^3 - 1) < \infty$ and $\sum_{n=1}^{\infty} \epsilon_{(2)}^n < \infty$ we obtained by (4.26) and Lemma 2.1.3 that $\lim_{n\to\infty} ||x_n - q||$ exists.

(ii) By (i), we know that $\lim_{n\to\infty} ||x_n-q||$ exists for any $q\in F(T)$. It follows from (4.24) and (4.25) that $\{x_n-q\}, \{T(PT)^{n-1}x_n-q\}, \{z_n-q\}, \{T(PT)^{n-1}z_n-q\}, \{y_n-q\}$ and $\{T(PT)^{n-1}y_n-q\}$ are bounded sequence. This allows us to put

$$K = \max\{M, \sup_{n \ge 1} ||x_n - q||, \sup_{n \ge 1} ||T(PT)^{n-1}x_n - q||, \sup_{n \ge 1} ||z_n - q||, \sup_{n \ge 1} ||T(PT)^{n-1}z_n - q||, \sup_{n \ge 1} ||y_n - q||, \sup_{n \ge 1} ||T(PT)^{n-1}y_n - q||\}.$$

Since $0 < \liminf_{n \to \infty} \alpha_n \le \limsup_{n \to \infty} (\alpha_n + \beta_n + \lambda_n) < 1$. It follows from (4.24) and (4.25) that

$$||z_n - q||^2 \le k_n^2 ||x_n - q||^2 + \epsilon_{(3)}^n$$
(4.27)

$$||y_n - q||^2 \le k_n^4 ||x_n - q||^2 + \epsilon_{(4)}^n, \tag{4.28}$$

where $\epsilon_{(3)}^n = M^2 \gamma_n^2 + 2MK\gamma_n k_n$ and $\epsilon_{(4)}^n = (\epsilon_{(1)}^n)^2 + 2K\epsilon_{(1)}^n k_n^2$ and also observe that $\sum_{n=1}^{\infty} \epsilon_{(3)}^n < \infty$ and $\sum_{n=1}^{\infty} \epsilon_{(4)}^n < \infty$ by bounded of $\{k_n\}$ and $\sum_{n=1}^{\infty} \gamma_n < \infty$, $\sum_{n=1}^{\infty} \epsilon_{(1)}^n < \infty$. By lemma 2.2.14, there is a continuous strictly increasing convex function $g: [0, \infty) \to [0, \infty)$, g(0) = 0 such that

$$\|\lambda x + \beta y + \gamma z + \mu w\|^{2} \le \lambda \|x\|^{2} + \beta \|y\|^{2} + \gamma \|z\|^{2} + \mu \|w\|^{2} - \lambda \beta g(\|x - y\|)$$
(4.29)

for all $x, y, z, w \in B_r$ and all $\lambda, \beta, \gamma, \mu \in [0, 1]$ with $\lambda + \beta + \gamma = 1$. It follows that

$$||x_{n+1} - q||^{2} = ||P(\alpha_{n}T(PT)^{n-1}y_{n} + \beta_{n}T(PT)^{n-1}z_{n} + (1 - \alpha_{n} - \beta_{n} - \lambda_{n})x_{n} + \lambda_{n}w_{n}) - P(q)||^{2}$$

$$\leq ||\alpha_{n}(T(PT)^{n-1}y_{n} - q) + \beta_{n}(T(PT)^{n-1}z_{n} - q) + (1 - \alpha_{n} - \beta_{n} - \lambda_{n})(x_{n} - q) + \lambda_{n}(w_{n} - q)||^{2}.$$

$$(4.30)$$

From (4.27), (4.28), (4.29) and (4.30), we have

$$\begin{aligned} \|x_{n+1} - q\|^2 &\leq \alpha_n \|T(PT)^{n-1}y_n - q\|^2 + \beta_n \|T(PT)^{n-1}z_n - q\|^2 \\ &+ (1 - \alpha_n - \beta_n - \lambda_n) \|x_n - q\|^2 + \lambda_n \|w_n - q\|^2 \\ &- \alpha_n (1 - \alpha_n - \beta_n - \lambda_n) g(\|T(PT)^{n-1}y_n - x_n\|) \\ &\leq \alpha_n k_n^2 \|y_n - q\|^2 + \beta_n k_n^2 \|z_n - q\|^2 + (1 - \alpha_n - \beta_n - \lambda_n) \|x_n - q\|^2 \\ &+ K^2 \lambda_n - \alpha_n (1 - \alpha_n - \beta_n - \lambda_n) g(\|T(PT)^{n-1}y_n - x_n\|) \\ &\leq \alpha_n k_n^2 (k_n^4 \|x_n - q\|^2 + \epsilon_{(4)}^n) + \beta_n k_n^2 (k_n^2 \|x_n - q\|^2 + \epsilon_{(3)}^n) \\ &+ (1 - \alpha_n - \beta_n - \lambda_n) \|x_n - q\|^2 + K^2 \lambda_n \\ &- \alpha_n (1 - \alpha_n - \beta_n - \lambda_n) g(\|T(PT)^{n-1}y_n - x_n\|) \\ &\leq (\alpha_n k_n^6 + \beta_n k_n^4 + (1 - \alpha_n - \beta_n - \lambda_n)) \|x_n - q\|^2 + \epsilon_{(5)}^n \\ &- \alpha_n (1 - \alpha_n - \beta_n - \lambda_n) g(\|T(PT)^{n-1}y_n - x_n\|) \\ &\leq (\alpha_n (k_n^6 - 1) + \beta_n (k_n^6 - 1) + 1) \|x_n - q\|^2 + \epsilon_{(5)}^n \\ &- \alpha_n (1 - \alpha_n - \beta_n - \lambda_n) g(\|T(PT)^{n-1}y_n - x_n\|) \\ &= \|x_n - q\|^2 + (\alpha_n + \beta_n) (k_n^6 - 1) \|x_n - q\|^2 + \epsilon_{(5)}^n \\ &- \alpha_n (1 - \alpha_n - \beta_n - \lambda_n) g(\|T(PT)^{n-1}y_n - x_n\|) \\ &\leq \|x_n - q\|^2 + K^2 (k_n^6 - 1) + \epsilon_{(5)}^n \\ &- \alpha_n (1 - \alpha_n - \beta_n - \lambda_n) g(\|T(PT)^{n-1}y_n - x_n\|) \\ &= \|x_n - q\|^2 + \epsilon_{(6)}^n - \alpha_n (1 - \alpha_n - \beta_n - \lambda_n) g(\|T(PT)^{n-1}y_n - x_n\|), \end{aligned}$$

where $\epsilon_{(5)}^n = \alpha_n k_n^2 \epsilon_{(4)}^n + \beta_n k_n^2 \epsilon_{(3)}^n + K^2 \lambda_n$ and $\epsilon_{(6)}^n = K^2 (k_n^6 - 1) + \epsilon_{(5)}^n$ and its worth to note here that $\sum_{n=1}^{\infty} \epsilon_{(6)}^n < \infty$ by boundedness of $\{k_n\}, \sum_{n=1}^{\infty} \epsilon_{(4)}^n < \infty, \sum_{n=1}^{\infty} \epsilon_{(3)}^n < \infty, \sum_{n=1}^{\infty} \lambda_n < \infty, \text{ and } \sum_{n=1}^{\infty} (k_n^6 - 1) < \infty.$ Since $0 < \liminf_{n \to \infty} \alpha_n \le \limsup_{n \to \infty} (\alpha_n + \beta_n + \lambda_n) < 1$, there exists $n_0 \in \mathbb{N}$ and $\delta_1, \delta_2 \in (0, 1)$ such that $0 < \delta_1 < a_n$ and $\alpha_n + \beta_n + \lambda_n < \delta_2 < 1$ for all $n \ge n_0$. Thus we obtain (4.31) that

$$\delta_1(1-\delta_2) \sum_{n=n_0}^m g(\|T(PT)^{n-1}y_n - x_n\|) \le \sum_{n=n_0}^m (\|x_n - q\|^2 - \|x_{n+1} - q\|^2) + \sum_{n=n_0}^m \epsilon_{(6)}^n$$

$$= ||x_{n_0} - q||^2 + \sum_{n=n_0}^m \epsilon_{(6)}^n.$$
 (4.32)

Since $\sum_{n=n_0}^{\infty} \epsilon_{(6)}^n < \infty$, by letting $m \to \infty$ in (4.32), we get

$$\sum_{n=n_0}^{\infty} g(\|T(PT)^{n-1}y_n - x_n\|) < \infty,$$

and therefore $\lim_{n\to\infty} g(\|T(PT)^{n-1}y_n - x_n\|) = 0$. Since g is strictly increasing and continuous at 0 with g(0) = 0, it follows that $\lim_{n\to\infty} \|T(PT)^{n-1}y_n - x_n\| = 0$.

