
CHAPTER 3

MAIN RESULTS

In this chapter, we divide into 4 sections. In section 3.1, we study the

necessary conditions to be super vertex-magic graphs. In section 3.2 we study the

conditions of paths and cycles to be super vertex-magic [7]. In section 3.3 we study

the conditions of circulant graphs. In section 3.4 we study product of path P2 to be

super vertex-magic . In section 3.5 we collect the non super vertex-magic graphs.

3.1 On the Degrees of a Super Vertex-Magic Graphs

In this section we study the upper bounds and lower bounds of degrees of vertices

in any super vertex-magic graphs.

Lemma 3.1.1 Let G = (V, E) be a super vertex-magic graph of n vertices and e

edges and λ a super vertex-magic total labeling of G in which the weight of each

vertex is h. Then h = e + n+1
2

+ e(e+1)
n

.

Proof. Let V = {v1, v2, ..., vn} which implies that

nh =
∑
x∈V

wλ(x) = Sv + 2Se,

where Sv is the sum of all vertex labels and Se is the sum of all edge labels.

Therefore

nh = ((e + 1) + (e + 2) + ... + (e + n)) + 2(1 + 2 + ... + e)

= ne +
n(n + 1)

2
+

2e(e + 1)

2
.

Therefore

h = e +
n + 1

2
+

e(e + 1)

n
.

�
Note: We also can see some results in the section 3.2 in [8].
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Lemma 3.1.2 Every super vertex-magic graph has no isolated edges.

Proof. Let G be a super vertex-magic graph and λ a super vertex-magic total

labeling of G.

We prove by contradiction.

Suppose s, t be the endpoints of an isolated edge in G, then

wλ(s) = λ(s) + λ(st) = λ(t) + λ(st) = wλ(t).

This implies that λ(s) = λ(t),

which is a contradiction.

Therefore, G has no isolated edges. �

Theorem 3.1.3 Every super vertex-magic graph has no isolated points.

Proof. Let G = (V, E) be a super vertex-magic graph with V = {v0, v1, ..., vn−1}
e edges and λ a super vertex-magic total labeling of G.

From the definition of the super vertex-magic total labeling, G cannot have

more than one isolated vertex.

Suppose G has exactly one isolated vertex, say v0, W.L.O.G. assume that λ(v0)

be e + n, λ(v(i)) = e + n − i for i = 1, 2, ..., n − 1.

wλ(vi) = λ(vi) +
∑

x∈N(vi)

λ(vix) = e + n

e + n − i +
∑

x∈N(vi)

λ(vix) = e + n =
∑

x∈N(vi)

λ(vix) = i

d(vi) = 1 and λ(vix) = i.

There exists an isolated edge, contradiction.

Hence G has no isolated points. �
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Corollary 3.1.4 Let G be a super vertex-magic graph of n vertices v1, v2, ..., vn and

e edges. Then e ≥ n+1
2

.

Proof. By Theorem 3.1.3, the graph G has no isolated points, d(vi) ≥ 1

we have n ≤
n∑

i=1

d(vi).

Assume that
n∑

i=1

d(vi) = n.

By Theorem 3.1.3, we have d(vi) = 1 for all i = 1, 2, ..., n, thus G has isolated

edges. which is a contradiction with Lemma 3.1.2.

Then n + 1 ≤
n∑

i=1

d(vi).

By the Handshaking Lemma we have
n∑

i=1

d(vi) = 2e.

We have 2e ≥ n + 1, therefore e ≥ n+1
2

. �

Corollary 3.1.5 Let G be a super vertex-magic graph of n vertices and e edges

(i) If G is a regular graph of even degree, then n is odd.

(ii) If G is a regular graph of odd degree, then n is even.

Proof. (i) Let G be a regular graph of degree 2m for some positive integer m.

By the Handshaking Lemma we have

2mn =
∑

v∈V (G)

d(v) = 2e.

Hence e = mn.

By Lemma 3.1.1 h = e + e(e+1)
n

+ n+1
2

, we have

h = mn +
mn(mn + 1)

n
+

n + 1

2

= mn + m(mn + 1) +
n + 1

2

=
2mn + 2m2n + 2m + n + 1

2
.

Therefore, n is odd because h must be an integer.
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(ii) Let G be a regular graph of degree 2m + 1 for some positive integer m.

By the Handshaking Lemma, we have

(2m + 1)n =
n∑

i=1

d(vi) = 2e.

