'CHAPTER. 3
MAIN RESULTS

In this chapte;, we will study some properties of the set I, = {1, 2,3, ...,n}

a.ndA its order preserving transformation semigroup O(I,).

3.1 Some properties of (I, <)

We start with some definitions.

Definition 3.1.1 [2] A binary relation w on a set X | (that is, a subset w of X x X )
is called a partial order if

(1) (z,z) € w for all z £ X (that is, w is reflexive);

(2) for all z,y € X, (z,y) € w and (y,7) € w = T = y (that is, w is antisym-

metric);

 A8) for el z,9,2 € X, (z,y) € w and (y,2) € w = (z,2) € w (that is, w is

* transitive).

We will write z < 'y rather than (z,y) € w. A partial order Laving the extra
| property |
(4) fora.llm,yGX, z<yory<z

will be called a total order. We shall rafer to (X, <), or just to X, as an (partiallly)
 ordered set, or a totally ordered set or chain. We shall follow this convention, and
also write a < b to mean ¢ < b and a # b.

\- Let Y be a non-empty subset of a partially ordered set (X, <). An element o
of ¥ is called mim'mdl of Y if there is no element of ¥ that is strictly less than a,

that is to say, if
foralye?, y<a=y=a.

‘An eienient bof Y is called minimum if
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forallyeY, b<y.
It is clear that the minimum element is minimal. An element a of Y is called
mazimal of Y if there is no element of Y that is strictly more than a, that is to
say, if

forallyeK a<y=>a=y.

An element b of Y is called mazimum if

foralye?Y, v <b.

" It is clear that the mximum element is maximal. Y isa non-empty subset of a
partially ordered set (X, <), we say that an element ¢ of X is a lower bound of Y
if ¢ < y for all y € Y. If the set of lower bounds of Y is non-empty and has the
maximum element d, we say that d is the greateét lower boﬁnd, or meet, of Y. The
element d is unique if it exists, and we write
d=AN{y: yeY}

Y = {a,b} then we write d =a A b. A
- If (X,<) is such that a A b exdists for all a,b in X, then we say that (X, <) is
a. lower semilattice. If we have the stronger property that A{y : y € Y} exists
for every non—empty subset ¥ of X , then we say that (X, <) is a complete lower
semilatlice.

If Y is a non-empty subset of a partially ordered set (X, <), we say that an
element ¢ of X is an upper bound of Y if y < c for all y € Y. If the set of upper
bounds of Y is non-empty and has the minimum element d, we say that d is the

least upper bound, or join, of Y. The element d is unique if it exists, and we write
d=Vv{y: yeY}
KY = {a,b} then we write d =a V b.
If (X, <) is such that a V b exists for all a,b in X, then we say that (X, <) is
an upper semilattice. If we have the stronger property that V{y: y € Y} exists
for every non-empty subset Y of X, then we say that (X, <) is a complete upper

semilattice.
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”..Le{; I, ={1,2,3, , n} Qhere n € N. For each a,b € I,, define < on I, by
. @ < bif and only if alb.
: Hénce alb means a.divi.des b. And we have that (I,,<) is # partially ordered set.
Prbposition 3.1.2 (I;,<) zs a partially ordered set.

Proof. (1) Since aja for all a € I, , a < a. That is < is reflexive.

(2) Let a,b € I, be such that @ < b and b < a. Then a|b and ble. Since a and
b are positive integers, a = b. That is < is a.ntiéyrﬁmetric.
© - (3) Let a, b;c € I, be such that a < b and b < ¢. Then alb and b|c and so ale.
- Thus a < ¢ and that is < is'ﬁransitive. '

From (1),(2) and (3) we have (I,,,<) isa pa.ftially ordered set. O

' When describing an ordered set V(X, <), we shall souictimes use so called
Hasse diagrams. In such a diagram, elements of the set are represented by small
Blé,c_k circles, and to elements @ and & in X for which a < b and for which there is

no z € X such that a < z < b are depicted thus:
P
<

 That is, b appears above a and a line connects o and b. Thus we can build up

diagj:é.ms such as

ﬁhbh we can label if necessary.
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‘The following Hasse diagram is for (114, <)

It is clear that 1 is the minimum element of (I, <) since 1 divides every
element of (I, S) and it has no the maximum element. Next, we will characterize
all minimal elements of (1, \ {1}, <). '

Let <o denote the natural order on I,,. The notation @ <, b will mean

that @ <,.,; b and #b.

Theorem 3.1.3 For each m € I,, m is a minimal element of (I, \ {1}, <) if and

only if m is a prime number.

Proof. Assume that m is a minimal element of (I,\ {1}, <). Then 1 < 0 m <pot 1. .
Suppbse that m is not a prime number. Then m = pg where 1 <. p,¢ <mt'm.
Thu'sl p € I, and pjm, so 1 < P < m which contradicts to the minimality of m.
Hence m is a prime nuinber. -

| ‘Conversely, assume that m is prime. Let 1 # z € I,, be such that = g.m.
Thén.ilm and so = m since 1 # z and m is prime . Therefore, m is a minimal

element of (7, \ {1}, <). O

- Example 3.1.4 For n = 100 , a minimal elements of (I1g9, <) are as follows. By

Theorem 3.1.3 minimal elements of (I00\{1}, <) are prime numbers between 1 and
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100. Thus all minimal elements of (I10, <) are 2,3, 5,7, 11,13, 17, 19, 23, 29, 31,37,
41,43, 47,53, 59, 61,67, 71, 73,79, 83, 89, 97. 0

The floor function of real number z, denoted by |z], is the largest integer

less than or equal to 2. We will denote that if = <, y then || <,q {y]-

Now, let D, = {z € I, : ,_gJ <net Z}. Then we see that D
={z €l |7.5] <pa g}={z€hs: 7 <pa z} = {8,9,10,11,12,13, 14}.

" Lemma 3.1.5 For each z,Yy €I, f ¢ <pary and x € Dy, then z{y.

'P'ro'of.. Let z,y € I, be subh that T <nat ¥ a0d - € D,. Suppose that zy.

