Chapter 5

Common Fixed Points for a Finite Family of Nonexpansive Mappings in a Banach Space

We introduce and study a new multi-step iterative schemes with errors for a finite family of nonexpansive nonself-mappings. Our schemes can be viewed as an extension for three-step iterative schemes of Thianwan and Suantai[40]. The scheme is defined as follows:

Let C be a nonempty closed convex subset of uniformly convex Banach space X with P as a nonexpansive retraction of X onto C, and let $T_1, T_2, \ldots, T_N : C \to X$ be nonexpansive mappings. Let $x_1 \in C$, the multi-step iteration scheme is defined as follows:

 $\begin{array}{l} n\geqslant 1 \text{ where } \{\alpha_{n}^{1}\}, \{\alpha_{n}^{2}\}, \ldots, \{\alpha_{n}^{N}\}, \{\beta_{n}^{1}\}, \{\beta_{n}^{2}\}, \ldots, \{\beta_{n}^{N}\}, \{\gamma_{n}^{1}\}, \{\gamma_{n}^{2}\}, \ldots, \{\gamma_{n}^{N}\} \\ \text{are sequences in } [0,1] \text{ with } \alpha_{n}^{i}+\beta_{n}^{i}+\gamma_{n}^{i}=1 \text{ for all } i=1,2,\ldots,N \text{ and } \{u_{n}^{1}\}, \{u_{n}^{2}\}, \ldots, \{u_{n}^{N}\} \text{ are bounded sequences in } C. \end{array}$

For N=3, $T_1=T_2=T_3\equiv T$, $a_n=\alpha_n^1$, $c_n=\alpha_n^2$, $\alpha_n=\alpha_n^2$ and $\gamma_n^1=\gamma_n^2=\gamma_n^3\equiv 0$, then (5.1) reduces to the scheme for a mapping defined by Thianwan and Suantai[40]:

$$z_{n} = P((1 - a_{n} - b_{n})x_{n} + a_{n}Tx_{n} + b_{n}u_{n}),$$

$$y_{n} = P((1 - c_{n} - d_{n})z_{n} + c_{n}Tx_{n} + d_{n}v_{n}),$$

$$x_{n+1} = P((1 - \alpha_{n} - \beta_{n})y_{n} + \alpha_{n}Tx_{n} + \beta_{n}w_{n}), \quad n \geq 1,$$

$$(5.2)$$

where $\{u_n\}, \{v_n\}, \{w_n\}$ are bounded sequences in C and $\{a_n\}, \{b_n\}, \{c_n\}, \{d_n\}, \{\alpha_n\}, \{\beta_n\}$ are appropriate sequences in [0, 1].

In this section, we prove weak and strong convergence theorems of the iterative scheme given in (5.1) to a common fixed point for a finite family of nonexpansive nonself-mappings in a uniformly convex Banach space. In order to prove our main results, the following lemmas are needed.

Lemma 5.0.6 Let X be a uniformly convex Banach space, and let C be a nonempty closed convex nonexpansive retract of X with P as a nonexpansive retraction. Let $T_1, T_2, \ldots, T_N : C \to X$ be nonexpansive mappings and let $\{x_n\}$ be the sequence defined by (5.1) with $\sum_{n=1}^{\infty} \gamma_n^i < \infty$ for each $i = 1, 2, \ldots, N$. If $F = \bigcap_{i=1}^N F(T_i) \neq \emptyset$, then $\lim_{n\to\infty} ||x_n - x^*||$ exists for all $x^* \in F$.

Proof. For each $n \ge 1$, we note that

$$\begin{aligned} \|x_{n}^{1} - x^{*}\| &= \|P(\alpha_{n}^{1}T_{1}x_{n} + \beta_{n}^{1}x_{n} + \gamma_{n}^{1}u_{n}^{1}) - x^{*}\|_{\dots} \\ &\leqslant \|\alpha_{n}^{1}T_{1}x_{n} + \beta_{n}^{1}x_{n} + \gamma_{n}^{1}u_{n}^{1} - x^{*}\|_{\dots} \\ &\leqslant \alpha_{n}^{1}\|T_{1}x_{n} - x^{*}\| + \beta_{n}^{1}\|x_{n} - x^{*}\| + \gamma_{n}^{1}\|u_{n}^{1} - x^{*}\|_{\infty} \\ &\leqslant \alpha_{n}^{1}\|x_{n} - x^{*}\| + \beta_{n}^{1}\|x_{n} - x^{*}\| + \gamma_{n}^{1}\|u_{n}^{1} - x^{*}\|_{\infty} \\ &\leqslant \|x_{n} - x^{*}\| + d_{n}^{1}, \end{aligned}$$

where $d_n^1 = \gamma_n^1 ||u_n^1 - x^*||$. Since $\sum_{n=1}^{\infty} \gamma_n^1 < \infty$, $\sum_{n=1}^{\infty} d_n^1 < \infty$. Next, we note that