(iii) First, we assume that $0 < \liminf_{n \to \infty} \beta_n \le \limsup_{n \to \infty} (\alpha_n + \beta_n + \lambda_n) < 1$. By (4.29) and (4.30), we have

$$||x_{n+1} - q||^2 \le \alpha_n k_n^2 ||y_n - q||^2 + \beta_n k_n^2 ||z_n - q||^2 + (1 - \alpha_n - \beta_n - \lambda_n) ||x_n - q||^2 + K^2 \lambda_n - \beta_n (1 - \alpha_n - \beta_n - \lambda_n) g(||T(PT)^{n-1} z_n - x_n||).$$

From this point we follow step by step as in (ii) we will get results

$$\lim_{n\to\infty} ||T(PT)^{n-1}z_n - x_n|| = 0$$

as required. Next, we assume that $0 < \liminf_{n \to \infty} \alpha_n$ and $\liminf_{n \to \infty} b_n \leq \limsup_{n \to \infty} (b_n + c_n + \mu_n) < 1$.

By (4.27) and (4.29), we have

$$||y_{n} - q||^{2} = ||P(b_{n}T(PT)^{n-1}z_{n} + c_{n}T(PT)^{n-1}x_{n} + (1 - b_{n} - c_{n} - \mu_{n})x_{n} + \mu_{n}v_{n}) - P(q)||^{2}$$

$$\leq ||b_{n}(T(PT)^{n-1}z_{n} - q) + c_{n}(T(PT)^{n-1}x_{n} - q) + (1 - b_{n} - c_{n} - \mu_{n})(x_{n} - q) + \mu_{n}(v_{n} - q)||^{2}$$

$$\leq b_{n}||T(PT)^{n-1}z_{n} - q||^{2} + c_{n}||T(PT)^{n-1}x_{n} - q||^{2}$$

$$+ (1 - b_{n} - c_{n} - \mu_{n})||x_{n} - q||^{2} + \mu_{n}||v_{n} - q||^{2}$$

$$- b_{n}(1 - b_{n} - c_{n} - \mu_{n})g(||T(PT)^{n-1}z_{n} - x_{n}||)$$

$$\leq b_{n}k_{n}^{2}\|z_{n}-q\|^{2}+c_{n}k_{n}^{2}\|x_{n}-q\|^{2} + (1-b_{n}-c_{n}-\mu_{n})\|x_{n}-q\|^{2}+\mu_{n}K^{2} - b_{n}(1-b_{n}-c_{n}-\mu_{n})g(\|T(PT)^{n-1}z_{n}-x_{n}\|)$$

$$< b_{n}k_{n}^{2}(k_{n}^{2}\|x_{n}-q\|^{2}+\epsilon_{(3)}^{n})+c_{n}k_{n}^{2}\|x_{n}-q\|^{2} + (1-b_{n}-c_{n}-\mu_{n})\|x_{n}-q\|^{2}+\mu_{n}K^{2} - b_{n}(1-b_{n}-c_{n}-\mu_{n})g(\|T(PT)^{n-1}z_{n}-x_{n}\|)$$

$$\leq (b_{n}k_{n}^{4}+c_{n}k_{n}^{2}+(1-b_{n}-c_{n}))\|x_{n}-q\|^{2}+\epsilon_{(7)}^{n} - b_{n}(1-b_{n}-c_{n}-\mu_{n})g(\|T(PT)^{n-1}z_{n}-x_{n}\|)$$

$$\leq k_{n}^{4}\|x_{n}-q\|^{2}+\epsilon_{(7)}^{n}-b_{n}(1-b_{n}-c_{n}-\mu_{n})g(\|T(PT)^{n-1}z_{n}-x_{n}\|) ,$$

By (4.27), (4.29) and (4.33), we also have

$$||x_{n+1} - q||^{2} \leq \alpha_{n}k_{n}^{2}||y_{n} - q||^{2} + \beta_{n}k_{n}^{2}||z_{n} - q||^{2} + (1 - \alpha_{n} - \beta_{n} - \lambda_{n})||x_{n} - q||^{2} + K^{2}\lambda_{n} \leq \alpha_{n}k_{n}^{2}(k_{n}^{4}||x_{n} - q||^{2} + \epsilon_{(7)}^{n} - b_{n}(1 - b_{n} - c_{n} - \mu_{n})g(||T(PT)^{n-1}z_{n} - x_{n}||)) + \beta_{n}k_{n}^{2}(k_{n}^{2}||x_{n} - q||^{2} + \epsilon_{(3)}^{n}) + (1 - \alpha_{n} - \beta_{n} - \lambda_{n})||x_{n} - q||^{2} + K^{2}\lambda_{n} \leq (\alpha_{n}k_{n}^{6} + \beta_{n}k_{n}^{4} + (1 - \alpha_{n} - \beta_{n} - \lambda_{n}))||x_{n} - q||^{2} + \epsilon_{(8)}^{n} - \alpha_{n}k_{n}^{2}b_{n}(1 - b_{n} - c_{n} - \mu_{n})g(||T(PT)^{n-1}z_{n} - x_{n}||) \leq ||x_{n} - q||^{2} + (\alpha_{n}(k_{n}^{6} - 1) + \beta_{n}(k_{n}^{6} - 1))||x_{n} - q||^{2} + \epsilon_{(8)}^{n} - \alpha_{n}b_{n}(1 - b_{n} - c_{n} - \mu_{n})g(||T(PT)^{n-1}z_{n} - x_{n}||) \leq ||x_{n} - q||^{2} + \epsilon_{(9)}^{n} - \alpha_{n}b_{n}(1 - b_{n} - c_{n} - \mu_{n})g(||T(PT)^{n-1}z_{n} - x_{n}||),$$

$$(4.34)$$

where $\epsilon_{(8)}^n = \alpha_n k_n^2 \epsilon_{(7)}^n + \beta_n k_n^2 \epsilon_{(3)}^n + K^2 \lambda_n$ and $\epsilon_{(9)}^n = \epsilon_{(8)}^n + K^2 (k_n^6 - 1)$. It is worth to note here that $\sum_{n=1}^{\infty} \epsilon_{(8)}^n < \infty$ and $\sum_{n=1}^{\infty} \epsilon_{(9)}^n < \infty$ since $\{k_n\}$ is bounded, $\sum_{n=1}^{\infty} \epsilon_{(7)}^n < \infty$, $\sum_{n=1}^{\infty} \epsilon_{(3)}^n < \infty$ and $\sum_{n=1}^{\infty} \lambda_n < \infty$.

By our assumption $0 < \liminf_{n \to \infty} \alpha_n$ and $0 < \liminf_{n \to \infty} b_n \le \limsup_{n \to \infty} (b_n + c_n + \mu_n) < 1$, there exists $n_0 \in \mathbb{N}$ and $\delta_1, \delta_2 \in (0, 1)$ such that $0 < \delta_1 < \alpha_n$, $0 < \delta_1 < b_n$ and $b_n + c_n + \mu_n < \delta_2 < 1$ for all $n \ge n_0$. Hence, by (4.34), we have

$$\delta_1^2 (1 - \delta_2) \sum_{n=n_0}^m g(\|T(PT)^{n-1} z_n - x_n\|) \le \sum_{n=n_0}^m (\|x_n - q\|^2 - \|x_{n+1} - q\|^2) + \sum_{n=n_0}^m \epsilon_{(9)}^n$$

$$= \|x_{n_0} - q\|^2 + \sum_{n=n_0}^m \epsilon_{(9)}^n.$$

Since $\sum_{n=n_0}^{\infty} \epsilon_{(9)}^n < \infty$, by letting $m \to \infty$, we get $\sum_{n=n_0}^{\infty} g(\|T(PT)^{n-1}z_n - x_n\|) < \infty$, and therefore $\lim_{n\to\infty} g(\|T(PT)^{n-1}z_n - x_n\|) = 0$. Since g is strictly increasing and continuous at 0 with g(0) = 0, it follows that $\lim_{n\to\infty} \|T(PT)^{n-1}z_n - x_n\| = 0$.