Y

Then y = zl for some I € I,. Thus z = % _<_th 2 gt —;—' since 2 <pu: {. Then

T = [:CJ <nat l_gJ, this implies that = ¢ D,, which is a contradiction. Therefbre,

Theorem 3.1.6 For each M & L., M is a mazimal element of (I, <) if and only
if M € D,

Proof. Assume that M is a maximal element of (I, <). Suppose that M ¢ D,,.
‘ Then M S"“-EJ and so M <,. g since EJ Cnat g Thus 2M <..: n. Let
k=2M € I,. Then M|k and hence M < k and M # k. This contradicts to the
maximality of M. Therefore, M € D,.

~ Conversely, assume that M € D,. Then [g
that M < y. Then M|y and so [gJ <nat M <pg: ¥ which implies that y € D,
Thus y <pss M by Lemma 3.1.5 and hence y = M. Therefore, M is a maximal
éleﬁ_ient of (I, <). l | - : a

J <nat M. Let y € I, be such

' Let a,b € I, with @ <pq b. Then the number of integers from a to b is
b—a+1.
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Theorem 3.1.7 The number of elements in D, is n — ng .

Proof. Since D, = {z € I, : [gJ <nt F={z€I,: [gJ + 1 <pat x}, SO
elements in D, are all integers from I_gJ +1 ton. Thus |D,| =n-—( l_g_l +1)+1=

.“‘_-EJ- E

- Exaﬁpie 3.1.8 Forn = 100, we find a maximal elements of (1199, <). By Theorem
- 3.1.6 we have a maximal element of (1199, <) is a.n element in Dygy and by Theorem
3.1.7 the number of elements in Dyqg is 100 — [50| = 50.

~ Thus all maximal elements of (L1009, <) are 51, 52, 53, 54, 55, 56, 57, 58, 59, 60,
61,62, 63, 64, 65,66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85,
86, 87, 88,89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100. o

Recall that (I,, <) is a partially ordered set. Let § # A C I, and let
é.=‘ V{a: a € A}. Then ¢ is the least upper -bound of A, that is a < ¢ for all
a-er'A and ¢ is the minimum of the set of upper bounds of A. So a < ¢ for all

,dEA, and if @ < d for all a € A then ¢ < d. Thus a|c for all a € A ; and if ald for
all @ € A then ¢[d. Therefore, ¢ is the least common multiple (lem) of A. Then
(In, <) is not a complete upper semilattice. For example, let A = {3,4,5} C I; we

- get lem(A) =60 ¢ fs. But (I, <) is a complete lower semilattice.

" Theorem 3.1.9 (I, <) is a complete lower semilettice.

- Proof. Let A be a nonempty subset of (In, <) and let ged(A) = ¢, that isc < a
forall a € A,and if d < a for all @ € A then d < ¢. We will prove that ¢ € I,
and ¢ = A{a:a € A} Since ¢ = ged(A), cla for all @ € A and 1 <, c. Then
c gmt.a <nat 'n...Thus c<ignandc<aforalacA Hencece I, and cis a
lo_wér bound of A. Next, we show that c is the greatest lower bound of A. Let d
be & lower bound of A. Then d < a for all @ € A and so dja for all a € A. Since
¢ = ged(A), we get djc. Then d < ¢ and hence c is the greatest lower bound of A.

- llJ."‘herefore, (In, <) is & complete lower semilattice. ' O
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3.2 Regularity of O(I,)

If X is a nonempty set, we let T(X) denote the semigroup under composi-
tion of all total transformations of X. Following standard notaticn, we let ran o
dencte the range of o € T(X).

If(X,<)isa parﬁia.ﬂy ordered set, then we say o € T(X) is order-preserving
if for all z,y € X, < y implies 3o < yo; and we let O(X) denote the subsemi-
group of T(X) consisting of all order-preserving total transformations of X and
we say a € X is isolated if for every z € X,z < g or £ > a implies z = a, and X
1s isolated if all its elements-are isolated. Let ¥ and Z be nonempty subsets of X.
We say that Y and 7 are disjoinf partially ordered sets if Y N Z = §; and for all
yEYandzeZ,yyt-zé.ndz;iy.

Az element @ of a semigroup S is called regular if there exists z in S such
that are = a. A semigroup S is called regular if all its elements are regular. It
is known that O(X) is regular if (X, <) is a finite chain ([1] page 203, Exercise
6.1.7). However-‘-before proving our main theorem, we start with some theorems
and lemmas. o |
| Recall that (I,,, <) is a partially ordered set, and it is easy to see that O(I,,)
is é semigroup under composition of mappings: if o, 8 € O(1,,) then a0 3 € O(I,)
is defined by

z(ao f) = (za)8, z€I,.

Aud for each z,y € I, such that = < y, we have za < ya and so (za)B < (ya)p.
Thus z(ao 8) < ylao f).

Theorem $.2.1 [3]'Suj;pose that X is a particlly ordered set. Then O(X) is not
regular if X conlains a partially ordered subset of Vthe form
{a,bc,d: d<c<a, d<c<band {a, b} is isolated}
or
{a,b,c,d: d<c<a, d<b; and {a,b}, {b,c} are isolated}.
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Theorem 3.2.2 [3] Suppose that X is a partially ordered set and let m(X) [M(X)]
denote the set of all minimal [mazimal] elements of X. Then O(X) is regular if
X =m(X)UM(X) and z < y for all - € m(X) and v € M(X).

- Lemma 3.2.3 Ifn <, 3, then O(I,) is regular.

Proof. fn =1o0rn =2, then I, is a firite chain. Thus by [1, p.203, Exercise
6.'1.7]. O(I,) is regular. If n = 3, then I, is a partially ordered set of the form
| {1, 2,3: 1<2, 1< 3and {2,3]} is isolated}. Hence m(I,,) = {1}, M(L,) = {2,3},
X = m(L)UM(L) and z < y for all 5 € m(L,) and y € M(L,). Therefore, by
Lemma 3.2.2 O(I,) is regular. | 0o

Lemma 3.2.4 Ifn >4 4, then O(I,) is not regular.