Hence e = (2m+1)n
2

.

Therefore, n is even. �

Theorem 3.1.6 Let G be a super vertex magic graph of n vertices and e edges.

If n < −(2e−1
2

) +
√

3e2 + e + 1
4

then the minimum degree of G is at least 2.

Proof. By Lemma 3.1.2 G has no isolated points, the minimum degree is at least

1.

We prove by contradiction.

Assume that there exists a vertex v with degree 1. Then the magic number

h = wλ(v) ≤ (e + n) + e = n + 2e.

By Lemma 3.1.1 h = e + e(e+1)
n

+ n+1
2

. We have

e +
e(e + 1)

n
+

n + 1

2
≤ n + 2e ...(1)

(1) × 2n; 2ne + 2e(e + 1) + n(n + 1) ≤ 2n2 + 4ne

2ne + 2e2 + 2e + n2 + n ≤ 2n2 + 4ne

n2 + 2ne − n − 2e2 − 2e ≥ 0

n2 + (2e − 1)n − (2e2 + 2e) ≥ 0[
n + (

2e − 1

2
)
]2

− (
2e − 1

2
)2 − 2e2 − 2e ≥ 0

[
n + (

2e − 1

2
)
]2

≥ (
2e − 1

2
)2 + 2e2 + 2e

[
n + (

2e − 1

2
)
]2

≥ e2 − e +
1

4
+ 2e2 + 2e

[
n + (

2e − 1

2
)
]2

≥ 3e2 + e +
1

4
.
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Then

n + (
2e − 1

2
) ≥

√
3e2 + e +

1

4

n ≥ −(
2e − 1

2
) +

√
3e2 + e +

1

4
.

Which is a contradiction with the hypothesis n < −(2e−1
2

) +
√

3e2 + e + 1
4
.

or

[
n + (

2e − 1

2
)
]
≤ −

√
3e2 + e +

1

4

n ≤ −(
2e − 1

2
) −

√
3e2 + e +

1

4
.

Which is a contradiction because n is a positive integer.

Hence the minimum degree is at least two. �

Theorem 3.1.7 Let G be a super vertex magic graph of n vertices and e edges with

magic number h. Then the maximum degree Δ ≤ −1
2

+
√

2(h − e) − 7
4
.

Proof. Let us consider a vertex v with maximum degree Δ.

We have the magic number

h = wλ(v) ≥ e + 1 + (1 + 2 + ... + Δ)

= e + 1 +
Δ(Δ + 1)

2

Since h = e + e(e+1)
n

+ n+1
2

,

e + 1 +
Δ(Δ + 1)

2
≤ e +

e(e + 1)

n
+

n + 1

2
Δ(Δ + 1)

2
≤ e(e + 1)

n
+

n − 1

2

Δ(Δ + 1) ≤ 2e(e + 1)

n
+ n − 1

Δ2 + Δ ≤ 2e(e + 1)

n
+ n − 1

Δ2 + Δ +
1

4
≤ 2e(e + 1)

n
+ n − 3

4(
Δ +

1

2

)2

≤ 2e(e + 1)

n
+ n − 3

4

Δ ≤ −1

2
+

√
2e(e + 1)

n
+ n − 3

4

Therefore, Δ ≤ −1
2

+
√

2(h − e) − 7
4
. �
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Theorem 3.1.8 Let G be a super vertex magic graph with n vertices, e edges and

magic number h. Then the degree d of any vertices of G satisfy the following

inequalities

e +
1

2
−

√
(e + 1)2 − 2(h − e − n) ≤ d ≤ −1

2
+

√
2(h − e) − 7

4
.

Proof. Let us consider a super vertex magic labeling λ of G in which magic

number h.

Let v be a vertex of degree d.

Let v1, v2, ..., vn−1 be the n − 1 vertices other than v.