(iv) Suppose that the conditions (ii) and (iii) are satisfied, we have

$$\lim_{n \to \infty} ||T(PT)^{n-1}y_n - x_n|| = 0 \text{ and } \lim_{n \to \infty} ||T(PT)^{n-1}z_n - x_n|| = 0.$$
 (4.35)

From $y_n = P(b_n T(PT)^{n-1} z_n + c_n T(PT)^{n-1} x_n + (1 - b_n - c_n - \mu_n) x_n + \mu_n v_n)$, we have

$$||y_n - x_n|| \le b_n ||T(PT)^{n-1}z_n - x_n|| + c_n ||T(PT)^{n-1}x_n - x_n|| + \mu_n ||v_n - x_n||.$$

It follows that

$$||T(PT)^{n-1}x_{n} - x_{n}|| \leq ||T(PT)^{n-1}x_{n} - T(PT)^{n-1}y_{n}|| + ||T(PT)^{n-1}y_{n} - x_{n}||$$

$$\leq k_{n}||x_{n} - y_{n}|| + ||T(PT)^{n-1}y_{n} - x_{n}||$$

$$\leq k_{n}(b_{n}||T(PT)^{n-1}z_{n} - x_{n}|| + c_{n}||T(PT)^{n-1}x_{n} - x_{n}||$$

$$+ \mu_{n}||v_{n} - x_{n}||) + ||T(PT)^{n-1}y_{n} - x_{n}||$$

$$= k_{n}b_{n}||T(PT)^{n-1}z_{n} - x_{n}|| + c_{n}k_{n}||T(PT)^{n-1}x_{n} - x_{n}||$$

$$+ \mu_{n}k_{n}||v_{n} - x_{n}|| + ||T(PT)^{n-1}y_{n} - x_{n}||.$$

$$(4.36)$$

By Lemma 2.2.17, there exists positive integer n_1 and $\gamma \in (0,1)$ such that $c_n k_n < \gamma$ for all $n \ge n_1$. This together with (4.36) implies that for $n \ge n_1$

$$||T(PT)^{n-1}x_n - x_n|| \le k_n b_n ||T(PT)^{n-1}z_n - x_n|| + \gamma ||T(PT)^{n-1}x_n - x_n|| + \mu_n k_n ||v_n - x_n|| + ||T(PT)^{n-1}y_n - x_n||.$$

Hence

$$(1-\gamma)\|T(PT)^{n-1}x_n - x_n\| \le k_n b_n \|T(PT)^{n-1}z_n - x_n\| + \mu_n k_n \|v_n - x_n\| + \|T(PT)^{n-1}y_n - x_n\|.$$

It follows from (4.35) that
$$\lim_{n\to\infty} ||T(PT)^{n-1}x_n - x_n|| = 0.$$

Theorem 4.1.9 Let X be a uniformly convex Banach space, and let C be a nonempty closed convex nonexpansive retract of X with P as a nonexpansive retraction. Let $T: C \to X$ be a completely continuous asymptotically nonexpansive nonself-map of C with $\{k_n\}$ satisfying $k_n \geq 1$, $\sum_{n=1}^{\infty} (k_n - 1) < \infty$ and $F(T) \neq \emptyset$. Let $\{a_n\}, \{b_n\}, \{c_n\}, \{\alpha_n\}, \{\beta_n\}, \{\gamma_n\}, \{\mu_n\} \text{ and } \{\lambda_n\} \text{ be sequences of real numbers in } [0, 1] \text{ with } a_n + \gamma_n \in [0, 1], b_n + c_n + \mu_n \in [0, 1] \text{ and } \alpha_n + \beta_n + \lambda_n \in [0, 1] \text{ for all } n \geq 1, \text{ and } \sum_{n=1}^{\infty} \gamma_n < \infty, \sum_{n=1}^{\infty} \mu_n < \infty, \sum_{n=1}^{\infty} \lambda_n < \infty \text{ and } \sum_{n=1}^{\infty} \lambda_n <$

- (i) $0 < \min\{\lim \inf_{n \to \infty} \alpha_n, \lim \inf_{n \to \infty} \beta_n\} \le \lim \sup_{n \to \infty} (\alpha_n + \beta_n + \lambda_n) < 1,$ or
- (ii) $0 < \liminf_{n \to \infty} \alpha_n \le \limsup_{n \to \infty} (\alpha_n + \beta_n + \lambda_n) < 1 \text{ and } 0 < \liminf_{n \to \infty} b_n \le \limsup_{n \to \infty} (b_n + c_n + \mu_n) < 1.$

Let $\{x_n\}$, $\{y_n\}$ and $\{z_n\}$ be the sequences defined by the modified Noor iterations with errors (4.18). Then $\{x_n\}$, $\{y_n\}$ and $\{z_n\}$ converge strongly to a fixed point of T.

Proof. By Lemma 4.1.8, we have

$$\lim_{n \to \infty} ||T(PT)^{n-1}y_n - x_n|| = 0,$$

$$\lim_{n \to \infty} ||T(PT)^{n-1}z_n - x_n|| = 0,$$

$$\lim_{n \to \infty} ||T(PT)^{n-1}x_n - x_n|| = 0.$$
(4.37)

Since $x_{n+1} = P(\alpha_n (T(PT)^{n-1}y_n + \beta_n (T(PT)^{n-1}z_n + (1 - \alpha_n - \beta_n - \lambda_n)x_n + \lambda_n w_n)$. By (4.37), we have

$$||x_{n+1} - x_n|| = ||P(\alpha_n (T(PT)^{n-1}y_n + \beta_n (T(PT)^{n-1}z_n + (1 - \alpha_n - \beta_n - \lambda_n)x_n + \lambda_n w_n) - P(x_n)||$$

$$\leq \alpha_n ||T(PT)^{n-1}y_n - x_n|| + \beta_n ||T(PT)^{n-1}z_n - x_n||$$

$$+ \lambda_n ||w_n - x_n|| \to 0 \quad \text{(as } n \to \infty).$$

Thus

$$||x_{n+1} - T(PT)^{n-1}x_{n+1}|| \le ||x_{n+1} - x_n|| + ||T(PT)^{n-1}x_{n+1} - T(PT)^{n-1}x_n|| + ||T(PT)^{n-1}x_n - x_n|| \le ||x_{n+1} - x_n|| + k_n||x_{n+1} - x_n|| + ||T(PT)^{n-1}x_n - x_n|| = (1 + k_n)||x_{n+1} - x_n|| + ||T(PT)^{n-1}x_n - x_n|| \to 0 \text{ (as } n \to \infty).$$

Hence

$$||x_{n+1} - T(PT)^{n-2}x_{n+1}|| \le ||x_{n+1} - x_n + x_n - T(PT)^{n-2}x_n + T(PT)^{n-2}x_n - T(PT)^{n-2}x_{n+1}||$$

$$||x_{n+1} - x_n|| + ||T(PT)^{n-2}x_n - x_n||$$

$$+ ||T(PT)^{n-2}x_{n+1} - T(PT)^{n-2}x_n||$$

$$\le ||x_{n+1} - x_n|| + ||T(PT)^{n-2}x_n - x_n||$$

$$+ L||x_{n+1} - x_n|| \to 0 \quad (as \quad n \to \infty),$$

where $L = \sup_{n \geq 1} k_n$. We denote $(PT)^{1-1}$ to be the identity maps from C onto itself. It follows that

$$||x_{n+1} - Tx_{n+1}|| \le ||x_{n+1} - T(PT)^{n-1}x_{n+1}|| + ||T(PT)^{n-1}x_{n+1} - Tx_{n+1}|| = ||x_{n+1} - T(PT)^{n-1}x_{n+1}|| + ||T(PT)^{1-1}(PT)^{n-1}x_{n+1} - T(PT)^{1-1}x_{n+1}|| \le ||x_{n+1} - T(PT)^{n-1}x_{n+1}|| + L||(PT)^{n-1}x_{n+1} - x_{n+1}|| = ||x_{n+1} - T(PT)^{n-1}x_{n+1}|| + L||(PT)(PT)^{n-2}x_{n+1} - P(x_{n+1})|| \le ||x_{n+1} - T(PT)^{n-1}x_{n+1}|| + L||T(PT)^{n-2}x_{n+1} - x_{n+1}|| \to 0 \quad (as \quad n \to \infty).$$

which implies that

$$\lim_{n \to \infty} ||Tx_n - x_n|| = 0. (4.38)$$

Since T is completely continuous and $\{x_n\}$ is bounded, there exists a subsequence $\{x_{n_k}\}$ of $\{x_n\}$ such that $\{Tx_{n_k}\}$ converges. Therefore from (4.38), $\{x_{n_k}\}$ converges. Let $\lim_{k\to\infty} x_{n_k} = q$. By continuity of T and (4.38) we have that Tq = q, so q is a fixed point of T. By Lemma 4.1.8 (i), $\lim_{n\to\infty} ||x_n - q||$ exists. But $\lim_{k\to\infty} ||x_{n_k} - q|| = 0$. Thus $\lim_{n\to\infty} ||x_n - q|| = 0$. Since

$$||y_n - x_n|| = ||P(b_n T(PT)^{n-1} z_n + c_n T(PT)^{n-1} x_n + (1 - b_n - c_n - \mu_n) x_n + \mu_n v_n) - P(x_n)||$$

$$\leq b_n ||T(PT)^{n-1} z_n - x_n|| + c_n ||T(PT)^{n-1} x_n - x_n||$$

$$+ \mu_n ||v_n - x_n|| \to 0 \text{ (as } n \to \infty),}$$

and

$$||z_n - x_n|| = ||P(a_n T(PT)^{n-1} x_n + (1 - a_n - \gamma_n) x_n + \gamma_n u_n) - P(x_n)||$$

$$\leq a_n ||T(PT)^{n-1} x_n - x_n|| + \gamma_n ||u_n - x_n|| \to 0 \text{ (as } n \to \infty),$$

it follows that $\lim_{n\to\infty}y_n=q$ and $\lim_{n\to\infty}z_n=q$.