$$\begin{split} \|x_{n}^{2}-x^{*}\| &= \|P(\alpha_{n}^{2}T_{2}x_{n}+\beta_{n}^{2}x_{n}^{1}+\gamma_{n}^{2}u_{n}^{2})-x^{*}\| \\ &\leqslant \|\alpha_{n}^{2}T_{2}x_{n}+\beta_{n}^{2}x_{n}^{1}+\gamma_{n}^{2}u_{n}^{2}-x^{*}\| \\ &\leqslant \alpha_{n}^{2}\|T_{2}x_{n}-x^{*}\|+\beta_{n}^{2}\|x_{n}^{1}-x^{*}\|+\gamma_{n}^{2}\|u_{n}^{2}-x^{*}\| \\ &\leqslant \alpha_{n}^{2}\|x_{n}-x^{*}\|+\beta_{n}^{2}\|x_{n}^{1}-x^{*}\|+\gamma_{n}^{2}\|u_{n}^{2}-x^{*}\| \\ &\leqslant \alpha_{n}^{2}\|x_{n}-x^{*}\|+\beta_{n}^{2}(\|x_{n}-x^{*}\|+d_{n}^{1})+\gamma_{n}^{2}\|u_{n}^{2}-x^{*}\| \\ &= \alpha_{n}^{2}\|x_{n}-x^{*}\|+\beta_{n}^{2}\|x_{n}-x^{*}\|+\beta_{n}^{2}d_{n}^{1}+\gamma_{n}^{2}\|u_{n}^{2}-x^{*}\| \\ &= (\alpha_{n}^{2}+\beta_{n}^{2})\|x_{n}-x^{*}\|+\beta_{n}^{2}d_{n}^{1}+\gamma_{n}^{2}\|u_{n}^{2}-x^{*}\| \\ &\leqslant \|x_{n}-x^{*}\|+d_{n}^{2}, \end{split}$$

where $d_n^2 = \beta_n^2 d_n^1 + \gamma_n^2 ||u_n^2 - x^*||$. Since $\sum_{n=1}^{\infty} d_n^1 < \infty$ and $\sum_{n=1}^{\infty} \gamma_n^2 < \infty$, $\sum_{n=1}^{\infty} d_n^2 < \infty$. Similarly, we have

where $d_n^3 = \beta_n^3 d_n^2 + \gamma_n^3 ||u_n^3 - x^*||$, and we also have that $\sum_{n=1}^{\infty} d_n^3 < \infty$.

By continuing the above method, there exists a nonnegative real sequences $\{d_n^i\}$ such that $\sum_{n=1}^{\infty} d_n^i < \infty$ and

$$||x_n^i - x^*|| \le ||x_n - x^*|| + d_n^i, \quad \forall n \ge 1, \quad \forall i = 1, 2, \dots, N.$$
 (5.3)

Thus $||x_{n+1} - x^*|| = ||x_n^N - x^*|| \le ||x_n - x^*|| + d_n^N$ for all $n \in \mathbb{N}$. Hence, by Lemma 2.1.3, $\lim_{n\to\infty} ||x_n - x^*||$ exist. This completes the proof.

Lemma 5.0.7 Let X be a uniformly convex Banach space, and let C be a nonempty closed convex nonexpansive retract of X with P as a nonexpansive retraction. Let $T_1, T_2, \ldots, T_N : C \to X$ be nonexpansive mappings and let $\{x_n\}$ be the sequence defined by (5.1) with $\sum_{n=1}^{\infty} \gamma_n^i < \infty$ and $\{\alpha_n^i\} \subseteq [\varepsilon, 1-\varepsilon]$ for all $i=1,2,\ldots,N$ for some $\varepsilon \in (0,1)$. If $F = \bigcap_{i=1}^N F(T_i) \neq \emptyset$ and $\limsup_{n\to\infty} (\alpha_n^i + \beta_n^i) < 1$ for all $i=1,2,\ldots,N$, then $\lim_{n\to\infty} ||x_n - T_ix_n|| = 0$ for all $i=1,2,\ldots,N$.

Proof. Let $x^* \in F$. Then, by Lemma 5.0.6, $\lim_{n\to\infty} ||x_n - x^*||$ exists. Let $\lim_{n\to\infty} ||x_n - x^*|| = r$. If r = 0, then by the continuity of each T_i the conclusion follows. Suppose that r > 0. Since $\{x_n\}$ and $\{u_n^i\}$ are bounded for all $i = 1, 2, \ldots, N$, there exists R > 0 such that $x_n^{i-1} - x^* + \gamma_n^i(u_n^i - x_n^{i-1})$, $T_i x_n - x^* + \gamma_n^i(u_n^i - x_n^{i-1}) \in B_R(0)$ for all $i = 1, 2, \ldots, N$ for all $n \ge 1$. Using Lemma 2.2.12 and (5.3), we have

$$||x_{n}^{i} - x^{*}||^{2} = ||P(\alpha_{n}^{i}T_{i}x_{n} + \beta_{n}^{i}x_{n}^{i-1} + \gamma_{n}^{i}u_{n}^{i}) - x^{*}||^{2}$$

$$\leq ||\alpha_{n}^{i}T_{i}x_{n} + \beta_{n}^{i}x_{n}^{i-1} + \gamma_{n}^{i}u_{n}^{i} - x^{*}||^{2}$$

