CHAPTER 4 # **CONCLUSION** In this study, we found that: ### 1. Some properties of (I_n, \leq) - 1.1 (I_n, \leq) is a partially ordered set. - 1.2 For each $m \in I_n$, m is a minimal element of $(I_n \setminus \{1\}, \leq)$ if and only if m is a prime number. - 1.3 For each $x, y \in I_n$, if $x <_{nat} y$ and $x \in D_n$ then $x \nmid y$. - 1.4 For each $M \in I_n$, M is a maximal element of (I_n, \leq) if and only if $M \in D_n$. - 1.5 The number of elements in D_n is $\bar{n} \lfloor \frac{n}{2} \rfloor$. - 1.6 (I_n, \leq) is a complete lower semilattice. #### 2. Regularity of $O(I_n)$ - 2.1 If $n \leq_{nat} 3$, then $O(I_n)$ is regular. - 2.2 If $n \ge_{nat} 4$, then $O(I_n)$ is not regular. - 2.3 $O(I_n)$ is regular if and only if $n \leq_{nat} 3$. - 2.4 If X is isolated, then O(X) is regular. - 2.5 Let X be a partially ordered set such that $X = Y \cup Z$ where $|Y| \ge_{nat} 2$ and there exist $a, m \in Y$ with a < m; and Y, Z are disjoint partially ordered sets. Then O(X) is not regular. - 2.6 Let X be a proper partially ordered subset of I_4 . Then O(X) is regular if and only if X is one of the following forms: - (1) \prod_1 is a chain, - (2) $\prod_2 = \{a_1, a_2, a_3 : a_1 < a_2 \text{ and } a_1 < a_3 \text{ and } \{a_2, a_3\} \text{ is isolated } \}$, - (3) \prod_3 is isolated. - 2.7 Let X be a proper partially ordered subset of I_5 . Then O(X) is regular if and only if X is one of the following forms: - (1) \prod_1 is a chain, - (2) $\prod_2 = \{a_1, a_2, a_3 : a_1 < a_2, a_1 < a_3 \text{ and } \{a_2, a_3\} \text{ is isolated } \}$ - (3) $\prod_3 = \{a_1, a_2, a_3, a_4 : a_1 < a_i \text{ for all } i = 2, 3, 4 \text{ and } \{a_2, a_3, a_4\} \text{ is isolated } \},$ - (4) \prod_4 is isolated. - 2.8 Let $X = \{a_1, a_2, a_3, a_4 : a_1 < a_3, a_1 < a_4, a_2 < a_4; \text{ and } \{a_1, a_2\}, \{a_3, a_4\} \text{ are isolated } \}$ be a partially ordered set. Then any order preserving permutation of X equals to 1_X , the identity map on X. - 2.9 Let $X = \{a_1, a_2, a_3, a_4 : a_1 < a_3, a_1 < a_4, a_2 < a_4; \text{ and } \{a_1, a_2\}, \{a_3, a_4\}$ are isolated $\}$ be a partially ordered set. Then O(X) is regular. - 2.10 Let $X = \{a_1, a_2, a_3, a_4, a_5 : a_1 < a_4, a_2 < a_4, a_2 < a_5 \text{ and } a_3 < a_5; \text{ and } \{a_1, a_2, a_3\}, \{a_1, a_5\} \text{ and } \{a_3, a_4\} \text{ are isolated } \}$ be a partially ordered set. Then O(X) is not regular. - 2.11 Let $X = \{a_1, a_2, a_3, a_4, a_5 : a_1 < a_3, a_1 < a_4, a_2 < a_4 \text{ and } a_2 < a_5; \text{ and } \{a_3, a_4, a_5\}, \{a_1, a_5\} \text{ and } \{a_2, a_3\} \text{ are isolated } \}$ be a partially ordered set. Then O(X) is not regular. - 2.12 Let $\alpha \in O(I_n)$. If there exist $x, y \in ran \ \alpha$ such that x < y and $x\alpha^{-1}$ and $y\alpha^{-1}$ are disjoint partially ordered sets, then α is not regular. - 2.13 Let $\alpha \in O(I_n)$. - (1) If α is regular, then for all $x, y \in ran \ \alpha, x < y$ implies $x\alpha^{-1}$ and $y\alpha^{-1}$ are not disjoint partially ordered sets. - (2) If $1 \in ran \ \alpha$, then $1\alpha = 1$. - 2.14 Let $\alpha \in O(I_n)$ with $ran \ \alpha = \{a_1, a_2, ... a_m\}$. Then α is regular if and only if the following conditions hold: - (1) There exists A_{α} such that the map $\varphi : ran \ \alpha \to A_{\alpha}$ define by $a_i \varphi = b_i$ for all i is order preserving. - (2) If $B_{\alpha} \neq \emptyset$, then $lcm(A_{\alpha}(x)) \in I_n$ for all $x \in B_{\alpha}$. ### 3. Maximal Subgroup of $O(I_n)$ - 3.1 Let e be any idempotent of $O(I_n)$. For each $\alpha \in O(I_n)$, $\alpha e = \alpha = e\alpha$ if and only if $ran \ \alpha \subseteq ran \ e$ and $\pi_e \subseteq \pi_{\alpha}$. - 3.2 Let $\alpha, \beta \in I_e$. If $\alpha\beta = e = \beta\alpha$, then $ran \alpha = ran e = ran \beta$ and $\pi_{\alpha} = \pi_e = \pi_{\beta}$. 3.3 Let $\alpha, \beta \in I_e$ and σ, δ are the permutations of α and β respectively. If $\alpha\beta = e = \beta\alpha$, then $\sigma\delta = 1_M = \delta\sigma$. 3.4 For each $\alpha \in I_e$, $\alpha\beta = e = \beta\alpha$ for some $\beta \in I_e$ if and only if $\pi_{\alpha} = \pi_e = \pi_{\beta}$, $ran \ \alpha = ran \ e = ran \ \beta$ and $\sigma\delta = 1_M = \delta\sigma$ where σ, δ are the permutations of α and β respectively. 3.5 Let $H_e = \{ \alpha \in I_e : \alpha \beta = e = \beta \alpha \text{ for some } \beta \in I_e \}$. Then H_e is a maximal subgroup of $O(I_n)$.