For $\gamma_n = \mu_n = \lambda_n \equiv 0$ in Theorem 4.1.9 , we obtain the following result.

Theorem 4.1.10 Let X be a uniformly convex Banach space, and let C be a nonempty closed convex nonexpansive retract of X with P as a nonexpansive retraction. Let $T: C \to X$ be a completely continuous asymptotically nonexpansive nonself-map of C with $\{k_n\}$ satisfying $k_n \ge 1$ and $\sum_{n=1}^{\infty} (k_n - 1) < \infty$ and $F(T) \ne \emptyset$. Let $\{a_n\}, \{b_n\}, \{c_n\}, \{\alpha_n\}, \{\beta_n\}$ be sequences of real numbers in [0,1] with $b_n + c_n \in [0,1]$ and $\alpha_n + \beta_n \in [0,1]$ for all $n \ge 1$, and

(i)
$$0 < \min\{\liminf_{n \to \infty} \alpha_n, \liminf_{n \to \infty} \beta_n\} \le \limsup_{n \to \infty} (\alpha_n + \beta_n) < 1, \text{ or } \alpha_n < 1, \text{$$

(ii) $0 < \liminf_{n \to \infty} \alpha_n \le \limsup_{n \to \infty} (\alpha_n + \beta_n) < 1 \text{ and } 0 < \liminf_{n \to \infty} b_n \le \limsup_{n \to \infty} (b_n + c_n) < 1.$

Let $\{x_n\}$, $\{y_n\}$ and $\{z_n\}$ be the sequences defined by the modified Noor iterations with errors (4.18). Then $\{x_n\}$, $\{y_n\}$ and $\{z_n\}$ converge strongly to a fixed point of T.

For $c_n=\beta_n=\gamma_n=\mu_n=\lambda_n\equiv 0$ in Theorem 4.1.9 , we obtain the following result.

Theorem 4.1.11 Let X be a uniformly convex Banach space, and let C be a nonempty closed convex nonexpansive retract of X with P as a nonexpansive retraction. Let $T: C \to X$ be a completely continuous asymptotically nonexpansive nonself-map of C with $\{k_n\}$ satisfying $k_n \ge 1$ and $\sum_{n=1}^{\infty} (k_n - 1) < \infty$ and $F(T) \ne \emptyset$. Let $\{a_n\}, \{b_n\}, \{\alpha_n\}$ be real sequences in [0,1] satisfying

- (i) $0 < \liminf_{n \to \infty} b_n \le \limsup_{n \to \infty} b_n < 1$, and
- (ii) $0 < \liminf_{n \to \infty} \alpha_n \le \limsup_{n \to \infty} \alpha_n < 1$,

For a given $x_1 \in C$, define

$$z_n = P(a_n T (PT)^{n-1} x_n + (1 - a_n) x_n)$$

$$y_n = P(b_n T (PT)^{n-1} z_n + (1 - b_n) x_n)$$

$$x_{n+1} = P(\alpha_n T (PT)^{n-1} y_n + (1 - \alpha_n) x_n), \quad n \ge 1.$$

Then $\{x_n\}, \{y_n\}$ and $\{z_n\}$ converge strongly to a fixed point of T.

For $a_n=c_n=\beta_n=\gamma_n=\mu_n=\lambda_n\equiv 0$ in Theorem 4.1.9 , we obtain the following result.

Theorem 4.1.12 Let X be a uniformly convex Banach space, and let C be a nonempty closed convex nonexpansive retract of X with P as a nonexpansive retraction. Let $T: C \to X$ be a completely continuous asymptotically nonexpansive nonself-map of C with $\{k_n\}$ satisfying $k_n \ge 1$ and $\sum_{n=1}^{\infty} (k_n - 1) < \infty$ and $F(T) \ne \emptyset$. Let $\{b_n\}, \{\alpha_n\}$ be a real sequence in [0,1] satisfying

- (i) $0 < \liminf_{n \to \infty} b_n \le \limsup_{n \to \infty} b_n < 1, and$
- (ii) $0 < \liminf_{n \to \infty} \alpha_n \le \limsup_{n \to \infty} \alpha_n < 1$.

For a given $x_1 \in C$, define

$$y_n = P(b_n T(PT)^{n-1} z_n + (1 - b_n) x_n)$$

$$x_{n+1} = P(\alpha_n T(PT)^{n-1} y_n + (1 - \alpha_n) x_n), \quad n \ge 1.$$

Then $\{x_n\}$ and $\{y_n\}$ converge strongly to a fixed point of T.

If T is a self-mapping, then the iterative scheme (4.18) reduces to that of (4.19) and the following result is directly obtained by Theorem 4.1.9.

Theorem 4.1.13 ([21, Theorem 2.3]) Let X be a uniformly convex Banach space, and C a nonempty closed, bounded and convex subset of X. Let T be a completely continuous asymptotically nonexpansive self-map of C with $\{k_n\}$ satisfying $k_n \geq 1$ and $\sum_{n=1}^{\infty} (k_n - 1) < \infty$. Let $\{a_n\}, \{b_n\}, \{c_n\}, \{\alpha_n\}, \{\beta_n\}, \{\gamma_n\}, \{\mu_n\}$ and $\{\lambda_n\}$ be sequences of real numbers in [0,1] with $b_n + c_n + \mu_n \in [0,1]$ and $\alpha_n + \beta_n + \lambda_n \in [0,1]$ for all $n \geq 1$, and $\sum_{n=1}^{\infty} \gamma_n < \infty, \sum_{n=1}^{\infty} \mu_n < \infty, \sum_{n=1}^{\infty} \lambda_n < \infty$ and

- (i) $0 < \liminf_{n \to \infty} b_n \le \limsup_{n \to \infty} (b_n + c_n + \mu_n) < 1$, and
- (ii) $0 < \liminf_{n \to \infty} \alpha_n \le \limsup_{n \to \infty} (\alpha_n + \beta_n + \lambda_n) < 1$.

Let $\{x_n\}$, $\{y_n\}$ and $\{z_n\}$ be the sequences defined by (4.19). Then $\{x_n\}$, $\{y_n\}$ and $\{z_n\}$ converge strongly to a fixed point of T.

For T is a self-mapping and $\gamma_n=\mu_n=\lambda_n\equiv 0$ in Theorem 4.1.9 , we obtain the following result.

Theorem 4.1.14 ([35, Theorem 2.3]) Let X be a uniformly convex Banach space, and C a nonempty closed, bounded and convex subset of X. Let T be a completely continuous asymptotically nonexpansive self-map of C with $\{k_n\}$ satisfying $k_n \geq 1$ and $\sum_{n=1}^{\infty} (k_n-1) < \infty$. Let $\{a_n\}, \{b_n\}, \{c_n\}, \{\alpha_n\}, \{\beta_n\}$ be sequences of real numbers in [0,1] with $b_n + c_n \in [0,1]$ and $\alpha_n + \beta_n \in [0,1]$ for all $n \geq 1$, and

- (i) $0 < \liminf_{n \to \infty} b_n \le \limsup_{n \to \infty} (b_n + c_n) < 1$, and
- (ii) $0 < \liminf_{n \to \infty} \alpha_n \le \limsup_{n \to \infty} (\alpha_n + \beta_n) < 1.$

Let $\{x_n\}$, $\{y_n\}$ and $\{z_n\}$ be the sequences defined by (4.20). Then $\{x_n\}$, $\{y_n\}$ and $\{z_n\}$ converge strongly to a fixed point of T.

For T is a self-mapping and $c_n = \beta_n = \gamma_n = \mu_n = \lambda_n \equiv 0$, then the iterative scheme (4.18) reduces to that of (4.21) and the following result is directly obtained by Theorem 4.1.9.