Proof. Let I,, = {1,2,...,n} where n >,,; 4. Then I, contains a partially ordered
‘subset of the form {1,2,3,4: 1< 2 <4, 1< 3; and {4,3}, {3,2} are isolated }.
Thus by Theorem 3.2.1 O(1y) is not regular. O

Theorem: 3.2.5 O(I,) is regular if and only if n <par 3.

Proof. By Lemma 3.2.3 and Lemma 3.2.4. -0

- Lemma 3.2.6 If X ‘is isolated, then O(X) is reqular.

Proof: Assume that X is an isolated set. Then O(X) = T(X). Since T(X) is
;egﬁlér, O(X) is also regular. ‘ 0

Lemma 3.2.7 Let X be a partially ordered set such that X = YUZ where |Y| >pq: 2
and there exist a,m € Y with a < m; and Y, Z are disjoint partially ordered sets.
Then O(X) is not regular.

~ Proof. Let o € T(X) be such that



13

m ifz €Y,
Ta =
e ifzxed.
Then o € O(X) since Y and Z are isolated. Suppose that afa = a for some
g e O(X) First, we show that ¢f € Z and mf € Y. Suppose this is not true.
~ Thenaf¢ ZormBgY.
| Case 1:. o ¢ Z. Then ¢fa =m and s0 a = za = zafa = afo = m for some
.z € Z which is a contradiction since a < m. —
Case 2:. mf &Y. Theh.mﬁo: = q and so m = za = zafa = mPa = a for
éo-m'e‘ % € Y which is a contradiction since a < m. | ,
Thus off € Z arid mf € Y. Since a < m and £ is order preserving, afi < mf.
This coniradicts to the fact that ¥ and Z are disjoint partially ordered sets. There-
foré:, O(X) is not regular. | O

Theorem 3.2.8 Let X be a proper partially ordered subset of Iy. Then O(X) is
regqular if and only if X is.one of the following forms :

(1) T1, is a chain,
(@) T, = {a1,00,a3 : a1 < ap and a1 < a3 and {az, a3} is isolated },
(3) I, is isolated.

Pfoof. Assume that X is of the form []; or [T, or IT;.
If X is of the form [[,, then by [1, p.203, Exercise 6.1.7] O(X) is regular.
If X is of the form [],, then by Theorem 3.2.2 O(X) is regular. _
If X is of the form [[,, then by Lemma 3.2.6 O(X) is regular.
Iy Conversely, assume that OX) is regular. Since X is a proper subset of I,
[X| <nat 3. Consider the followilig cases :
Casé 1: [X| =1. Then X =TT,.
Case 2: |X|=2. Then X = I1; or L.
Case 3: {X| =3. Then X = {2,3,4} or {1,3,4} or {1,2,4} or {1,2,3}.
Since O(X) is regular, X can not be {2,3,4} (if X = {2, 3,4} then O(X) is not
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_ :'egular by Lemma 3.2.7). Thus X = {1,3,4} or {1,2,4} or {1,2,3} and therefore,
X is of the form [T, or [[,. a

Theorem 3.2.9 Let X be a proper partially ordered subset of Is. Then O(X) is
regulai' if and only if X is one of the following forins :

(1) H1_i3 a chain,
(2) I, =A{o1,02, a3 -: a; < g, 61 < ag and {ég, as} is isolated },

' (3) I, = {al,ag,d3,a4 T ay<a; foralli=2,3,4 and {az,dg,a4} is isolated },
(4) T1, is isolated. | |

Proof. Assume that X is of the form II; or I[; or [15 or [],-

| If X is of the form I1;, then by [1, p.203, Exercise 6.1.7] O(X) is regular.

if-X is of the form [T,, then by Theorem 3.2.2 O(X) is regular.

If X is of the form [T;, then by Theorem 3.2.2 O(X) is regular.

If X is of the form J[,, then by Lemma 3.2.6 O(X) is regular.

| Conversely, assume that O(X) is regular. Since X is a proper subset of Iy,
| X | €nat 4. Consider the following cases :

Case 1: [X| < 2. Then X =[], or [[,.

Case 2: |X]| = 3. If X has no isolated elements, then X = [], or [[,. But, if X is
| iSola_ted then X = I1,, otherwise X is of the form {a;,@a3,a3 : a1 < az and {as} is
isél_ated } and O(X) is not regular by Lemma 3.2.7.

Case 3: |X| = 4. Then X = {1,2,3,4} or {1,2,3,5} or {1,2,4,5} or {1,3,4,5}
or {2,8,4,5}. Since O(X) is regular, X can not be {1,2,3,4} or {1,2,4,5} or
{2,3,4,5} (if X = {1,2,3,4} or {1,2,4,5} then O(X) is not regular by Theorem
3.2.1 and if X = {2,3,4,5} then O(X) is not regular by Lemma 3.2.7). Thus
X ={1,2,3,5} or {1,3,4,5} and therefore, X is of the form [[,. O

‘Lemma 3.2.10 Let X = {a1,a2,03,a4 : 01 < a3, a1 < G4, G2 < Ga; and {a1, a2},
{as, a4} are isolated } be a partially ordered set. Then any order preserving per-