Let e1, e2, ..., ed be all edges which joint v0 and other edges are

e′1, e
′
2, ..., e

′
e−d, we have

h = wλ(v) = λ(v) +
d∑

i=1

λ(ei) ...(2)

and

(n − 1)h =
n−1∑
i=1

λ(vi) + 2
e−d∑
j=1

λ(e′j) +
d∑

k=1

λ(ek) ...(3)

From these two relations, we get

(n − 1)(λ(v) +
d∑

i=1

λ(ei)) =
n−1∑
i=1

λ(vi) + 2
e−d∑
j=1

λ(e′j) +
d∑

k=1

λ(ek)

= (1 + 2 + ... + (n + e)) − λ(v0) +
e−d∑
j=1

λ(e′j)

It follows that

nλ(v) + (n − 1)
d∑

i=1

λ(ei) −
e−d∑
j=1

λ(e′j) =
(n + e + 1)(n + e)

2
...(4)

Let
b∑
a

:= (a + 1) + (a + 2) + ... + b

Among all the total labeling of G, the left-hand side of (4) is maximum when

λ(v) = n + e,

d∑
i=1

λ(ei) =
d∑

e−d

,

e−d∑
j=1

λ(e′j) =
e−d∑
0
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Substituting these values in (4) we get

n(n + e) + (n − 1)
e∑

e−d

−
e−d∑
0

≥ (n + e + 1)(n + e)

2

It follow that

n2 + ne +
[−nd2 + 2ned + nd + d2 − 2ed − d

2

]

−
[e2 − 2ed + d2 + e − d

2

]
≥ n2 + e2 + n + e + 2ne

2

2n2 + 2ne − nd2 + 2ned + nd + d2 − 2ed − d − e2 + 2ed − d2 − e + d ≥ n2 + e2 + n + e + 2ne

−nd2 + 2ned + nd ≥ −n2 + 2e2 + 2e + n

−d2 + 2ed + d ≥ −n +
2e2

n
+

2e

n
+ 1

Therefore

−d2 + 2ed + d ≥ 2(h − e − n)

d2 − 2ed − d ≤ −2(h − e − n)

d2 − 2ed − d + e2 + e +
1

4
≤ e2 + e +

1

4
− 2(h − e − n)

(
e − d +

1

2

)2

≤ e2 + e +
1

4
− 2(h − e − n)

e − d +
1

2
≤

√
e2 + e +

1

4
− 2(h − e − n)

d ≥ e +
1

2
−

√
e2 + e +

1

4
− 2(h − e − n)

d ≥ e +
1

2
−

√(
e +

1

2

)2

− 2(h − e − n)

By Theorem 3.1.7 the Theorem hold. �
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3.2 Super Vertex-Magic of Paths and Cycles

In this section we study condition of paths and cycles to be a super vertex-

magic graph.

Theorem 3.2.1 ([7]) A path Pn is a super vertex-magic graph iff n is odd.

Proof. (⇒) Assume that path Pn is a super vertex-magic graph with magic

number h.

We have e = n − 1.

By Lemma 3.1.1, h = e + n+1
2

+ e(e+1)
n

.

Then

h = n − 1 +
n + 1

2
+

(n − 1)n

n

= n − 1 +
n + 1

2
+ n − 1

= 2n − 2 +
n + 1

2

=
5n − 3

2
.

Hence n is odd.

(⇐) Assume that n is odd.

Let V = {v0, v1, ..., vn−1} and define a labeling λ by

λ(v0) = 2n − 1

λ(vi) = n + i − 1 for all i �= 0

λ(vivi+1) =

⎧⎨
⎩

n−i−1
2

; i = 0, 2, ..., n − 3

n − i+1
2

; i = 1, 3, ..., n − 2.

It is clear that λ is well defined and 1-1 and λ(vivi+1) is a positive integers

for all i = 0, 1, ..., n − 1.

To show that λ is a super vertex-magic total labeling of Pn.

we will show that

(i) λ(E(Pn)) = {1, 2, ..., n − 1}.
(ii) λ(V (Pn)) = {n, n − 1, ..., 2n − 1}.
(iii) wλ(vi) = 5n−3

2
for all i = 0, 1, 2, ..., n − 1.
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Consider when i = 1, 3, ..., n − 2,

λ(vivi+1) − 1 = n − i+1
2

− 1 = 2n−i−1
2

≥ 2n−(n−2)−1
2

= n+1
2

> 0,

and when i = 2, 4, ..., n − 3, λ(vivi+1) − 1 = n−i−1
2

− 1 ≥ n−(n−3)−1
2

− 1 = 0.

Therefore λ(vivi+1) ≥ 1.

Consider when i = 1, 3, ..., n − 2,

(n − 1) − λ(vivi+1) = n − 1 − (n − i+1
2

) = i−1
2

≤ (n−2)−1
2

= n−3
2

≥ 0.

and when i = 2, 4, ..., n − 1,

(n − 1) − λ(vivi+1) = (n − 1) − n−i−1
2

= n−1+i
2

≤ n−1+(n−1)
2

= 2n−2
2

= n − 1 > 0.