Theorem 4.1.15 ([45, Theorem 2.1]) Let X be a uniformly convex Banach space, and let C be a closed, bounded and convex subset of X. Let T be a completely continuous asymptotically nonexpansive self-map of C with $\{k_n\}$ satisfying $k_n \geq 1$ and $\sum_{n=1}^{\infty} (k_n - 1) < \infty$. Let $\{a_n\}, \{b_n\}, \{\alpha_n\}$ be real sequences in [0,1] satisfying

- (i) $0 < \liminf_{n \to \infty} b_n \le \limsup_{n \to \infty} b_n < 1$, and
- (ii) $0 < \liminf_{n \to \infty} \alpha_n \le \limsup_{n \to \infty} \alpha_n < 1$,

For a given $x_1 \in C$, define

$$z_n = a_n T^n x_n + (1 - a_n) x_n$$

$$y_n = b_n T^n z_n + (1 - b_n) x_n, \quad n \ge 1$$

$$x_{n+1} = \alpha_n T^n y_n + (1 - \alpha_n) x_n.$$

Then $\{x_n\}, \{y_n\}$, and $\{z_n\}$ converge strongly to a fixed point of T.

When T is a self-mapping and $a_n = c_n = \beta_n = \gamma_n = \mu_n = \lambda_n \equiv 0$ in Theorem 4.1.9, we can obtain Ishikawa-type convergence result which is a generalization of Theorem 3 in [29].

Theorem 4.1.16 Let X be a uniformly convex Banach space, and let C be a closed, bounded and convex subset of X. Let T be a completely continuous asymptotically nonexpansive self-map of C with $\{k_n\}$ satisfying $k_n \geq 1$ and $\sum_{n=1}^{\infty} (k_n - 1) < \infty$. Let $\{b_n\}, \{\alpha_n\}$ be a real sequence in [0, 1] satisfying

- (i) $0 < \liminf_{n \to \infty} b_n \le \limsup_{n \to \infty} b_n < 1, and$
- (ii) $0 < \liminf_{n \to \infty} \alpha_n \le \limsup_{n \to \infty} \alpha_n < 1$.

For a given $x_1 \in C$, define

$$y_n = b_n T^n z_n + (1 - b_n) x_n$$

 $x_{n+1} = \alpha_n T^n y_n + (1 - \alpha_n) x_n, \quad n \ge 1.$

Then $\{x_n\}$ and $\{y_n\}$ converge strongly to a fixed point of T.

In the next result, we prove weak convergence of the modified Noor iterations with errors for asymptotically nonexpansive nonself-mapping in a uniformly convex Banach space satisfying Opial's condition.

Theorem 4.1.17 Let X be a uniformly convex Banach space which satisfies Opial's condition, and C a nonempty closed convex nonexpansive retract of X with P as a nonexpansive retraction. Let $T:C\to X$ be an asymptotically nonexpansive nonself-map of C with $\{k_n\}$ satisfying $k_n\geq 1$ and $\sum_{n=1}^{\infty}(k_n-1)<\infty$ and $F(T)\neq\emptyset$. Let $\{a_n\},\{b_n\},\{c_n\},\{\alpha_n\},\{\beta_n\},\{\mu_n\},\{\lambda_n\}$ be sequences of real numbers in [0,1] with $a_n+\gamma_n,b_n+c_n+\mu_n$ and $\alpha_n+\beta_n+\lambda_n$ are in [0,1] for all $n\geq 1$, and $\sum_{n=1}^{\infty}\gamma_n<\infty,\sum_{n=1}^{\infty}\mu_n<\infty,\sum_{n=1}^{\infty}\lambda_n<\infty$ and

- (i) $0 < \min\{\liminf_{n \to \infty} \alpha_n, \liminf_{n \to \infty} \beta_n\} \le \limsup_{n \to \infty} (\alpha_n + \beta_n + \lambda_n) < 1,$ or
- (ii) $0 < \liminf_{n \to \infty} \alpha_n \le \limsup_{n \to \infty} (\alpha_n + \beta_n + \lambda_n) < 1 \text{ and } 0 < \liminf_{n \to \infty} b_n \le \limsup_{n \to \infty} (b_n + c_n + \mu_n) < 1.$

Let $\{x_n\}$ be the sequence defined by modified Noor iterations with errors (4.18). Then $\{x_n\}$ converges weakly to a fixed point of T.

Proof. It follows from Lemma 4.1.8 (iv) that $\lim_{n\to\infty} ||T(PT)^{n-1}x_n - x_n|| = 0$. Since X is uniformly convex and $\{x_n\}$ is bounded, we may assume that $x_n \to u$ weakly as $n \to \infty$, without loss of generality. By Lemma 2.4.2, we have $u \in F(T)$. Suppose that subsequences $\{x_{n_k}\}$ and $\{x_{m_k}\}$ of $\{x_n\}$ converge weakly to u and v, respectively. From Lemma 2.4.2, $u, v \in F(T)$. By Lemma 4.1.8 (i), $\lim_{n\to\infty} ||x_n - u||$ and $\lim_{n\to\infty} ||x_n - v||$ exist. It follows from Lemma 2.2.16 that u = v. Therefore $\{x_n\}$ converges weakly to fixed point of T.

For $\gamma_n = \mu_n = \lambda_n \equiv 0$ in Theorem 4.1.17, we obtain the following result.

Corollary 4.1.18 Let X be a uniformly convex Banach space which satisfies Opial's condition, and C a nonempty closed convex nonexpansive retract of X with P as a nonexpansive retraction. Let $T:C\to X$ be an asymptotically nonexpansive nonself-map of C with $\{k_n\}$ satisfying $k_n\geq 1$ and $\sum_{n=1}^{\infty}(k_n-1)<\infty$ and $F(T)\neq\emptyset$. Let $\{a_n\},\{b_n\},\{c_n\},\{\alpha_n\},\{\beta_n\}$ be sequences of real numbers in [0,1] with $b_n+c_n\in[0,1]$ and $\alpha_n+\beta_n\in[0,1]$ for all $n\geq 1$, and

(i) $0 < \min\{\liminf_{n \to \infty} \alpha_n, \liminf_{n \to \infty} \beta_n\} \le \limsup_{n \to \infty} (\alpha_n + \beta_n) < 1, \text{ or } (ii) \quad 0 < \liminf_{n \to \infty} \alpha_n \le \limsup_{n \to \infty} (\alpha_n + \beta_n) < 1 \text{ and } 0 < \liminf_{n \to \infty} b_n \le \limsup_{n \to \infty} (b_n + c_n) < 1.$

Let $\{x_n\}$ be the sequence defined by modified Noor iterations with errors (4.18). Then $\{x_n\}$ converges weakly to a fixed point of T.

For $c_n = \beta_n = \gamma_n = \mu_n = \lambda_n \equiv 0$ in Theorem 4.1.17, we obtain the following result.

Corollary 4.1.19 Let X be a uniformly convex Banach space which satisfies Opial's condition, and C a nonempty closed convex nonexpansive retract of X with P as a nonexpansive retraction. Let $T: C \to X$ be an asymptotically nonexpansive nonself-map of C with $\{k_n\}$ satisfying $k_n \ge 1$ and $\sum_{n=1}^{\infty} (k_n - 1) < \infty$ and $F(T) \ne \emptyset$. Let $\{a_n\}, \{b_n\}, \{\alpha_n\}$ be real sequences in [0, 1] satisfying

(i) $0 < \liminf_{n \to \infty} b_n \le \limsup_{n \to \infty} b_n < 1$, and

(ii) $0 < \liminf_{n \to \infty} \alpha_n \le \limsup_{n \to \infty} \alpha_n < 1$,

For a given $x_1 \in C$, define

$$x_n \in C$$
, define
 $z_n = P(a_n T(PT)^{n-1} x_n + (1 - a_n) x_n)$
 $y_n = P(b_n T(PT)^{n-1} z_n + (1 - b_n) x_n), \quad n \ge 1$
 $x_{n+1} = P(\alpha_n T(PT)^{n-1} y_n + (1 - \alpha_n) x_n).$

Then $\{x_n\}$ converges weakly to a fixed point of T.

For $a_n = c_n = \beta_n = \gamma_n = \mu_n = \lambda_n \equiv 0$ in Theorem 4.1.17, we obtain the following result.