mutation of X equals to 1x, the identity map on X.
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P'ro:of. Assume that ¢ is an order preserving permutation of X. Suppose that o
is not the identity map on X. Then there exists 2 € X such that ra # =.
Case 1: z = q; and a;a = as. Then aza = ay or a3 = a4 and a0 = ag or
G40 = a4, since a; < a3 and a; < a4 and ay < a4. So, in this case we see that
ran o Q‘ {ag, a4} U {asa} wiich is a proper subset of X. Thus « is not one-to-one
which is a contradiction. -
Case 2: z = a; and a;0 = a3. Then aza = as and a4 = a3 since a; < a3 and
a; < a4. This contradicts to that « is not one-to-one.
_. Case 3: z = ag; and ayo« = a4. Then aza = a4 and a4 = a4 since a; < a3 and
' ar < a4. This contradicts td that « is not one-to-onc.
Case 4: T = gy and asa = @;. Then aya = a1 or aqx = ag or a4 = a4 since
&2 < a4 and a1 < a3 and a1 < a4. Consider the following cases :
If g0 = aq, then ager = a; = a4e and 80 « is not one-to-one which is a contra-
diction.
 If ager = a3, then aya = a; or ajo = a3 and thus ran a C {a1,as} U {asa}
_which is a proper subset of X. This contradicts to that « is not one-to-one.
I a;a = a4, then since a; < a4 we must have g;o = a; or as or as. The case
ald = @; Or @y = a4 gives ran o C {a1, 2.} U {asa} which contradicts to that
o is not one-to-one. The case a;o = a; implies aza = ay or a4 since a1 < a3 and
thus ran o C {a1, @a, a4} which is a contradiction.
Case 5: © = ay and aya = a3. Then aso = a3 because a; < a4. Thus « is not
Qrie—to—one which is a contradiction.
Casé,ﬁ: T = g and ase =‘a4. Then asa = a4 because a; < a4. Thus « is not
one-to-one which is a contradiction.
Case" T T = a3 and a3z = a;. Then ajo = a; because a; < a3. Thus ¢ is not
oné;to-one which is a contradiction.
Cés_e 8: £ = a3 and aza = a;. Then a;a = ap because a; < ag. Thus « is not
one-to-one which is a contradiction.
Case 9: © = a3 and aza = a4. Then g, = @3 or a;@ = ay or g o = a4 because
a; < as aad a1 < a4 and ay < a4. Consider the following cases :

If ayo = a; then since a; < a4 we must have aqo = a3 or ag or a4. The case
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a4 = @y Or auo = a4 gives ran a C {a1,a4} U {age} which -contradicts to « is
6néto—one. The case ascx .= a3 implies aaax = 0 or a3 since ay < a4 and thus
ran « C {ay,a3, a4} which is a contradiction.
. If gy = ag, then a4 = as or a4 and thus ran o C {ag, as} U {aza} which is a
proper subset of X. This contradics to that « is one-to-one.

I ajo - a4, then a;o = a4 = ascx and s0 « is not one-to-one which is a contra~
~ diction. |
Case 10: z = a4 and-a,;os = @;. Then q;a = dl because a; < a4, thus « is not
one-to-one which is a contradiction.
Case 11: ¢ = a4 and as = as. Then ayo = ag because a; < aq4, thus « is not
one-to-one which is a contradiction.
Case 12: z = a4 and a4 = a3. Then a1 = a1 or aya = ag and aex = g or
asq = ag because a1: < a4 and ay < a4 and a1‘<'a3. So there are four possible
cases: a0 = g and @i = ay; of g = @y and aper = ag; or ¢y = a3 and
dza = ay; Or a1 = ag and ey = az. In all cases give « is not one-to-one which is
a contradiction. '

Therefore, « is the identity map on X. : O

. Theorem 3.2.11 Let X = {a1,05,03,04 : a1 < a3, a1 < a4, G2 < a4; ond {a1, 02},

{as,a4} are isolated } be a partiolly ordered set. Then O(X) is regular.

Proof. Let o € O(X).
If |ran a) = 1 then choose § = ¢ and hence offo = a.
If ran a = X then by Lemma 3.2.10, o is the identity map on X. Thus we
choose 3 = a and hence afa = «. '
~ Ifran o = {a;,a;} for some i, 5 then since a;a™" Uajo = X can not be
partitioned into two disjoint partially ordered sets we must have a; < a; or a; < a;.
Suppose that a; < a; 50 a; = a; or a; and we can choose p € a;o~! and ¢ € g0 !
sﬁcﬁ that p < ¢ and define 8 : X — X by
of = p fz=a;,

g -otherwise.
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To show that 3 is order presefving, let ¢,y € I, be such that z < y. Then z =a;
orag. fz=a; theny'=a3ora4-and$ﬁ=a1ﬂ=porq$ qg=ypB. If £ = ay then
y=aand zf=mf=porg< g=yp.

" For each ¢ € X,ze = a; Of z& = @; , 80 a;fa = a; Or a;8c = a;. Thus
zafo = za for all £ € X, Hence afa = a.

‘ I Tan o = {a,,, dj,ak} for some i, 4, k then we consider in four cases:

Case 1: ran o = {a1,a3,a4}. Since a1 < ag and a; < ag, 50 ¢; € aio” " and

there exist p € aze~! and ¢ € aqo~! such that a; < p and a; < ¢. Now, define
2:X—=Xby

ay if z=ay,

=4 p ifz=as

q ifze {02,a4}.
\

Then § is order preserving and ofa = .

1 and

Case 2 ran a = {a;,a2,a4}. Since a; < a4 and az < a4, 50 G4 € G40
.fhere exist p € 1oL and g € agat such that p < a4 and ¢ < a4 Now, define
B:X — X by

‘ ¢
p ifz=a,

=14 q ifz=ay,

a4 ifxe {0;3,,(.14}.
.. .

" Then 3 is order preserving and afia = a.

Case $: ran o = {ag, Gg, a4}. Since {as, a4} and {ag} ars disjoint partially ordered
sets, s0 aga™! U a4a“¥ and__ aso—' must be disjoint partially ordered sets. This
implies X = (az0~ ' UagaY) Uase! can be partitioned into two disjoint partially
orderéd sets which is a contradiction. Thus this case can not be occurred.

Case 4: ran a = {a, 062, 03}. By using the same arguments as given in case 3, but
- starting with {a;, 0;3} and {a»} will lead to a contradiction. Thus this case can not
“be occurred.

Therefore, O.(X ) is regular as required. O
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.Theorem 3.2.12 Let X = {01,02,a3,a4,85 : @1 < a4, 02 < a4, a3 < a5, a3 < a5;
and {a1,02,a3}, {a1,a5}, {as,as} are isolated } be a partially ordered set. Then
O(X) is not regular.

Proof. We prove by contradiction, suppose that O(X) is regular and let a € O(X)
be defined by A

7 a1 {az,&;,as}, as

ay Qq 5]

Then afo = o for some’ B € O(X). Thus zafla = za for all z € X and so
tﬁﬁ_ € ayol, aqf e aget and @408 € asat . Then we get 0,9 = a3, @8 = ay;
and a4 = ay or asf = a4 or ayf8 = as. Thus we consider the following cases :

Case 1: 18 = a3, G,gﬁ = a; and @, = ay. Then g ¢ O(X) since a1 < a4 but

wf £ asp.