Therefore λ(vivi+1) ≤ n − 1.

Hence λ(E(Pn)) ⊆ {1, 2, ..., n − 1}.
To show that {1, 2, ..., n − 1} ⊆ λ(E(Pn)).

Let i ∈ {1, 2, ..., n − 1}.
If 1 ≤ i ≤ n−1

2
, then 2 ≤ 2i ≤ n − 1.

Hence 2n − 3 ≥ 2n − 2i − 1 ≥ n and 2n − 2i − 1 is odd.

λ(v2n−2i−1v2n−2i) = n − 2n − 2i − 1 + 1

2

=
2n − 2n + 2i

2

= i.

If n+1
2

≤ i ≤ n − 1, then n + 1 ≤ 2i ≤ 2n − 2.

Hence −2 ≥ −2i + n − 1 ≥ −n + 1 and −2i + n − 1 is even.

λ(v−2i+n−1v−2i+n) =
n − (−2i + n − 1) − 1

2

= i.

Therefore {1, 2, ..., n − 1} ⊆ λ(E(Pn)).

Altogether, we get λ(E(Pn)) = {1, 2, ..., n − 1}.
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(ii) From the defining of λ(vi),

λ(vr+1) = n + (r + 1)− 1 = n + r for all r = 0, 1, ..., n− 2. and λ(v0) = 2n− 1.

Therefore the value λ(v1), λ(v2), ..., λ(vn−1) are n, n+1, n+2, ..., 2n−2, respectively.

Hence λ(V (Pn)) = {n, n + 1, n + 2, ..., 2n − 1}.
(iii) we will show that wλ(vi) = 5n−3

2
for all i = 0, 1, 2..., n − 1.

If i = 0, we have λ(v0) = 2n − 1, λ(v0v1) = n−1
2

.

It follows that

wλ(v0) = 2n − 1 +
n − 1

2

=
4n − 2 + n − 1

2

=
5n − 3

2
.

If i = n − 1, we have λ(vn−1) = 2n − 2, λ(vn−2vn−1) = n − n−1
2

.

It follows that

wλ(vn−1) = 2n − 2 + n − n − 1

2

= 3n − 2 − n − 1

2

=
6n − 4 − n + 1

2

=
5n − 3

2
.

If i �= 0, n − 1, and i is ood.

We have λ(vi) = n + i − 1, λ(vivi+1) = n − i+1
2

, λ(vi−1vi) = n−i
2

.

It follows that

wλ(vi) = n + i − 1 + n − i + 1

2
+

n − i

2

= 2n + i − 1 +
n − 2i − 1

2

=
4n + 2i − 2 + n − 2i − 1

2

=
5n − 3

2
.
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If i �= 0, n − 1, and i is even.

We have λ(vi) = n + i − 1, λ(vivi+1) = n−i−1
2

, λ(vi−1vi) = n − i
2
.

It follows that

wλ(v1) = n + i − 1 +
n − i − 1

2
+ n − i

2

= 2n + i − 1 +
n − 2i − 1

2

=
4n + 2i − 2 + n − 2i − 1

2

=
5n − 3

2
.

Hence wλ(vi) = 5n−3
2

for all i = 0, 1, 2, ..., n − 1.

It implies that λ is a super vertex-magic total labeling of Pn.

Hence Pn is a super vertex-magic graph with magic number 5n−3
2

. �

Example 3.2.2 A path P5 is a super vertex-magic graph with magic number 11.

�

9
�

5
�

6
�

7
�

8
P5 : 2 4 1 3

Theorem 3.2.3 ([7]) The Cycle Cn is a super vertex-magic graph iff n is odd.

Proof. (⇒) Assume that Cn is a super vertex-magic graph.

We have e = n.

By Lemma 3.1.1 h = e + n+1
2

+ e(e+1)
n

,

Then

h = n +
n + 1

2
+

n(n + 1)

n

= n +
n + 1

2
+ n + 1

= 2n + 1 +
n + 1

2

=
4n + 2 + n + 1

2

=
5n + 3

2
.
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Hence n is odd.

(⇐) Assume that n is odd.