$$= ||\alpha_{n}^{i}(T_{i}x_{n} - x^{*} + \gamma_{n}^{i}(u_{n}^{i} - x_{n}^{i-1}))$$

$$+ (1 - \alpha_{n}^{i})(x_{n}^{i-1} - x^{*} + \gamma_{n}^{i}(u_{n}^{i} - x_{n}^{i-1}))||^{2}$$

$$\leq \alpha_{n}^{i}||T_{i}x_{n} - x^{*} + \gamma_{n}^{i}(u_{n}^{i} - x_{n}^{i-1})||^{2}$$

$$+ (1 - \alpha_{n}^{i})||x_{n}^{i-1} - x^{*} + \gamma_{n}^{i}(u_{n}^{i} - x_{n}^{i-1})||^{2}$$

$$- W_{2}(\alpha_{n}^{i})g(||T_{i}x_{n} - x_{n}^{i-1}||)$$

$$\leq \alpha_{n}^{i}(||x_{n} - x^{*}|| + \gamma_{n}^{i}||u_{n}^{i} - x_{n}^{i-1}||)^{2}$$

$$+ (1 - \alpha_{n}^{i})(||x_{n}^{i-1} - x^{*}|| + \gamma_{n}^{i}||u_{n}^{i} - x_{n}^{i-1}||)^{2}$$

$$- W_{2}(\alpha_{n}^{i})g(||T_{i}x_{n} - x_{n}^{i-1}||)$$

$$\leq \alpha_{n}^{i}(||x_{n} - x^{*}|| + d_{n}^{i-1} + \gamma_{n}^{i}||u_{n}^{i} - x_{n}^{i-1}||)^{2}$$

$$+ (1 - \alpha_{n}^{i})(||x_{n} - x^{*}|| + d_{n}^{i-1} + \gamma_{n}^{i}||u_{n}^{i} - x_{n}^{i-1}||)^{2}$$

$$- W_{2}(\alpha_{n}^{i})g(||T_{i}x_{n} - x_{n}^{*}|| + d_{n}^{i-1} + \gamma_{n}^{i}||u_{n}^{i} - x_{n}^{i-1}||)^{2}$$

$$- W_{2}(\alpha_{n}^{i})g(||T_{i}x_{n} - x_{n}^{i-1}||)$$

$$= (||x_{n} - x^{*}|| + \lambda_{n}^{i-1})^{2} - W_{2}(\alpha_{n}^{i})g(||T_{i}x_{n} - x_{n}^{i-1}||),$$
 (5.4)

where $\lambda_n^{i-1} := d_n^{i-1} + \gamma_n^i \|u_n^i - x_n^{i-1}\|$. Since $\sum_{n=1}^{\infty} d_n^{i-1} < \infty$, $\sum_{n=1}^{\infty} \gamma_n^i < \infty$ and $\{\|u_n^i - x_n^{i-1}\|\}$ is bounded, we have that $\sum_{n=1}^{\infty} \lambda_n^{i-1} < \infty$. Since $\alpha_n^i \in [\varepsilon, 1-\varepsilon]$,

it follows that $\lambda = \varepsilon^2 \leq W_2(\alpha_n^i)$ for all $n \in N$. This together with (5.4) imply that

$$\lambda g(\|T_{i}x_{n} - x_{n}^{i-1}\|) \leqslant (\|x_{n} - x^{*}\| + \lambda_{n}^{i-1})^{2} - \|x_{n}^{i} - x^{*}\|^{2}$$

$$= \|x_{n} - x^{*}\|^{2} + 2\lambda_{n}^{i-1}\|x_{n} - x^{*}\| + (\lambda_{n}^{i-1})^{2}$$

$$- \|x_{n+1} - x^{*}\|^{2}$$

$$= \|x_{n} - x^{*}\|^{2} - \|x_{n+1} - x^{*}\|^{2} + \rho_{n}^{i-1},$$

where $\rho_n^{i-1} := 2\lambda_n^{i-1} ||x_n - x^*|| + (\lambda_n^{i-1})^2$. Since $\sum_{n=1}^{\infty} d_n^{i-1} < \infty$ and $\sum_{n=1}^{\infty} \gamma_n^i < \infty$, we get $\sum_{n=1}^{\infty} \rho_n^{i-1} < \infty$. This implies that $\lim_{n \to \infty} g(||T_i x_n - x_n^{i-1}||) = 0$. Since gis strictly increasing and continuous at 0 with g(0) = 0, we have $\lim_{n \to \infty} ||T_i x_n - T_i x_n||$ $|x_n^{i-1}|| = 0$ for all i = 1, 2, ..., N. Note that,

$$\begin{array}{lll} \|x_n^{i-1}-x_n^{i-2}\| & = & \|P(\alpha_n^{i-1}T_{i-1}x_n+\beta_n^{i-1}x_n^{i-2}+\gamma_n^{i-1}u_n^{i-1})-x_n^{i-2}\| \\ & \leqslant & \|\alpha_n^{i-1}(T_{i-1}x_n-x_n^{i-2})+\gamma_n^{i-1}(u_n^{i-1}-x_n^{i-2}))\| \\ & \leqslant & \alpha_n^{i-1}\|T_{i-1}x_n-x_n^{i-2}\|+\gamma_n^{i-1}\|u_n^{i-1}-x_n^{i-2}\|. \end{array}$$