Case 2: a108 = as, agﬁ’ = and asfl = ag. Then § ¢ O(X) since a; < ag but
alﬁ % ayf.
Case 3: a1 = a3, a2 = o, and ayff = a5. Then 8 ¢ O(X) since az < a4 but
220 £ a4f.
In all cases, there are a contradictions. Therefc;re,.O(X ) is not regular. O

' The'orgm 3.2.13 Let X = {a1,02,03,04,85: a1 < a3z, @ < 4, 02 < O4, G2 < G5,
and {a3, a4, a5}, {a1,as}, {az,03} are isolated } be a partially ordered set. Then
O(X) is not regular.

Proof. We prove by contradiction, suppose that O(X) is regular and let « € O(X)
be defined by

{alaaz,a:;} az as
a2 as G4
Thén afo = o for some § € O(X). Thus zafa = za for all z € X and so
@20 € ap0Y, agf € asa~! and asf € ase! . Then we get agf = a1 or axf = a,
" or agf = dy; and ayf = as, asB = as. Thus we consider the following cases :

- Case 1: ayf8 = a5, a4f} = a5 and asfB = as. Then § ¢ O(X) since ag < ay but
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) azﬂ j; a4,6’.

Case 2: a,f = ao, a4ﬁ'=ra,5 and asf = a3. Then 8 ¢ O(X) since az < a5 but
asfl £ -asp.
Case 3: a2 = a4, a4l = a5 and a5 = as. Then S ¢ O(X) since ay < ag but
asf ﬁ Gsﬁ;
In all cases, there are a contradictions. Therefore, O(X) is not regular. O

Lemma 3.2.14 Let o € O(1,.). If there exist 3,y € ran o such that ¢ < y and

za ' and yo! are dz'sjoz'ﬁt partially ordered sets, then o is not regular.

" Proof. Assume that there exist T,y € ran « such that z < y and za~! and yo!
are disjoint partially ordered sefs. Suppose that « is regular in O(Z,). Then there
exists 8 € O(I,) such that cfa = a. Since z,¥ € ran o, there exist z',y € I,
such that z'« = z and y'a = y. Since afa = a, ' afa = z'o. Then zha =z
which implies that z3 € za~1. Similarly, we have that y8 € ya~'. Since z < y and
@ is order preserving, z < yf. But ro~! and yo~! are disjoint partially ordered

sets, so it is a contradiction. Hence « is not regular. -0

Remark 3.2.15 Let a € O(L,).

(1) If « is regular, then for all Z,Y € ran o, < y implies zo! and yo~! are

not disjoint partially ordered sets.

(2) If 1 € ran @, then la = 1.
Proof. Assume that 1 € ran o. Then 1o = z for some 2 € I,,. Since 1 < g
. for all a € I, and « is order preserving, z = la < ac for all a € I,,. Then

' is the minimum of ran . Since 1 is the minimum of ran o, la=z=1 0O

Before proving Theorem 3.2.16, we need some notations. For o € O{I,) with
- ran a = {ay, 6s, ., Gn}, choose b; € g;o7! for all § = 1,2, ...,m. Let
Aa = {blp b2: ey bm} -
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and
Byo={zelL\rana: g <:cforsomea.;941}

IfB # B, then for each & € B,,, we set 4 o(@) ={b; € a0 : g; < 7}

_ (1) {23,456
IR 5

| | 1} {2,4} {3,5,
Example 3.2.16 Let oo = ({} {24 { 6})and

12 4

- be two elements in O([;). Let A, = {1,2,6}, then B, = {6} and A(6) = {1,2}.

But, if we let A; = {1,5} ,then Bg ={. O

Theorem 3.2.17 Let o € O(L,) with ran a = {a1,a0,...,a}. Then a is regular
if and only if the followzng conditions hold:

(1) There ezists A, such that the map  :ran o - A, define by a;p = b; for all i i
is order presermng '

(2) If B, # 0, then lem(Aq(z)) € I, for allz € B,

Proof. Assume that afa = o for some B € O(L,). Then zafa =za forall z € I,
s0 a; 80 = a; for all t1=1,2,..,m. Thus b; = a;0 € a;a* for all § = 1,2,.
(1) Let Ay = {a13, a2, ... »a@mf} and defined ¢ : ran o — Ay by zp = mﬁ

forall z € ran . Then p = Blran o~ Since By, - is order preserving, ¢ is also

order preserving,

(2) Assume that B, # 0. Let 7 € B, and let lem(Aa(z)) = d. Let b; €
As(z), then a; < z. Since 8 is order preserving, a;f < zf, ie., b; < zB. Thus
bilzf for all b; € A, (). So :z:ﬁ 1s a common multiple of 4,(z). Since d is the least

- common multiple of A,(z), d <py z8 € I, Therefore, lem(A,(z)) =d € I,.

Conversely, assume that the conditions (1) and (2) hold.
Case 1: B, = 0. 7
Case 1.1: 1 ¢ ran a. Then we define 8: I, — I, by

b; if z=aq; ie=1,2,...,m,

1 fzel, \ {al, az, ..., %}

ahe

. To show that 3 is order preéerving, let z,y € I, be such that z < Y.

I T,y € ran «, then 28 < ¥4 by (1).
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Ifz,y e\ {a1,a,, ...,. @a}, then z8 =1 = yf.

dfz e L\ {a,as...,0,} and y € {a1,as, ...,a,}, then 28 =1 < yB.

Iz e {a,02.,0,} and y € I, \ {a1,0,...,a,,}, then z = g; = 1 for some

j€ {1,2,...,m} (if a; # 1, then 1 # a; = z < y and thus y € B, which is a

. contradiction since B, = §)). Thus this case can not be occurred since 1 ¢ ran o.

Case 1.2: 1 € ran o. Then let a; = 1 and we define §: I, — I, by

‘ b, ifz=aq; ;i=2,3,..,m,

zf= <" C
o ifzxel,\{a,as, ., an,}

To show that 3 is order preserving, let z,y € I, be such that z < 3.