Let V = {v0, v1, ..., vn−1 } and defind a labeling λ by

λ(vi) = n + 1 + i ; i = 0, 1, ..., n − 1

λ(vn−1v0) = n+1
2

λ(vivi+1) =

⎧⎨
⎩

n − i
2

; i = 0, 2, ..., n − 3

n−i
2

; i = 1, 3, ..., n − 2

It is clear that λ is well defined and 1-1 and λ(vivi+1) is a positive integers

for all i = 0, 1, ..., n − 1.

To show that λ is a super vertex-magic total labeling of Cn.

we will show that

(i) λ(E(Cn)) = {1, 2, ..., n}
(ii) λ(V (Cn)) = {n + 1, n + 2, ..., 2n}
(iii) wλ(vi) = 5n+3

2
for all i = 0, 1, 2, ..., n − 1.

(i) From the defining of λ, we have

λ({v0v1, v2v3, ..., vn−3vn−2}) = {n, n − 1, ..., n+3
2
}.

and λ({v1v2, v3v4, ..., vn−1v0}) = {1, 2, ..., n−1
2
} and λ(vn−1v0) = n+1

2
.

Therefore λ(E(Cn)) = {1, 2, ..., n}.
(ii) From the defining of λ, we have

λ({v0, v1, ..., vn−1}) = {n + 1, n + 2, ..., 2n}.
Therefore λ(V (Cn)) = {n + 1, n + 2, ..., 2n}.
(iii) we will show that wλ(vi) = 5n+3

2
for all i = 0, 1, 2..., n − 1.

If i = n − 1, we have λ(vn−1) = 2n, λ(vn−2vn−1) = 1, λ(vn−1v0) = n+1
2

.

wλ(vn) = 2n + 1 +
n + 1

2

=
4n + 2 + n + 1

2

=
5n + 3

2
.
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If i = 0, we have λ(v0) = n + 1, λ(v0v1) = n, λ(vn−1v0) = n+1
2

.

wλ(vn) = n + 1 + n +
n + 1

2

= 2n + 1 +
n + 1

2

=
4n + 2 + n + 1

2

=
5n + 3

2
.

If i is odd, we have λ(vi) = n + 1 + i, λ(vivi+1) = n−i
2

, λ(vi−1vi) = n − i−1
2

.

It follows that

wλ(vi) = n + 1 + i − n − i

2
+ n − i − 1

2

= 2n + 1 + i +
n − 2i + 1

2

=
4n + 2 + 2i + n − 2i + 1

2

=
5n + 3

2
.

If i is even, we have λ(vi) = n + 1 + i, λ(vivi+1) = n − i
2
, λ(vi−1vi) = n−i+1

2
.

It follows that

wλ(vi) = n + 1 + i + n − i

2
+

n − i + 1

2

= 2n + 1 + i +
n − 2i + 1

2

=
4n + 2 + 2i + n − 2i + 1

2

=
5n + 3

2
.

Hence wλ(vi) = 5n+3
2

for all i = 0, 1, 2, ..., n − 1.

It implies that λ is a super vertex-magic total labeling of Cn.

Hence Cn is a super vertex-magic graph with magic number 5n+3
2

. �
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Example 3.2.4 The cycle C5 is a super vertex-magic graph with magic number 14.

�6 �7

�8

�
9

�10
C5 :

�
�

�

�
�

�

5

3 2

1 4

3.3 Super Vertex-Magic of Circulant Graphs

The circulant graphs are important class of graphs, which can be used in the

design of local area networks [2]. From [7], Balbuena, Barker, Das, Lin, Miller,

Ryan, Slam, Sugeng and Tkac characterized the super vertex-magic graphs of the

forms Cn(1, m) and Cn(1, 2, 3). In this section, we generalize those results into

the circulant graphs of the forms Cn(1, 2, s) and the disjoint union of k copies of

Cn(1, m) or Cn(1, 2, s).

Theorem 3.3.1 For n ≥ 2m + 1, The circulant graph Cn(1, m) is a super vertex-

magic graph with the magic number h = 13n+5
2

iff n is odd.

Proof. (⇒) Let m be a positive integer greater than or equal to 2.

Assume that Cn(1, m) is a super vertex-magic graph.

Since e = 2n, by Lemma 3.1.1,

h = e +
e(e + 1)

n
+

n + 1

2

= 2n +
2n(2n + 1)

n
+

n + 1

2

= 2n + 4n + 2 +
n + 1

2

= 6n + 2 +
n + 1

2

=
13n + 5

2
.
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Then n is odd.

(⇐) Assume that n is odd.