Since $\lim_{n\to\infty} ||T_{i-1}x_n - x_n^{i-2}|| = 0$ and $\sum_{n=1}^{\infty} \gamma_n^{i-1} < \infty$, it follows that

$$\lim_{n \to \infty} ||x_n^{i-1} - x_n^{i-2}|| = 0.$$

For all i = 1, 2, ..., N, we have

$$\begin{split} \|x_n^{i-1} - x_n\| &= \|P(\alpha_n^{i-1}T_{i-1}x_n + \beta_n^{i-1}x_n^{i-2} + \gamma_n^{i-1}u_n^{i-1}) - x_n\| \\ &\leqslant \|\alpha_n^{i-1}T_{i-1}x_n + \beta_n^{i-1}x_n^{i-2} + \gamma_n^{i-1}u_n^{i-1} - x_n\| \\ &\leqslant \|\alpha_n^{i-1}(T_{i-1}x_n - x_n) + \beta_n^{i-1}(x_n^{i-2} - x_n) \| \\ &= \|\alpha_n^{i-1}(T_{i-1}x_n - x_n) + \beta_n^{i-1}(x_n^{i-2} - x_n) + \gamma_n^{i-1}(u_n^{i-1} - x_n)\| \\ &= \|\alpha_n^{i-1}(T_{i-1}x_n - x_n^{i-2} + x_n^{i-2} - x_n) + \beta_n^{i-1}(x_n^{i-2} - x_n) + \beta_n^{i-1}(x_n^{i-2} - x_n) + \gamma_n^{i-1}(u_n^{i-1} - x_n)\| \\ &\leqslant \alpha_n^{i-1}\|T_{i-1}x_n - x_n^{i-2}\| + \alpha_n^{i-1}\|x_n^{i-2} - x_n\| + \beta_n^{i-1}\|x_n^{i-2} - x_n\| + \gamma_n^{i-1}\|x_n^{i-2} - x_n^{i-1} + x_n^{i-1} - x_n\| \\ &\leqslant \alpha_n^{i-1}\|T_{i-1}x_n - x_n^{i-2}\| + \alpha_n^{i-1}\|x_n^{i-2} - x_n^{i-1} + x_n^{i-1} - x_n\| + \gamma_n^{i-1}\|u_n^{i-1} - x_n\| + \gamma_n^{i-1}\|u_n^{i-1} - x_n\| + \gamma_n^{i-1}\|x_n^{i-1} - x_n\| + \beta_n^{i-1}\|x_n^{i-2} - x_n^{i-1}\| + \alpha_n^{i-1}\|x_n^{i-1} - x_n\| + \beta_n^{i-1}\|x_n^{i-1} - x_n\|. \end{split}$$

This implies that

$$(1 - \alpha_n^{i-1} - \beta_n^{i-1}) \|x_n^{i-1} - x_n\| \leq \alpha_n^{i-1} \|T_{i-1}x_n - x_n^{i-2}\| + \alpha_n^{i-1} \|x_n^{i-2} - x_n^{i-1}\| + \beta_n^{i-1} \|x_n^{i-2} - x_n^{i-1}\| + \gamma_n^{i-1} \|u_n^{i-1} - x_n\|$$

Since $\limsup_{n\to\infty}(\alpha_n^i+\beta_n^i)<1$ for all $i=1,2,\ldots,N$, there exists a positive integer n_0 and $\eta\in(0,1)$ such that $\alpha_n^i+\beta_n^i<\eta<1$ for all $n\geq n_0$.

Hence,

$$(1-\eta)\|x_n^{i-1}-x_n\| \le \|T_{i-1}x_n-x_n^{i-2}\| + \gamma_n^{i-1}\|u_n^{i-1}-x_n\| + 2\|x_n^{i-2}-x_n^{i-1}\|.$$

Since $\lim_{n\to\infty} ||T_{i-1}x_n - x_n^{i-2}|| = 0$, $\lim_{n\to\infty} ||x_n^{i-2} - x_n^{i-1}|| = 0$ and $\sum_{n=1}^{\infty} \gamma_n^{i-1} < \infty$, it follows that $\lim_{n\to\infty} ||x_n - x_n^{i-1}|| = 0$. Thus for all i = 1, 2, ..., N, we have

$$\begin{aligned} \|x_n - T_i x_n\| &= \|x_n - x_n^{i-1} + x_n^{i-1} - T_i x_n\| \\ &\leq \|x_n - x_n^{i-1}\| + \|T_i x_n - x_n^{i-1}\| \to 0 \text{ as } n \to \infty. \end{aligned}$$

This completes the proof.