Corollary 4.1.20 Let X be a uniformly convex Banach space which satisfies Opial's condition, and C a nonempty closed convex nonexpansive retract of X with P as a nonexpansive retraction. Let $T: C \to X$ be an asymptotically nonexpansive nonself-map of C with $\{k_n\}$ satisfying $k_n \ge 1$ and $\sum_{n=1}^{\infty} (k_n - 1) < \infty$ and $F(T) \ne \emptyset$. Let $\{b_n\}$, $\{\alpha_n\}$ be real sequences in [0,1] satisfying

- (i) $0 < \liminf_{n \to \infty} b_n \le \limsup_{n \to \infty} b_n < 1, and$
- (ii) $0 < \liminf_{n \to \infty} \alpha_n \le \limsup_{n \to \infty} \alpha_n < 1$.

For a given $x_1 \in C$, define

$$y_n = P(b_n T(PT)^{n-1} z_n + (1 - b_n) x_n)$$

$$x_{n+1} = P(\alpha_n T(PT)^{n-1} y_n + (1 - \alpha_n) x_n), \quad n \ge 1.$$

Then $\{x_n\}$ converges weakly to a fixed point of T.

4.2 Common Fixed Points of Asymptotically Nonexpansive Mappings

In 2001, Xu and Ori [46] introduced the following implicit iteration process for a finite family of nonexpansive mappings $\{T_i : i \in J\}$ (here $J = \{1, 2, ..., N\}$) with $\{\alpha_n\}$ is a real sequence in (0, 1), and an initial point $x_0 \in C$:

$$x_{1} = \alpha_{1}x_{0} + (1 - \alpha_{1})T_{1}x_{1},$$

$$x_{2} = \alpha_{2}x_{1} + (1 - \alpha_{2})T_{2}x_{2},$$

$$\vdots$$

$$x_{N} = \alpha_{N}x_{N-1} + (1 - \alpha_{N})T_{N}x_{N},$$

$$x_{N+1} = \alpha_{N+1}x_{N} + (1 - \alpha_{N+1})T_{N+1}x_{N+1},$$

$$\vdots$$

which can be written in the following compact form:

$$x_n = \alpha_n x_{n-1} + (1 - \alpha_n) T_n x_n, \quad \forall n \geqslant 1, \tag{4.39}$$

where $T_n = T_{n(mod\ N)}$ (here the $mod\ N$ function takes values in J). Xu and Ori also proved the weak convergence of this process to a common fixed point of the finite family of nonexpansive mappings in a Hilbert space.

In [50], Zhou and Chang studied the weak and strong convergence of this implicit process to a common fixed point for a finite family of nonexpansive mappings in a uniformly convex Banach space. Recently, Chidume and Shahzad [8]

proved that Xu and Ori's iteration process converges strongly to a common fixed point for a finite family of nonexpansive mappings if one of the mappings is semi-compact. Inspired and motivated by these facts, we will extend the process (4.39) to a process for a finite family of asymptotically quasi-nonexpansive mappings in a uniformly convex Banach spaces, which is defined as follows:

Let X be a normed linear space, C a nonempty convex subset of X, $\{T_i : i \in J\}$ a finite families of asymptotically quasi-nonexpansive mappings of C. Suppose that $\{\alpha_n\}$ and $\{\beta_n\}$ are two real sequences in [0,1] such that $\sup\{k_n(1-\alpha_n-\beta_n): n \geq 1\} \leq 1$. Then for arbitrary $x_0 \in C$, the sequence $\{x_n\}$ is generated as follows:

$$x_{1} = \alpha_{1}x_{0} + \beta_{1}T_{1}x_{0} + (1 - \alpha_{1} - \beta_{1})T_{1}x_{1},$$

$$x_{2} = \alpha_{2}x_{1} + \beta_{2}T_{2}x_{1} + (1 - \alpha_{2} - \beta_{2})T_{2}x_{2},$$

$$\vdots$$

$$x_{N} = \alpha_{N}x_{N-1} + \beta_{N}T_{N}x_{N-1} + (1 - \alpha_{N} - \beta_{N})T_{N}x_{N},$$

$$x_{N+1} = \alpha_{N+1}x_{N} + \beta_{N+1}T_{1}^{2}x_{N} + (1 - \alpha_{N+1} - \beta_{N+1})T_{1}^{2}x_{N+1},$$

$$\vdots$$

$$x_{2N} = \alpha_{2N}x_{2N-1} + \beta_{2N}T_{N}^{2}x_{2N-1} + (1 - \alpha_{2N} - \beta_{2N})T_{N}^{2}x_{2N},$$

$$x_{2N+1} = \alpha_{2N+1}x_{2N} + \beta_{2N+1}T_{1}^{3}x_{2N+1} + (1 - \alpha_{2N+1} - \beta_{2N+1})T_{1}^{3}x_{2N+1},$$

$$\vdots$$

is called the implicit iterative sequence for a finite family of asymptotically quasi-nonexpansive mappings $\{T_1, T_2, \ldots, T_N\}$. Since for each $n \geq 1$, it can be written as n = (k-1)N + i, where $i = i(n) \in J$, $k = k(n) \geq 1$ is positive integer and $k(n) \to \infty$, as $n \to \infty$. Hence we can write the above table in the following compact form:

$$x_n = \alpha_n x_{n-1} + \beta_n T_i^k x_{n-1} + (1 - \alpha_n - \beta_n) T_i^k x_n, \ \forall n \ge 1.$$
 (4.40)

In this section, we prove weak and strong convergence of the implicit iteration process (4.40) to a common fixed point for a finite family of asymptotically quasi-nonexpansive mappings in a uniformly convex Banach space.

Theorem 4.2.1 Let X be a uniformly convex Banach space and let C be a nonempty closed convex subset of X. Let $\{T_i: i \in J\}$ be N asymptotically quasi-nonexpansive self-mappings of C, i.e., $||T_i^n x - q|| \le (1 + u_{in})||x - q||$ for all $x \in C$, $q \in F(T_i)$, $i \in J$ with $F = \bigcap_{i=1}^N F(T_i) \neq \emptyset$ (here $F(T_i)$ denotes the set of fixed points of T_i). Let $\{\alpha_n\}$ and $\{\beta_n\}$ be real sequences in [0,1] such that α_n , $\alpha_n + \beta_n$ are in (s, 1-s) for some $s \in (0,1)$, for all $n \ge 1$, and $\sum_{n=1}^{\infty} u_{in} < \infty$ for all $i \in J$. Then the implicitly iterative sequence $\{x_n\}$ generated by (4.40)

converges to a common fixed point in F if and only if $\liminf_{n\to\infty} d(x_n, F) = 0$, where d(x, F) denotes the distance of x to set F, i.e., $d(x, F) = \inf_{y \in F} d(x, y)$.

Proof. The necessity of the conditions is obvious. Thus, we will only prove the sufficiency. For any $p \in F$, from

$$x_n = \alpha_n x_{n-1} + \beta_n T_i^k x_{n-1} + (1 - \alpha_n - \beta_n) T_i^k x_n,$$
where $n = (k-1)N + i$, $T_n = T_n \pmod{N} = T_i$, $i \in J$, it follows that
$$\|x_n - p\| = \|\alpha_n x_{n-1} + \beta_n T_i^k x_{n-1} + (1 - \alpha_n - \beta_n) T_i^k x_n - p\|$$

$$\leq \alpha_n \|x_{n-1} - p\| + \beta_n \|T_i^k x_{n-1} - p\| + (1 - \alpha_n - \beta_n) \|T_i^k x_n - p\|$$

$$< \alpha_n \|x_{n-1} - p\| + \beta_n (1 + u_{ik}) \|x_{n-1} - p\|$$

$$+ (1 - \alpha_n - \beta_n)(1 + u_{ik})||x_n - p||$$

$$\leq (\alpha_n + \beta_n + \beta_n u_{ik})||x_{n-1} - p|| + (1 - \alpha_n - \beta_n - \beta_n u_{ik} + u_{ik})||x_n - p||.$$

Transposing and simplifying above inequality, and noticing that $s < \alpha_n + \beta_n < 1 - s < 1$, we have

$$(\alpha_{n} + \beta_{n} + \beta_{n} u_{ik}) ||x_{n} - p|| \leq (\alpha_{n} + \beta_{n} + \beta_{n} u_{ik}) ||x_{n-1} - p|| + u_{ik} ||x_{n} - p||$$

$$\leq (\alpha_{n} + \beta_{n} + \beta_{n} u_{ik}) ||x_{n-1} - p||$$

$$+ u_{ik} (\frac{\alpha_{n} + \beta_{n} + \beta_{n} u_{ik}}{s}) ||x_{n} - p||.$$

Hence

$$\frac{s - u_{ik}}{s} ||x_n - p|| \leq ||x_{n-1} - p||. \tag{4.41}$$

Since $\sum_{k=1}^{\infty} u_{ik} < \infty$ for all $i \in J$, thus $\lim_{k\to\infty} u_{ik} = 0$, there exists a natural number n_0 , as $k > n_0/N + 1$, i.e., $n > n_0$ such that $s - u_{ik} > 0$ and $u_{ik} < \frac{s}{2}$. Then (4.41) becomes

$$||x_n - p|| \le \frac{s}{s - u_{ik}} ||x_{n-1} - p||.$$
 (4.42)