Let V = {v0, v1, ..., vn−1} and define a labelling λ by

λ(vi) =

⎧⎨
⎩

3n − m + 1 + i, i = 0, 1, ...,m − 1 ...(5)

2n − m + 1 + i, i = m, m + 1, ..., n − 1

λ(vivi+1) =

⎧⎨
⎩

2n+2+i
2

, i = 0, 2, 4, ..., n − 1

3n+2+i
2

, i = 1, 3, 5, ..., n − 2 ...(6)

λ(vivi+m) = n − i, i = 0, 1, 2, ..., n − 1.

It is clear that λ is well defined and 1-1 and λ(vivi+1) is a positive integers

for all i = 0, 1, ..., n − 1.

To show that λ is a super vertex-magic total labelling of the graph Cn(1, m).

Since e = 2n, we will show that

(i) λ(E(Cn(1, m))) = {1, 2, ..., 2n}.
(ii) λ(V (Cn(1, m))) = {2n + 1, 2n + 2, ..., 3n}
(iii) wλ(vi) = 13n+5

2
for all i = 0, 1, ..., n − 1.

(i) To show that λ(E(Cn(1, m))) = {1, 2, ..., 2n}.
From (6), λ(vivi+m) = n − i, i = 0, 1, ..., n − 1, then 1 ≤ λ(vivi+m) ≤ n.

λ(vivi+1) = 2n+2+i
2

, i = 0, 2, ..., n − 1, then n + 1 ≤ λ(vivi+1) ≤ 3n+1
2

. and

λ(vivi+1) = 3n+2+i
2

, i = 1, 3, ..., n − 2, then 3n+3
2

≤ λ(vivi+1) ≤ 2n.

It is also easy to see that λ is a 1 − 1 mapping.

Therefore λ(E(Cn(1, m))) = {1, 2, ..., 2n}.
(ii) To show that λ(V (Cn(1, m))) = {2n + 1, 2n + 2, ..., 3n}.

It is easy to see from (5) that

λ({v0, v1, ..., vm−1}) = {3n − m + 1, 3n − m + 2, ..., 3n} and

λ({vm, vm+1, ..., vn−1}) = {2n + 1, 2n + 2, ..., 3n − m}.
Therefore λ(V (Cn(1, m))) = {2n + 1, 2n + 2, ..., 3n}.
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(iii) we will show that wλ(vi) = 13n+5
2

for all i = 0, 1, ..., n − 1.

If 0 ≤ i ≤ m − 1, and i is odd.

We have λ(vi) = 3n − m + 1 + i, λ(vivi+1) = 3n+2+i
2

, λ(vi−1vi) = 2n+1+i
2

,

λ(vivi+m) = n − i, λ(vi−mvi) = n − (n + i − m) = m − i.

It follows that

wλ(vi) = 3n − m + 1 + i +
3n + 2 + i

2
+

2n + 1 + i

2
+ n − i + m − i

= 4n + 1 − i +
5n + 3 + 2i

2

=
8n + 2 − 2i + 5n + 3 + 2i

2

=
13n + 5

2
.

If 0 ≤ i ≤ m − 1, and i is even.

We have λ(vi) = 3n − m + 1 + i, λ(vivi+1) = 2n+2+i
2

, λ(vi−1vi) = 3n+1+i
2

,

λ(vivi+m) = n − i, λ(vi−mvi) = m − i.

It follows that

wλ(vi) = 3n − m + 1 + i +
2n + 2 + i

2
+

3n + 1 + i

2
+ n − i + m − i

= 4n + 1 − i +
5n + 3 + 2i

2

=
8n + 2 − 2i + 5n + 3 + 2i

2

=
13n + 5

2
.

If m ≤ i ≤ n − 1, and i is odd.

We have λ(vi) = 2n − m + 1 + i, λ(vivi+1) = 3n+2+i
2

, λ(vi−1vi) = 2n+1+i
2

,

λ(vivi+m) = n − i, λ(vi−mvi) = n − i + m.

It follows that

wλ(vi) = 2n − m + 1 + i +
3n + 2 + i

2
+

2n + 1 + i

2
+ n − i + n − i + m

= 4n + 1 − i +
5n + 3 + 2i

2

=
8n + 2 − 2i + 5n + 3 + 2i

2

=
13n + 5

2
.
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If m ≤ i ≤ n − 1, and i is even.