Theorem 5.0.8 Let X be a uniformly convex Banach space, and let C be a nonempty closed convex nonexpansive retract of X with P as a nonexpansive retraction. Let $T_1, T_2, \ldots, T_N : C \to X$ be nonexpansive mappings which satisfying condition (B) and let $\{x_n\}$ be the sequence defined by (5.1) with $\sum_{n=1}^{\infty} \gamma_n^i < \infty$ and $\{\alpha_n^i\} \subseteq [\varepsilon, 1-\varepsilon]$ for all $i=1,2,\ldots,N$ for some $\varepsilon \in (0,1)$. If $F = \bigcap_{i=1}^N F(T_i) \neq \emptyset$ and $\limsup_{n\to\infty} (\alpha_n^i + \beta_n^i) < 1$ for all $i=1,2,\ldots,N$, then $\{x_n\}$ converges strongly to a common fixed point in F.

Proof. By Lemma 5.0.7, $\lim_{n\to\infty} ||T_ix_n - x_n|| = 0$ for all i = 1, 2, ..., N. Now by condition (B), $f(d(x_n, F)) \leq M_n := \max_{1 \leq i \leq N} \{||T_ix_n - x_n||\}$ for all $n \in N$. Hence $\lim_{n\to\infty} f(d(x_n, F)) = 0$. Since f is a nondecreasing function and f(0) = 0, therefore $\lim_{n\to\infty} d(x_n, F) = 0$.

Now we can choose a subsequence $\{x_{n_j}\}$ of $\{x_n\}$ and a sequence $\{y_j\} \in F$ such that $||x_{n_j} - y_j|| < 2^{-j}$. By the following method of the proof of Tan and Xu [39] we get that $\{y_j\}$ is a Cauchy sequence in F and so it converges. Let $y_j \to y$. Since F is closed, therefore $y \in F$ and then $x_{n_j} \to y$. By Lemma 5.0.6, $\lim_{n\to\infty} ||x_n - x^*||$ exists for all $x^* \in F$, $x_n \to y \in F$.

When N=3, $T_1=T_2=T_3\equiv T$, $a_n=\alpha_n^1$, $c_n=\alpha_n^2$, $\alpha_n=\alpha_n^3$ and $\gamma_n^1=\gamma_n^2=\gamma_n^3\equiv 0$, the following results is obtained from Theorem 5.0.8.

Corollary 5.0.9 ([40, Theorem 2.2]) Let X be a uniformly convex Banach space, C a nonempty closed convex nonexpansive retract of X with P as a nonexpansive retraction, and $T: C \to X$ a completely continuous nonexpansive nonself-mapping with $F(T) \neq \emptyset$. Suppose that $\{\alpha_n\}, \{\beta_n\}, \{a_n\}, \{b_n\}, \{c_n\} \text{ and } \{d_n\} \text{ are sequences of real numbers in } [0,1] \text{ with } c_n + d_n \in [0,1] \text{ and } \alpha_n + \beta_n \in [0,1] \text{ for all } n \geq 1, \text{ and } \sum_{n=1}^{\infty} b_n < \infty, \sum_{n=1}^{\infty} d_n < \infty, \sum_{n=1}^{\infty} \beta_n < \infty, \text{ and }$

- (i) $0 < \liminf_{n \to \infty} \alpha_n \le \limsup_{n \to \infty} (\alpha_n + \beta_n) < 1$, and
- (ii) $0 < \liminf_{n \to \infty} c_n \le \limsup_{n \to \infty} (c_n + d_n) < 1$ and $\limsup_{n \to \infty} a_n < 1$.

Let $\{x_n\}$, $\{y_n\}$ and $\{z_n\}$ be the sequences defined by the three-step iterative scheme (5.2). Then $\{x_n\}$, $\{y_n\}$ and $\{z_n\}$ converge strongly to a fixed point of T.

We recall that a mapping $T: C \to C$ is called semi-compact(or hemicompact) if any sequence $\{x_n\}$ in C satisfying $||x_n - Tx_n|| \to 0$ as $n \to \infty$ has a convergent subsequence.

Theorem 5.0.10 Let X be a uniformly convex Banach space, and let C be a nonempty closed convex nonexpansive retract of X with P as a nonexpansive retraction. Let $T_1, T_2, \ldots, T_N : C \to X$ be nonexpansive mappings. Suppose that one of the mappings in $\{T_i : i = 1, 2, \ldots, N\}$ is semi-compact. Let $\{x_n\}$ be the sequence defined by (5.1) with $\sum_{n=1}^{\infty} \gamma_n^i < \infty$ and $\{\alpha_n^i\} \subseteq [\varepsilon, 1-\varepsilon]$ for all $i = 1, 2, \ldots, N$ for some $\varepsilon \in (0, 1)$. If $F = \bigcap_{i=1}^N F(T_i) \neq \emptyset$ and $\limsup_{n\to\infty} (\alpha_n^i + \beta_n^i) < 1$ for all $i = 1, 2, \ldots, N$, then $\{x_n\}$ converges strongly to a common fixed point in F.