Let $1 + v_{ik} = \frac{s}{s - u_{ik}} = 1 + \frac{u_{ik}}{s - u_{ik}}$. Then $v_{ik} = (\frac{1}{s - u_{ik}})u_{ik} < \frac{2}{s}u_{ik}$, therefore $\sum_{k=1}^{\infty} v_{ik} < \frac{2}{s} \sum_{k=1}^{\infty} u_{ik} < \infty$ for all $i \in J$ and (4.42) becomes

$$||x_n - p|| \le (1 + v_{ik})||x_{n-1} - p||, \forall p \in F.$$
 (4.43)

This implies that $d(x_n, F) \leq (1+v_{ik})d(x_{n-1}, F)$. From Lemma 2.1.3 we have $\lim_{n\to\infty} d(x_n, F) = 0$. Hereafter, we will prove that $\{x_n\}$ is a Cauchy sequence. Notice that when x > 0, $1+x \leq e^x$, from (4.43) we have

$$||x_{n+m} - p|| \le \exp\{\sum_{i=1}^{n} \sum_{k=1}^{\infty} v_{ik}\} ||x_n - p||$$

$$< M||x_n - p||, \quad \forall p \in F,$$
(4.44)

for all natural number m, n, where $M = \exp\{\sum_{i=1}^n \sum_{k=1}^\infty v_{ik}\} + 1 < \infty$. For all $\epsilon > 0$, there exists a natural number n_1 such that when $n \ge n_1$, $d(x_n, F) \le \frac{\epsilon}{2M}$ as $\lim_{n\to\infty} d(x_n, F) = 0$; specifically, $d(x_{n_1}, F) \le \frac{\epsilon}{2M}$. Thus there exists a point $p_1 \in F$ such that $||x_{n_1} - p_1|| \le d(x_{n_1}, p_1) \le \frac{\epsilon}{2M}$ by the definition of $d(x_n, F)$. It follows, from (4.44), that when $n \ge n_1$, for all m,

$$||x_{n+m} - x_n|| \leq ||x_{n+m} - p_1|| + ||x_n - p_1|| < M||x_{n_1} - p_1|| + M||x_{n_1} - p_1|| \leq \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon.$$

This implies that $\{x_n\}$ is a Cauchy sequence. Because the space is complete, the sequence $\{x_n\}$ is convergent. Let $\lim_{n\to\infty} x_n = p$. Moreover, since the set of fixed points of an asymptotically quasi-nonexpansive mapping is closed, so is F, thus $p \in F$ from $\lim_{n\to\infty} d(x_n, F) = 0$, i.e., p is a common point of $F(T_i)$, for all $i \in J$. This completes the proof.

Corollary 4.2.2 Suppose the conditions are as same as in Theorem 4.2.1. Then the implicitly iterative sequence $\{x_n\}$ generated by (4.40) converges to a common fixed point $p \in F$ if and only if there exists some infinite subsequence $\{x_{n_j}\}$ of $\{x_n\}$ which converges to p.

The main purpose of this paper is to prove the following convergent result for the process (4.40).

Theorem 4.2.3 Let X be a uniformly convex Banach space and let C be a bounded closed convex subset of X. Let $\{T_i : i \in J\}$ be N uniformly L-Lipschitzian asymptotically quasi-nonexpansive self-mappings of C with $F = \bigcap_{i=1}^N F(T_i) \neq \emptyset$ and there exists one member T in $\{T_i : i \in J\}$ to be semi-compact. Let $\{\alpha_n\}$ and $\{\beta_n\}$ be real sequences in [0,1] such that α_n , $\alpha_n + \beta_n$ are in (s,1-s) for some $s \in (0,1)$, for all $n \geq 1$, and $\sum_{n=1}^{\infty} u_{in} < \infty$ for all $i \in J$. Then sequence $\{x_n\}$ defined by the implicit iteration process (4.40) strongly converges to a common fixed point of the mappings $\{T_i : i \in J\}$.

Proof. Since C is bounded, take r > 0 such that $C \subset B(0, r)$, where B(0, r) is the closed ball of X with center zero and radius r. By Lemma 2.2.13, we get for any $q \in F$

$$||x_{n} - q||^{2} = ||\alpha_{n}x_{n-1} + \beta_{n}T_{i}^{k}x_{n-1} + (1 - \alpha_{n} - \beta_{n})T_{i}^{k}x_{n} - q||^{2}$$

$$= ||\alpha_{n}(x_{n-1} - q) + \beta_{n}(T_{i}^{k}x_{n-1} - q) + (1 - \alpha_{n} - \beta_{n})(T_{i}^{k}x_{n} - q)||^{2}$$

$$\leq \alpha_{n}||x_{n-1} - q||^{2} + \beta_{n}||T_{i}^{k}x_{n-1} - q||^{2}$$

$$+ (1 - \alpha_{n} - \beta_{n})||T_{i}^{k}x_{n} - q||^{2} - \alpha_{n}(1 - \alpha_{n} - \beta_{n})g(\sigma_{n}),$$

where
$$\sigma_n = ||T_i^k x_n - x_{n-1}|| = ||T_n^k x_n - x_{n-1}||, \quad n = (k-1)N + i, \ i \in J.$$

Since T_n is asymptotically quasi-nonexpansive, it follows that

$$||x_{n} - q||^{2} \leq \alpha_{n} ||x_{n-1} - q||^{2} + \beta_{n} (1 + u_{ik})^{2} ||x_{n-1} - q||^{2}$$

$$+ (1 - \alpha_{n} - \beta_{n}) (1 + u_{ik})^{2} ||x_{n} - q||^{2} - \alpha_{n} (1 - \alpha_{n} - \beta_{n}) g(\sigma_{n})$$

$$\leq \alpha_{n} ||x_{n-1} - q||^{2} + \beta_{n} ||x_{n-1} - q||^{2} + \beta_{n} v_{ik} ||x_{n-1} - q||^{2}$$

$$+ (1 - \alpha_{n} - \beta_{n} - \beta_{n} v_{ik} + v_{ik}) ||x_{n} - q||^{2} - \alpha_{n} (1 - \alpha_{n} - \beta_{n}) g(\sigma_{n}),$$

$$(4.45)$$

where $v_{ik} = 2u_{ik} + u_{ik}^2$. Hence $\sum_{k=1}^{\infty} v_{ik} < \infty$ for all $i \in J$. Thus, from (4.45) and $s < \alpha_n + \beta_n \le \alpha_n + \beta_n + \beta_n v_{ik}$, we have

$$(\alpha_{n} + \beta_{n} + \beta_{n} v_{ik}) \|x_{n} - q\|^{2} \leq (\alpha_{n} + \beta_{n} + \beta_{n} v_{ik}) \|x_{n-1} - q\|^{2} + v_{ik} \frac{(\alpha_{n} + \beta_{n} + \beta_{n} v_{ik})}{s} \|x_{n} - q\|^{2} - \alpha_{n} (1 - \alpha_{n} - \beta_{n}) g(\sigma_{n}).$$

$$(4.46)$$

Hence $||x_n - q||^2 \le ||x_{n-1} - q||^2 + \frac{v_{ik}}{s}||x_n - q||^2$. Therefore, as in Theorem 4.2.1, we can show that $\lim_{n \to +\infty} ||x_n - q||^2$ exists and let $\lim_{n \to +\infty} ||x_n - q||^2 = d$. From (4.46) and $s < \alpha_n \le \alpha_n + \beta_n < 1 - s$, $\forall n \in \mathbb{N}$, we have

$$\frac{s^2}{1 - s + \beta_n v_{ik}} g(\sigma_n) < \frac{\alpha_n (1 - \alpha_n - \beta_n)}{\alpha_n + \beta_n + \beta_n v_{ik}} g(\sigma_n)
\leq ||x_{n-1} - q||^2 - ||x_n - q||^2 + \frac{v_{ik}}{s} ||x_n - q||^2.$$

Thus

$$g(\sigma_n) \le \frac{1-s+\beta_n v_{ik}}{s^2} (\|x_{n-1}-q\|^2 - \|x_n-q\| + \frac{v_{ik}}{s} \|x_n-q\|^2).$$

Since $\sum_{k=1}^{\infty} v_{ik} < \infty$, there exists K > 0 such that

$$g(\sigma_n) \leq \frac{1-s+K}{s^2} (\|x_{n-1}-q\|^2 - \|x_n-q\|^2 + \frac{v_{ik}}{s} \|x_n-q\|^2).$$