We have λ(vi) = 2n − m + 1 + i, λ(vivi+1) = 2n+2+i
2

, λ(vi−1vi) = 3n+1+i
2

,

λ(vivi+m) = n − i, λ(vi−mvi) = n − i + m.

It follows that

wλ(vi) = 2n − m + 1 + i +
2n + 2 + i

2
+

3n + 1 + i

2
+ n − i + n − i + m

= 4n + 1 − i +
5n + 3 + 2i

2

=
8n + 2 − 2i + 5n + 3 + 2i

2

=
13n + 5

2
.

Hence wλ(vi) = 13n+5
2

for all i = 0, 1, ..., n − 1.

It implies that λ is a super vertex-magic total labeling of Cn(1, m).

Hence Cn(1, m) is a super vertex-magic graph with magic number 13n+5
2

. �



                                                                  29 

Example. The super vertex-magic graph C9(1,2) with the magic number
61.

Example. The super vertex-magic graph C9(1,3) with the magic number
61.
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Theorem 2.0.1 ([3]) Let k be a positive integer. If the graph G is r− regular graph

that admits a super vertex-magic total labeling and (k − 1)(r + 1)/2 is an integer,

then the graph kG has a super vertex-magic total labeling.

Theorem 2.0.2 For n ≥ 5 and n is odd and m < 	n
2

. The graph Cn(1, m) is a

super vertex-magic graph iff k is odd.

Proof. (⇒) Assume that kCn(1, m) is a super vertex-magic graph.

We have e = 2nk.

By Lemma 3.1.1,

h = e +
e(e + 1)

n
+

n + 1

2

= 2nk +
2nk(2nk + 1)

nk
+

nk + 1

2

= 2nk + 4nk + 2 +
nk + 1

2
.

Hence k is odd.

(⇐) Assume that k is odd.

By Theorem 3.3.1 Cn(1, m) is super when n is odd(n ≥ 5) and Cn(1, m) is 4-regular,

(k−1)(r+1)
2

= (k−1)(4+1)
2

= 5(k−1)
2

is an integer.

By Theorem 3.3.2, kCn(1, m) is a super vertex-magic graph. �

Theorem 2.0.3 For n ≥ 2s + 1. A circulant graph Cn(1, 2, s) is a super vertex-

magic graph with the magic number h = 25n+7
2

iff n is odd.

Proof. (⇒) Let s be a positive integer greater than or equal to 2.

Assume that Cn(1, 2, s) is a super vertex-magic graph.

We have e = 3n.

By Lemma 3.1.1,

h = e +
e(e + 1)

n
+

n + 1

2

= 3n +
3n(3n + 1)

n
+

n + 1

2

= 3n + 9n + 3 +
n + 1

2

= 12n + 3 +
n + 1

2

=
25n + 7

2
.
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Then n is odd.

(⇐) Assume that n is odd.

Let V = {v0, v1, ..., vn−1} and defined a labeling λ by

λ(vi) =

⎧⎨
⎩

4n − s + 1 + i, i = 0, 1, ..., s − 1

3n − s + 1 + i, i = s, s + 1, ..., n − 1 ...(7)

λ(vivi+1) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

2n + 1, i = 0

5n+2−i
2

, i = 1, 3, 5, ..., n − 2

6n+2−i
2

, i = 2, 4, 6, ..., n − 1 ...(8)

λ(vivi+2) = n + 1 + i, i = 0, 1, 2, ..., n − 1.

λ(vivi+s) = n − i, i = 0, 1, 2, ..., n − 1.

It is clear that λ is well defined and 1-1 and λ(vivi+1) is a positive integers

for all i = 0, 1, ..., n − 1.

To show that λ is a super vertex-magic total labeling of graph Cn(1, 2, s).

Since e = 3n, we will show that

(i) λ(E(Cn(1, 2, s))) = {1, 2, ..., 3n}
(ii) λ(V (Cn(1, 2, s))) = {3n + 1, 3n + 2, ..., 4n}
(iii) wλ(vi) = 25n+7

2
for all i = 0, 1, ..., n − 1.