Proof. Suppose that T_{i_0} is semi-compact for some $i_0 \in \{1, 2, ..., N\}$. By Lemma 5.0.6, we have $\lim_{n\to\infty} \|x_n - T_{i_0}x_n\| = 0$. Since T_{i_0} is semi-compact, there exists a subsequence $\{x_{n_j}\}$ of $\{x_n\}$ and $x^* \in C$ such that $x_{n_j} \to x^*$ as $j \to \infty$. Now Lemma 5.0.7 guarantees that $\lim_{j\to\infty} \|x_{n_j} - T_i x_{n_j}\| = 0$ for all i = 1, 2, ..., N. Hence $\|x^* - T_i x^*\| = 0$ for all i = 1, 2, ..., N. This implies that $x^* \in F$. By Lemma 5.0.6, $\lim_{n\to\infty} \|x_n - x^*\|$ exists and then $\lim_{n\to\infty} \|x_n - x^*\| = \lim_{j\to\infty} \|x_{n_j} - x^*\| = 0$. This completes the proof.

In the next result, we prove weak convergence of the sequence $\{x_n\}$ defined by (5.1) in a uniformly convex Banach space satisfying *Opial's condition*.

Theorem 5.0.11 Let X be a uniformly convex Banach space satisfying the Opial's condition, and let C be a nonempty closed convex nonexpansive retract of X with P as a nonexpansive retraction. Let $T_1, T_2, \ldots, T_N : C \to X$ be nonexpansive mappings and let $\{x_n\}$ be a sequence defined by (5.1) with $\sum_{n=1}^{\infty} \gamma_n^i < \infty$ and $\{\alpha_n^i\} \subseteq [\varepsilon, 1-\varepsilon]$ for all $i=1,2,\ldots,N$ for some $\varepsilon \in (0,1)$. If $F=\cap_{i=1}^N F(T_i) \neq \emptyset$ and $\limsup_{n\to\infty} (\alpha_n^i+\beta_n^i) < 1$, then $\{x_n\}$ converges weakly to a common fixed point in F.

Proof. By Lemma 5.0.6, $\lim_{x\to\infty} \|x_n - x^*\|$ exists for all $x^* \in F$. Now we prove that $\{x_n\}$ has a unique weak subsequential limit in F. To prove this, let $\{x_{n_i}\}$ and $\{x_{n_j}\}$ be subsequences of $\{x_n\}$ and $z_1, z_2 \in C$ be such that $x_{n_i} \to z_1$ weakly as $i \to \infty$ and $x_{n_j} \to z_2$ weakly as $j \to \infty$. By Lemma 5.0.7,

$$\lim_{i \to \infty} ||x_{n_i} - T_k x_{n_i}|| = 0 = \lim_{j \to \infty} ||x_{n_j} - T_k x_{n_j}||$$

for all k = 1, 2, ..., N and Lemma 2.3.5 insures that $I - T_k$ are demi-closed at zero for all k = 1, 2, ..., N. Therefore we obtain $T_k z_1 = z_1$ and $T_k z_2 = z_2$ for all k = 1, 2, ..., N. Thus $z_1, z_2 \in F$. It follows from Lemma 2.2.16, we have that $z_1 = z_2$. Hence $\{x_n\}$ converges weakly to a common fixed point in F.

When N=3, $T_1=T_2=T_3\equiv T$, $a_n=\alpha_n^1$, $c_n=\alpha_n^2$, $\alpha_n=\alpha_n^3$ and $\gamma_n^1=\gamma_n^2=\gamma_n^3\equiv 0$, the following results is obtained from Theorem 5.0.11.

Corollary 5.0.12 ([40, Theorem 2.4]) Let X be a uniformly convex Banach space which satisfies Opial's condition, C a nonempty closed convex nonexpansive retract of X with P as a nonexpansive retraction, and $T: C \to X$ a nonexpansive nonself-mapping with $F(T) \neq \emptyset$. Suppose that $\{\alpha_n\}, \{\beta_n\}, \{a_n\}, \{b_n\}, \{c_n\}, \{d_n\}$ are sequences of real numbers in [0,1] with $c_n + d_n \in [0,1]$ and $\alpha_n + \beta_n \in [0,1]$ for all $n \geq 1$, and $\sum_{n=1}^{\infty} b_n < \infty$, $\sum_{n=1}^{\infty} d_n < \infty$, and

- (i) $0 < \liminf_{n \to \infty} \alpha_n \le \limsup_{n \to \infty} (\alpha_n + \beta_n) < 1$, and
- (ii) $0 < \liminf_{n \to \infty} c_n \le \limsup_{n \to \infty} (c_n + d_n) < 1$ and $\limsup_{n \to \infty} a_n < 1$.

Let $\{x_n\}$ be the sequence defined by three-step iterative scheme (5.2). Then $\{x_n\}$ converges weakly to a fixed point of T.

Finally, we prove weak convergence of the sequence $\{x_n\}$ defined by (5.1) in a uniformly convex Banach space X whose its dual X^* has the Kadec-Klee property. The following lemma is needed.

Lemma 5.0.13 Let X be a uniformly convex Banach space, and let C be a nonempty closed convex nonexpansive retract of X with P as a nonexpansive retraction. Let $T_1, T_2, \ldots, T_N : C \to X$ be nonexpansive mappings with $F = \bigcap_{i=1}^N F(T_i) \neq \emptyset$. From arbitrary $x_1 \in C$, define the sequence $\{x_n\}$ by the iterative scheme (5.1) with $\sum_{n=1}^{\infty} \gamma_n^i < \infty$ for $i = 1, 2, \ldots, N$. Then for all $u, v \in F$, the limit

$$\lim_{n\to\infty} ||tx_n + (1-t)u - v||$$

exists for all $t \in [0, 1]$.