Hence

$$\sum_{n=1}^{m} g(\sigma_n) \le \frac{1 - s + K}{s^2} \sum_{n=1}^{m} (\|x_{n-1} - q\|^2 - \|x_n - q\|^2 + v_{ik}M), \tag{4.47}$$

where $M = \frac{2r}{s} < \infty$, r is the ball radius. Since $\sum_{k=1}^{\infty} v_{ik} < \infty$, by letting $m \to \infty$ in (4.47) we get $\sum_{n=1}^{\infty} g(\sigma_n) < \infty$, and therefore $\lim_{n\to\infty} g(\sigma_n) = 0$. Since g is strictly increasing and continuous at 0 with g(0), it follows that

$$\lim_{n\to\infty} \sigma_n = \lim_{n\to\infty} ||T_n^k x_n - x_{n-1}|| = 0.$$

Since T_i^k is asymptotically quasi-nonexpansive, we have

$$||x_{n} - x_{n-1}|| = ||\beta_{n}(T_{i}^{k}x_{n-1} - x_{n-1}) + (1 - \alpha_{n} - \beta_{n})(T_{i}^{k}x_{n} - x_{n-1})||$$

$$\leq \beta_{n}||T_{i}^{k}x_{n-1} - x_{n-1}|| + (1 - \alpha_{n} - \beta_{n})||T_{i}^{k}x_{n} - x_{n-1}||$$

$$\leq \beta_{n}||T_{i}^{k}x_{n-1} - T_{i}^{k}x_{n}|| + \beta_{n}||T_{i}^{k}x_{n} - x_{n-1}||$$

$$+ (1 - \alpha_{n} - \beta_{n})||T_{i}^{k}x_{n} - x_{n-1}||$$

$$\leq \beta_{n}(1 + u_{ik})||x_{n-1} - x_{n}|| + \beta_{n}||T_{i}^{k}x_{n} - x_{n-1}||$$

$$+ (1 - \alpha_{n} - \beta_{n})||T_{i}^{k}x_{n} - x_{n-1}||$$

$$\leq \beta_{n}(1 + \frac{s}{2})||x_{n-1} - x_{n}|| + \beta_{n}||T_{n}^{k}x_{n} - x_{n-1}||$$

$$+ (1 - \alpha_{n} - \beta_{n})||T_{n}^{k}x_{n} - x_{n-1}||.$$

This implies that

$$(1 - \beta_n - \beta_n \frac{s}{2}) \|x_n - x_{n-1}\| \le \beta_n \|T_n^k x_n - x_{n-1}\| + (1 - \alpha_n - \beta_n) \|T_n^k x_n - x_{n-1}\|.$$

From $\beta_n \leq \alpha_n + \beta_n < 1 - s$, $\forall n \in \mathbb{N}$, we have

$$(s - (1 - s)\frac{s}{2}) \|x_n - x_{n-1}\| \le (1 - \alpha_n) \|T_n^k x_n - x_{n-1}\|.$$

It follows that $\lim_{n\to\infty} ||x_n-x_{n-1}|| = 0$. Also $\lim_{n\to\infty} ||x_n-x_{n+l}|| = 0$ for all l < 2N. Hence, when n > N, we have

$$||x_{n-1} - T_n x_n|| \le ||x_{n-1} - T_n^k x_n|| + ||T_n^k x_n - T_n x_n||$$

$$\le \sigma_n + L(||T_n^{k-1} x_n - T_{n-N}^{k-1} x_{n-N}|| + ||T_{n-N}^{k-1} x_{n-N} - x_{(n-N)-1}|| + ||x_{(n-N)-1} - x_n||).$$

Notice that $n \equiv (n - N) \pmod{N}$. Thus $T_n = T_{n-N}$ and above inequality becomes

$$||x_{n-1} - T_n x_n|| \le \sigma_n + L^2 ||x_n - x_{n-N}|| + L\sigma_{n-N} + L||x_n - x_{(n-N)-1}||,$$

which yields $\lim_{n\to\infty} ||x_{n-1} - T_n x_n|| = 0$. From

$$||x_n - T_n x_n|| \le ||x_n - x_{n-1}|| + ||x_{n-1} - T_n x_n||,$$

it follows that $\lim_{n\to\infty} ||x_n - T_n x_n|| = 0$. Hence for all $l \in J$

$$||x_n - T_{n+l}x_n|| \le ||x_n - x_{n+l}|| + ||x_{n+l} - T_{n+l}x_{n+l}|| + ||T_{n+l}x_{n+l} - T_{n+l}x_n||$$

$$\le (1+L)||x_n - x_{n+l}|| + ||x_{n+l} - T_{n+l}x_{n+l}||,$$

we have that $\lim_{n\to\infty} ||x_n - T_{n+l}x_n|| = 0 \ (\forall l \in J)$. Since for each $l \in J$, $\{||x_n - T_{n+l}x_n||\}$ is a subset of $\bigcup_{l=1}^N \{||x_n - T_{n+l}x_n||\}$, we have

$$\lim_{n \to \infty} ||x_n - T_l x_n|| = 0 \quad (\forall l \in J). \tag{4.48}$$

By hypothesis that there exists T in $\{T_i: i \in J\}$ to be semi-compact, we may assume that T_1 is semi-compact without loss of generality. Therefore by (4.48), we have $\lim_{n\to\infty} ||x_n - T_1x_n|| = 0$ and by the definition of semi-compact there exists a subsequence $\{x_{n_j}\}$ of $\{x_n\}$ such that $x_{n_j} \to x^* \in C$. By (4.48) again, we have

$$||x^* - T_l x^*|| = \lim_{n_j \to \infty} ||x_{n_j} - T_l x_{n_j}|| = 0 \quad (\forall 1 \le l \le N).$$

It shows that $x^* \in F$ and $\lim \inf_{n \to +\infty} d(x_n, F) = 0$, therefore by Theorem 4.2.1 and Corollary 4.2.2 we have that x_n converges to a common fixed point q in F. This completes the proof.

Theorem 4.2.4 Let X be a uniformly convex Banach space and let C be a bounded closed convex subset of X. Let $T_i, i \in J$ be N asymptotically nonexpansive self-mappings of C with $F = \bigcap_{i=1}^N F(T_i) \neq \emptyset$ and there exists one member T in $\{T_i : i \in J\}$ to be semi-compact. Let $\{\alpha_n\}$ and $\{\beta_n\}$ be real sequences in [0,1] such that α_n , $\alpha_n + \beta_n$ are in (s,1-s) for some $s \in (0,1)$, for all $n \geq 1$, and $\sum_{n=1}^{\infty} u_{in} < \infty$ for all $i \in J$. Then the sequence $\{x_n\}$ defined by the implicit iteration process (4.40) strongly converges to a common fixed point of the mappings $\{T_i : i \in J\}$.

In the next results, we prove weak convergence of the sequence $\{x_n\}$ defined by (4.40) in uniformly convex Banach space satisfying *Opial's condition*.

Lemma 4.2.5 Let X be a uniformly convex Banach space which satisfies Opial's condition, and C be a nonempty closed convex subset of X. Let $\{T_i, i \in J\}$ be N asymptotically nonexpansive self-mappings of C with $F = \bigcap_{i=1}^N F(T_i) \neq \emptyset$. Let $\{\alpha_n\}$ and $\{\beta_n\}$ be real sequences in [0,1] such that α_n , $\alpha_n + \beta_n$ are in (s,1-s) for some $s \in (0,1)$, for all $n \geq 1$, and $\sum_{n=1}^{\infty} u_{in} < \infty$ for all $i \in J$. Then the sequence $\{x_n\}$ defined by the implicit iteration process (4.40) weakly converges to a common fixed point of the mappings $\{T_i : i \in J\}$.

Proof. Since X is uniformly convex and $\{x_n\}$ is bounded, we may assume that $x_n \to x^*$ weakly as $n \to \infty$, with out loss of generality. By Lemma 2.4.1, we have $x^* \in F(T_i)$ for all $i \in J$. Hence $x^* \in F$. Suppose that there exist subsequence $\{x_{n_k}\}$ and $\{x_{n_j}\}$ of $\{x_n\}$ converge weakly to y^* and z^* respectively. By Lemma 2.4.1, y^* , $z^* \in F$. As in Theorem 4.2.1, we have $\lim_{n \to \infty} ||x_n - y^*||$ and $\lim_{n \to \infty} ||x_n - z^*||$ exists. It follows from Lemma 2.2.16 we have $y^* = z^*$. Therefore $\{x_n\}$ converges weakly to a common fixed point x^* in F.