Ifa;,ye {a2: G3,...,ﬂ.m}, then $ﬁ S yﬁ by (1)

I 7,y € I, \ {az, a3, ..., am}, then 268 = b, = y3.

If o€ L\ {02, 83, -, G } and‘y € {az,03, ..., Gm}, then 8 = by = ;8 and yB = b;
for some j € {2,3,...,m}. Since a; =1 < y € ran «, a;8 < yf and thus z6 < ypB.

If z € {az,a3,...,an} and y € I, \ {az,03,...,am}, then £ = a; # 1 for some

j' €1{2,3,...,m}, thus y € B, which is a contradiction since B, = @. So this case
can not be occurred.
Case 2: B, # §. For each z € B,, there exists ¢; € ran o \ {1} such that g; < z.
By assumption we have that lem(A.(z)) € I, say k.

. Case2.l:1 ¢ ran . Then we define 8: I, — I, by

4 .
b fz=aqa; ;i=12 ..,.m,

=< k, ifzeB,,

\ 1 ifze I\ ({ay,09,...,an} U B,).

To show that £ is order preserving, let z,y € I, be such that = < y. We consider
in three subcases. |

Subcase 2.1.1: = € ran o and y € In. Then 2 = q; for some j € {L,2,...,m}. If
y € ran o, then zf < yB by (1). If y € B, then A.(y) = {b; € a1 a; <y}
and yf = lcm(Aa(y)) ‘Since a; =z <y, b € A, (y) andso z8 = g;0 = b; <
lcm(Aa(y)) =yf. And, ify € I, \ (ran a U B, ), then x = a; = 1 (if ¢; # 1, then

- 1% a; =z <y and thus y € B, which is a contradiction since y ¢ B,,). Thus this
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case can not be occurred since 1 ¢ ran a.

‘Subcase 2.1.2: z € B, and y € I,. Then Y € B.. Thus z8 = lem(A,(z)) and

yf = lem(A.(y)). Since z < y, A, (r) C A «(y) and thus iem(4,(z)) divides

lem(Aa(y)). Thus z6]yp and 26 < yp.

Subcase 2.1.3: z € I, \ (ran ¢ U B,) and y € I,. In this subcase zf =1 < yf.
Cése 2.2: 1 € ran o. Then we let a; = 1 and define B:1,— I, by

r .
by fzx=a; ;i=23,..,m

z8=19 k, ifzeB,,

: 31: itz e, \ ({as,as, vy G} U B,).

To show that 3 is order preserving, let z,y € I, be siich that z < y. We consider
in three subcases. -

Subcase 221 z € {(12,03, 28m} and y € I,. Then z = = @, for some j €
{2 3,..m}. Ifye {ag,a,g, »@m}, then z8 < yB by (1). ¥y € B,, then
A (y) {b; € a;a1; a, < y}and yf = lem(A4(y)). Since g =z <y b€ Ao,(y)
and 80 z8 = a;0 = b; < lem(Aa(y)) = yB. Iy € I, \ ({az, a3, ... am} U B,), then
m—a_, =1 (if a; # 1, then 1 # a; =z < y and thus y € B, which is a contradic-
tion since y ¢ B,,). So z8 =b; = y0.

Subcase 2.2.2: 3 € B, and y € I,. Then ¥ € B,. Thus zf = lom(A,(z)) and
yB = lem(Au(y)). Since z < y, A (z) C A, (y) and thus lem(A.(x)) divides
ICTR(A (¥))- Thus z8|yB and =6 < yB.

Subcase 2.2.3: « € I, \ ({as, as, .. wom}UB,) and y € I,. Iy € {ay, as, .. ,am}
then z8 = b = ¢;4 and yf = b; for some j € {2,3,..,m}. Since a; = 1 <
N {Gg,ag,, <8} lﬁ = o1 < yf and thus 8 < yf. Ify € B,, then yfB =
lem(A4(y)) and thus b, € A,(y) since a; = 1 < ¥, 80 23 = by < lem(AL(y)) = 8.
Ify € In\ ({a,03,...,an} U B,), then z8 = b, = yB.

Foreach, z € I,, zo = g, for some 7 and so zofo = (a;f)a = b = a; = za.

Therefore, zofa = zo for all € I, and hence afa = a. -0

Example 3.2.18 For n = 20, let a € () define by
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{1,7,11,13,17,19} {2,14} {3,6,9,18} {4,8,16} {5,10,12,15,20}
Q= .
1 3 6 9 18

Then ran o = {1,3,6,9,18} and we choose 4, = {1,2,6,4,12}. We see that
there exists a bijection and order preserving from ran « te A, and B, = {12, 15},

 A,(12) = {1,2,6} end A(15) = {1,2}. Then we define 4 by

AY

1369 18 12 15 {24,5,7,8,10,11,13,14,16,17,19,20} |
- 126412 6 2 1 )

Thus by Theorem 3.2.17, B is order preserving and afa == «.

Example 3.2.19 For n = 15,' let o € O(I16) define by
_ ({1,713} {2,3,6,9,11,14} {4,8,12,16} {5,10,15}
= ( 2 4 8 12 ) '
Then ran o = {2,4, 8, 12} and we choose A4, = {1,2,4,10}. We sce that there
exists a bijection and order preserving from 4, to ran o and B, = {6, 10,14, 16}
and A,(6) = {1}, Aa(10) = {1}, A(14) = {1} and A,(16) = {1,2,4}. Then we
define 3 by '

1241011 1 4 1

FE

(2 4812 6 10 14 16 {1,3,5,7,9,11,13,15})

"Thus by Theorem 3.2.17, # is order preserving é.ud afa=q.

Example 3.2.20 For n = 8, let & € O(Js) define by
({1,2} {3,4} {5,6,7,8}\
@ = ¢
1 3 6
"Then ran « = {1,3,6} and we choose A, = {2,4,8}. We see that there
exists a bijection and order preserving from ran a to A, and B, = 0. Then

- we define g by
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. 13 6 {24,578}
2 4 8 9 '

‘I_‘hﬁs by Theorem 3.2.17, 2 is order preserving and ¢?x = a.