Proof. By Lemma 5.0.6, we have $\lim_{n\to\infty} \|x_n - x^*\|$ exists for all $x^* \in F$. This implies that $\{x_n\}$ is bounded. Let $a_n(t) = \|tx_n + (1-t)u - v\|$, where $t \in (0,1)$. Then $\lim_{n\to\infty} a_n(0) = \|u - v\|$, and from Lemma 5.0.6, $\lim_{n\to\infty} a_n(1) = \lim_{n\to\infty} \|x_n - v\|$ exists. So, we let $\lim_{n\to\infty} \|x_n - u\| = r$ for some positive number r. For any $n \ge 1$ and for all $i = 1, 2, \ldots, N$, we define $A_n^i : C \to C$ by

$$A_n^i := P(\alpha_n^i T_i + \beta_n^i A_n^{i-1} + \gamma_n^i u_n^i),$$

where $A_n^0=I$, the identity operator on C. For $x,y\in C$, we have $\|A_n^ix-A_n^iy\|\leqslant \alpha_n^i\|x-y\|+\beta_n^i\|A_n^{i-1}x-A_n^{i-1}y\|$ for all $i=2,\ldots,N,$ and $\|A_n^1x-A_n^1y\|\leqslant \alpha_n^1\|x-A_n^1y\|\leqslant \alpha_n^1\|x-A_n^1y\|$

 $y||+\beta_n^1||x-y|| \le ||x-y||$. This imply, by induction, that A_n^i is nonexpansive for all $i=1,2,\ldots,N$ and all $n\in N$. Set $S_{n,m}:=A_{n+m-1}^NA_{n+m-2}^N\ldots A_n^N,\ n,m\geqslant 1$ and $b_{n,m}:=||S_{n,m}(tx_n+(1-t)u)-(tS_{n,m}x_n+(1-t)S_{n,m}u)||$. It easy to see that $A_n^Nx_n=x_{n+1},\ S_{n,m}x_n=x_{n+m}$ and $S_{n,m}$ is nonexpansive for all $m,n\in N$.

We show first that, for any $x^* \in F$, $||S_{n,m}x^* - x^*|| \to 0$ uniformly for all $m \ge 1$ as $n \to \infty$. Indeed, for any $x^* \in F$, we have

$$||A_n^i x^* - x^*|| \le \beta_n^i ||A_n^{i-1} x^* - x^*|| + \gamma_n^i ||u_n^i - x^*||$$

for all i = 2, ..., N, and $||A_n^1 x^* - x^*|| \leq \gamma_n^1 ||u_n^1 - x^*||$. Therefore

$$\begin{array}{ll} \|A_n^N x^* - x^*\| & \leqslant & \sigma_n^2 \gamma_n^1 \|u_n^1 - x^*\| + \sigma_n^3 \gamma_n^2 \|u_n^2 - x^*\| + \dots + \sigma_n^N \gamma_n^{N-1} \|u_n^{N-1} - x^*\| \\ & & + \gamma_n^N \|u_n^N - x^*\| \leqslant M \sum_{i=1}^N \gamma_n^i, \quad \text{for all } n \geqslant 1, \end{array}$$

where

$$M = \max\{\sup\{\|u_n^1 - x^*\|\}, \ldots, \sup\{\|u_n^N - x^*\|\}\}$$
 and $\sigma_n^k = \prod_{i=k}^N \beta_n^i$. Hence

$$\begin{split} \|S_{n,m}x^* - x^*\| &\leqslant \|A_{n+m-1}^N A_{n+m-2}^N \dots A_n^N x^* - A_{n+m-1}^N A_{n+m-2}^N \dots A_{n+1}^N x^*\| \\ &+ \|A_{n+m-1}^N A_{n+m-2}^N \dots A_{n+1}^N x^* - A_{n+m-1}^N A_{n+m-2}^N \dots A_{n+2}^N x^*\| \\ &\vdots \\ &+ \|A_{n+m-1}^N A_{n+m-2}^N x^* - A_{n+m-1}^N x^*\| + \|A_{n+m-1}^N x^* - x^*\| \\ &\leqslant \|A_n^N x^* - x^*\| + \|A_{n+1}^N x^* - x^*\| + \dots + \|A_{n+m-1}^N x^* - x^*\| \\ &\leqslant M \sum_{i=1}^N (\gamma_n^i + \gamma_{n+1}^i + \dots + \gamma_{n+m-1}^i) \\ &\leqslant \delta_x^{s^*}, \end{split}$$

where $\delta_n^{x^*}:=M\sum_{i=1}^N\sum_{k=n}^\infty\gamma_k^i$. Since $\sum_{n=1}^\infty\gamma_n^i<\infty$ for all $i=1,2,\ldots,N$, we have $\delta_n^{x^*}\to 0$ as $n\to\infty$. By Weierstrass M-test, we can conclude that $\|S_{n,m}x^*-x^*\|\to 0$ uniformly on $m\in N$ as $n\to\infty$. By Lemma 2.3.7, there exists $\varphi\in\Gamma$ such that