- Example 3.2.21 For n =7, let o € O(Jy) define by

_[(w2n pe @
L2 4 6 )

Then ran o = {2,4,6} and we choose A, = {1,3,4}. We see that there

exists a bijection and order preserving from ran o to A, and B, = §. Then

we define S by
s [2 46 {1,3,5,7}
134 1 |

Thus by Theorem 8.2.17, £ is order preserving and e = .
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3.3 Maximal Subgroups of O(I,)
In this section we will study a maximal subgroups of semigroup O(I,,).

Definition 3.3.1 [2] An element e in a semigroup S is called idempotent if €2 = e,
and we set E(S) to be the set of all idempotents in S.

Deﬁnition 3.3.2 [2] A subgroup M of a group G is said to be maximel in @ if
M # G and for every subgroup H such that M C H C G implies that & = M or
H=0G.

Theorem 3.3.3 [2] Let S be a semigroup and let e be any idempotent in S and
Ge={z€8: ve=2=ex,3y=e=1yx for somey € S}
={z€8: z€eSNSe ande € 5N Sz}.

Then G is a mazrimal subgroup of S having e as an identity.

For each o € O(I;). The set m, = {{a,b) € I, x I, : ac = ba}is an

eqmvalent relation on I We call 7, the partition of I,, corresponding to a.

Theorem 3.3.4 Let e be any idempotent of O(I,). For each a € O(1,), ae = o =

ec if and only if ran o C ran e and 7, C 7.

Proof. Assume that ce = o = ea. First, we prove that ran o C ran e. Let
, yi € ran o Then there exists £ € I, such that za = y. Since ae = o,
y‘ = go = goe = (za)e. Thus y € ran e. To prove m, C 7, let (a,b) € ..
I‘hen ae = ¢ = be for some ¢ € I,. Thus acea = co = ber and so ac = d = be for
s-(;-i'ne' d € I,,. Therefore, (a,l b) € 7. _

- Conversely, assume that ran o C ran e and 7, C m,. Let z € I,. Then
zo = y for some y € I,,. Thus Yy € ran o C ran e and s0 y € ran e. Then there
exists =’ € I, such that z'e = y. Consider zae =ye =z'ee = r'e = y = za for all
T € I, and so ae = a. Now, consider ze = z for some z € I,.. Since z € ran e and
¢is an idempotent, ze = z. But ze = z = ze, so we have that (z,2) € 7, C m,.
Then (z, z) € 7, and 8o za = zo. Since z = ze, za = zee. Thus za = za = zea

- for all z € I, and hence ea = o, Therefore, e = a = ea. O
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By the above Theorem we let
IL={acO(l,): ace=a=ca}

={a € O(I,) : ran a C ran e and 7, C 7, }.

Lemma 3.3.5 Leto,f € L. Ifaf =e = Pa, then ran a = ran e = ran F and

Ty = Re = Tg.

Proof. Assume that aff = e = fo. First, we show that ran o = ran e = ran S.

éi.ncé = I, ran o C ran e. Let z € ran e. Then there exists z € I, such

that-‘:c_'e = 2. Since ¢ = fa, r'e = ' fo. Thus z = (') and so z € ran a.

Tﬁgn ran e C ran a. Therefore, ran o« = ran e. Since § € I, ran B C ran e.

Let QE ran e. Then there exists z° € I, such that z'e = y. Since aff = e,

&' fa=2g"e. Thus y = (z"0)f and s0 y € ran 8. Then ran e C ran 8 and hence |
ran B =rane, Therefore, ran ¢ = ran e =ran .

Next, we show that n, = #, = m5. Let (a,b) € n,. Then aa = ¢ = ba
for some ¢ € I,. Since aff = e, aaff = ae and baf = be. Thus ae = aaf =
éﬁ = bafi = be and so (a,b) € m.. Hence w, C .. By Theorem 3.3.4 we have
Te C 7. Therefore, 7, = 7. Let (a,b) € m3. Then af = ¢ = b3 for some c € I,.
Since fo = e, afia = ae and bfa = be. Thus ae = afo = ca = bfa = be and
so {a,b) € Te. Hence 73 C 7. By Theorem 3.3.4 we have n, C wg. Therefore,

7, = g and hence 7, = m, = mg. O

Let M = {a1,02,...,am} = ran e where e is the idempotent of O(Z,).
Reca}l that the set of permutations of M is denocted by S,,. For convenience a

permutation o € S, is usually represented as
a1 da .. QO

MT QT ... QAup0

In this notation the first column expresses the fact that ¢ maps a; to ayo; the
second column, that o maps a, to ayo and the end column, that ¢ maps a,, to
Gm0.

For each o, B € I, with aff = e = fa, by Lemma 3.3.5 we have ran o =
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ran e =ran § and 7, = 7, = 73 and so we write

and
g= '(‘41
G15

Ay .

as

Ay

Ag

- Am
.a,m‘,

dad ...

)

azd

Wilere 0,8 € Sp. We call o and & the permutations of o and 8 respectively.

Lemma 3.3.6 Let o, € I, and 0,6 are the permutations of o and B respectively.

Ifaf = e = fa, then o6 = 1,y = do.

. Proof. Assume that af = e = fo. Let

Ay
e=
ay

and

.52(&
. G.]_é-

Ay .

az

Ay

Ao ...

e Am
[ ,)

(125

As

where 0,6 € S, and a; € A; for all ¢ since ¢ is an idempotent. Then zof =

ze = zffa for all z € I,,. Let x € I,. Then z € A; for some 7. Since zaf = ze,

. (aig)8 = a;. Then ta,;&)ﬁ = a;f( for some a; )= a;0 = a;06 = a; = a;1y for all

a; € M. Thus ¢d = 1p. Since zfo = ze, (a:6)a = a;. Then (a;6)a = a;a( for

sdme, a; )= a;0 = @00 = a; = a;1)y for all a; € M. Thus §o = 1p,. Therefore,

06 =13 = 0.

O
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Theorem 3.3.7 For each o € I, aoff = e = Po for some j§ € L, if and only if
Mo = Mg = g, ran & = ran € = ran [ and 0§ = 1y = do where 0,8 are the

- permutations of « and (3 respectively.

- Proof. Assume that aff = e = fo for some § € I.. By Lemma 3.3.5 and Lemma
3.3.6 we have o = Tg =Tg and ran ¢ =ran e =ran § and ¢d = 1)r = do.

. Coversely, assume that 7, = m. = 75 and ran a = ran e = ran § and
o8 =1 m = 60. Since ran e =ran § and n, = 7g, by Theorem 3.3.4 we have that

fe=pf =ef3. Thus 8 € L. Let

ez(Al Ay oo An)

ay dag ... ij:

. A Ay .. Anm
015 a26 am5

A wrhe're‘cr, 0 € S, and a; € A, for all ¢ since e is an idempotent. Let z € I,. Then
z € A; for some 7 and we have that ze = a;. Suppose that a;0 = a; and 6;6 = a;
for some j,k . So zaf = (2:i0)B = a;f = a;0 = a;00 = a;ly = a; = we and
zfha = (a:b)o = apa = o0 = @60 = a;ly = a; = ge for all 7 € I.. Therefore,

_qﬁ=e=ﬁa’. o 0

"Theorem 3.3.8 Let H. ={a € I.: aff = e = Pa for some § € L.}. Then H, is

a mazimal subgroup of O(L,).

Proof. We will prove that Ge = {& € O(I,) : ce = o = ex and off = ¢ = flu
for some § € O(1,)} = H,. Let o € H,. Theno € I, C O(I;) and aff = e = fo
~ for some § € I,. Since a € I, ce = o = e and s0 o € G,. Thus H, C G,. Let

: aE G.. Then ce = o = e and aff = e = fa for sdme g € O(I,). Thus a € I..

Since G, is a group having e as its identity, 3 is an inverse element of . Then
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B € G, andso 8 € I.. Thus G, C H, and so G. = H,. Since G, is a maximal
subgroup, H, is also a maximal subgroup. O

. Eécainple 3.3.9 For n =8, we let e be an idempotent of O(J3) defined by
(1 238 48 {67
e= 4
1 2 4 6 ]
Then by Lemma 3.3.4 we have that .

I.={a € C{ls): ran a C {1,2,4,6} and 7, C 7, }.

Thus

| -ﬁ'_ ({1} {2,3,5} {4,6,7,8}
_ \ -~ )

and

{1,2,3,5} {4,6,7,8}
Y=
2 4
 are elements of I.. Thus for each a € O(Js),
a€eH, = aclandaf=c=pa forsome_ﬁel’e
= oa€l,my=7.=ng,rana=rane=ran B and 06 =1 =do

for some g € I,

s ({1} {2,3,5} {4,8} {6,7}) apn {a,b,c}={2,4,6}

1 a b c
1} {2,3,5 4,8 6,7

= a=({} { b P }) since 2 < 4 and 2 < 6
1 2 b c

o ({1} 235 48) {6,7}) .

1 2 4 6
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o {1} {2,3,5} {4,8} {6,7}
IR 2 6 4 |

Then we see that 8,7 ¢ H.. That is I, # H, in general. For each o € H,,
w_é choose #-='« and then af = e = fa. Thus H, = {e, @} is a maximal subgroup

of O(Iy). | g

Example 3.3.10 For n = 8, we let e be an idempotent of O(Ig) defined by

o |2 (3.6} {48} {5} {7}
1 3 8 5 7
- Thus for each o € O(Ig),
de-He_ = a€l,andof=e=QPaforsomefecl,
= afeIe,wa::rrezvrﬁ,rdna:mne=mnﬁandcrd=1M=5a

for some Ber

{1,2} {3,6} {4,8} {5} {7}
= o= where
- 1 a b ¢c d
{a,b,¢,d} = {3,5,7,8}.
Since {3, 6}, {4, 8}, {5}, {7} are pairwise disjoint partially ordered sets, so they are
41 =24 permutations of {3,5,7,8}. Thus all elements of H, are

(0 B8 ws m
{ 1 3 5 7 8)

oo [ 112 36} {48} {5} {7}
) 1 3 5 8 7))

(3 B8 @8 5
3 .1 3 7 5. 8 H



[
.6— =
- ({1,2}
[
_(an
¥y = 1
__(an
10 — 1
e ] {1’2}
11 = | - 1
_(an
12‘— 1
L _(u
13 = 1
(w2
14 = 1
(a2
15 = 1
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3,6} {4,8}

3 7

{3,6}
3 8

{3,6}
3 8

3,6} {4,8}
5 3

{3,6} {4,8}
5 3

{3,6} {4,8}

5 7

{3,6} {4,8}
5 7

{3,6}
5 8

{3,6} {48}
5 8

3,6} {48}
7 3

5,60 {48}
7 3 :

{3,6} {4,8}
75

{4,8}

s

{4,8} -
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({1,2} {3,6} {48} {5} {7})

16 = ’

\ 1 7 5 8 3)

({1,2} {3,6} {48} {5} {7})
\'1 7 8 5 3/

a7 =

[ e 48 5 1
® 1 7 8 3 5}

({12} {36} {48} {5} {7})

Tl s s 13
[y e w4 B 0
Tl s s o3 )

oo ({12 {36} {48} {5} {7}

. 18 3 5 71/
_(ws pe ws o o)
l1 s 3 7 s5)

; _ (L2} {3,6} {48 {5} {7}
23 1 3 . 5 3 ’

g = | (02 13,6} {4,8} {5} {7}

Example 3.3.11 For n="7, we let e be the identity map of O(Z;). Then

1234567
e == .
1234567



33
Thus for each o € O(I7),
caeH, = a€l andaf=e=pfoforsomefcl,
= a€l,my=m.=ng.rana=rane=ran § and 0§ = 13y = éo
for some § € I, ' |
= @ is an order preserving permutation of I; and there exists an
order preserving permutation 4 of I; such that o8 = e = fo.

‘Therefore, o can be

34567
34567
34567
347605

| 1234567
and hence H, = {e, ( ) iy

Q .

]
T
=
[C Y

or

on ‘
il
-
Y

1234765