$$b_{n,m} \leq \varphi^{-1}(\|x_n - u\| - \|S_{n,m}x_n - S_{n,m}u\|)$$

$$= \varphi^{-1}(\|x_n - u\| - \|x_{n+m} - u + u - S_{n,m}u\|)$$

$$\leq \varphi^{-1}(\|x_n - u\| - (\|x_{n+m} - u\| - \|S_{n,m}u - u\|)), \tag{5.5}$$

and so the sequence $\{b_{n,m}\}$ converges uniformly to 0 on $m \in N$ as $n \to \infty$. By (5.5), for $m, n \in N$, we have

$$a_{n+m}(t) = ||tx_{n+m} + (1-t)u - v||$$

$$= ||tS_{n,m}x_n + (1-t)u - v||$$

$$\leq ||tS_{n,m}x_n + (1-t)u - S_{n,m}(tx_n + (1-t)u)||$$

$$+ ||S_{n,m}(tx_n + (1-t)u) - v||$$

$$= ||tS_{n,m}x_n + (1-t)S_{n,m}u - S_{n,m}(tx_n + (1-t)u) + (1-t)(u - S_{n,m}u)||$$

$$+ ||S_{n,m}(tx_n + (1-t)u) - v||$$

$$\leq b_{n,m} + \|S_{n,m}(tx_n + (1-t)u) - v\| + (1-t)\|u - S_{n,m}u\|$$

$$\leq b_{n,m} + \|S_{n,m}(tx_n + (1-t)u) - S_{n,m}v\| + \|S_{n,m}v - v\|$$

$$+ (1-t)\|u - S_{n,m}u\|$$

$$\leq b_{n,m} + a_n(t) + \|S_{n,m}v - v\| + (1-t)\|u - S_{n,m}u\|$$

$$\leq b_{n,m} + a_n(t) + \delta_n^v + (1-t)\delta_n^u$$

$$\leq \varphi^{-1}(\|x_n - u\| - (\|x_{n+m} - u\| - \|S_{n,m}u - u\|)) + a_n(t) + \delta_n^v + (1-t)\delta_n^u.$$
Thus fixing n and letting $m \to \infty$ in (5.6), we have

 $\limsup_{m \to \infty} a_{n+m}(t) \leqslant \varphi^{-1}(\|x_n - u\| - (\lim_{m \to \infty} \|x_m - u\| - \delta_n^u)) + a_n(t) + \delta_n^u + (1 - t)\delta_n^u$

and again letting $n \to \infty$,

$$\limsup_{n\to\infty} a_n(t) \leqslant \varphi^{-1}(0) + \liminf_{n\to\infty} a_n(t) = \liminf_{n\to\infty} a_n(t).$$

This completes the proof.

Theorem 5.0.14 Let X be a real uniformly convex Banach space such that its dual X^* has the Kaded-Klee property and C a nonempty closed convex nonexpansive retract of X with P as a nonexpansive retraction. Let $T_1, T_2, \ldots, T_N : C \to X$ be a nonexpansive mappings with $F = \bigcap_{i=1}^N F(T_i) \neq \emptyset$ and $\limsup_{n\to\infty} (\alpha_n^i + \beta_n^i) < 1$. From arbitrary $x_1 \in C$ define the sequence $\{x_n\}$ by the iterative scheme (5.1) with $\sum_{n=1}^{\infty} \gamma_n^i < \infty$ and $\alpha_n^i \in [\varepsilon, 1-\varepsilon]$ for all $i=1,2,\ldots,N$ for some $\varepsilon \in (0,1)$. Then $\{x_n\}$ converges weakly to a fixed point of T.

Proof. Lemma 5.0.6 guarantees that $\{x_n\}$ is bounded. Since X is reflexive, there exists a subsequence $\{x_{n_j}\}$ of $\{x_n\}$ converging weakly to some $x^* \in C$. By Lemma 5.0.7, we have $\lim_{j\to\infty} \|x_{n_j} - T_i x_{n_j}\| = 0$ for all $i=1,2,\ldots,N$. Now Lemma 2.3.5 guarantees that $I-T_i$ is demiclosed at zero for all $i=1,2,\ldots,N$. This implies that $T_i x^* = x^*$ for all $i=1,2,\ldots,N$ this means that $x^* \in F$. It remains to show that $\{x_n\}$ converges weakly to x^* . Suppose $\{x_{n_i}\}$ is another subsequence of $\{x_n\}$ converging weakly to some y^* . Then $y^* \in F$ and so $x^*, y^* \in \omega_w(x_n) \cap F$. By Lemma 5.0.13, the limit

$$\lim_{n \to \infty} ||tx_n + (1-t)x^* - y^*||$$

exists for all $t \in [0, 1]$. By Lemma 2.3.6, we have $x^* = y^*$. As a result, $\omega_w(x_n) \cap F$ is a singleton, and so $\{x_n\}$ converges weakly to a fixed point of T.