(i) To show that λ(E(Cn(1, 2, s))) = {1, 2, ..., 3n}.
From (8), λ(v0v1) = 2n + 1,

λ(vivi+1) = 5n+2−i
2

, i = 1, 3, 5, ..., n − 2, then 2n ≤ λ(vivi+1) ≤ 5n+1
2

,

λ(vivi+1) = 6n+2−i
2

, i = 2, 4, 6, ..., n − 1, then 5n+3
2

≤ λ(vivi+1) ≤ 3n,

λ(vivi+2) = n + 1 + i, i = 0, 1, 2, ..., n − 1, then n + 1 ≤ λ(vivi+2) ≤ 2n,

λ(vivi+s) = n − i, i = 0, 1, 2, ..., n − 1, then 1 ≤ λ(vivi+r) ≤ n,

It is also easy to see that λ is a 1 − 1 mapping.

Therefore λ(E(Cn(1, 2, s))) = {1, 2, ..., 3n}.
(ii) To show that λ(V (Cn(1, 2, s))) = {3n + 1, 3n + 2, ..., 4n}.

It is easy to see from (7) that

λ({v0, v1, ..., vs−1}) = {4n − s + 1, 4n − s + 2, ..., 4n} and

λ({vs, vs+1, ..., vn−1}) = {3n + 1, 3n + 2, ..., 4n − s}.
Then λ(V (Cn(1, 2, s))) = {3n + 1, 3n + 2, ..., 4n}.
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(iii) we will show that wλ(vi) = 25n+7
2

for all i = 0, 1, ..., n − 1.

If 0 ≤ i ≤ s − 1, and i is even.

We have λ(vi) = 4n − s + 1 + i, λ(vivi+1) = 6n+2−i
2

,λ(vi−1vi) = 5n+3−i
2

,

λ(vivi+2) = n + 1 + i, λ(vi−2vi) = n − 1 + i,

λ(vivi+s) = n − i, λ(vi−svi) = n − (n + i − s) = s − i.

It follows that

wλ(vi) = 4n − s + 1 + i +
6n + 2 − i

2
+

5n + 3 − i

2
+ n + 1 + i + n − 1 + i + n − i + s − i

= 7n + 1 + i +
11n + 5 − 2i

2

=
14n + 2 + 2i + 11n + 5 − 2i

2

=
25n + 7

2
.

If s ≤ i ≤ n − 1, and i is odd.

We have λ(vi) = 3n − s + 1 + i, λ(vivi+1) = 5n+2−i
2

, λ(vi−1vi) = 6n+3−i
2

,

λ(vivi+2) = n + 1 + i, λ(vi−2vi) = n − 1 + i,

λ(vivi+s) = n − i, λ(vi−svi) = n − i + s.

It follows that

wλ(vi) = 3n − s + 1 + i +
5n + 2 − i

2
+

6n + 3 − i

2
+ n + 1 + i + n − 1 + i + n − i + n − i + s

= 7n + 1 + i +
11n + 5 − 2i

2

=
14n + 2 + 2i + 11n + 5 − 2i

2

=
25n + 7

2
.

If s ≤ i ≤ n − 1, and i is even.

We have λ(vi) = 3n − s + 1 + i, λ(vivi+1) = 6n+2−i
2

, λ(vi−1vi) = 5n+3−i
2

,

λ(vivi+2) = n + 1 + i, λ(vi−2vi) = n − 1 + i,

λ(vivi+s) = n − i, λ(vi−svi) = n − i + s.
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It follows that

wλ(vi) = 3n − s + 1 + i +
6n + 2 − i

2
+

5n + 3 − i

2
+ n + 1 + i + n − 1 + i + n − i + n − i + s

= 7n + 1 + i +
11n + 5 − 2i

2

=
14n + 2 + 2i + 11n + 5 − 2i

2

=
25n + 7

2
.

If 0 ≤ i ≤ s − 1, and i is odd.

We have λ(vi) = 4n − s + 1 + i, λ(vivi+1) = 5n+2−i
2

, λ(vi−1vi) = 6n+3−i
2

,

λ(vivi+2) = n + 1 + i, λ(vi−2vi) = n − 1 + i,

λ(vivi+s) = n − i, λ(vi−svi) = n − (n + i − s) = s − i.

It follows that

wλ(vi) = 4n − s + 1 + i +
5n + 2 − i

2
+

6n + 3 − i

2
+ n + 1 + i + n − 1 + i + n − i + s − i

= 7n + 1 + i +
11n + 5 − 2i

2

=
14n + 2 + 2i + 11n + 5 − 2i

2

=
25n + 7

2
.

Hence wλ(vi) = 25n+7
2

for all i = 0, 1, ..., n − 1.

It implies that λ is a super vertex-magic total labeling of Cn(1, 2, s).

Hence Cn(1, 2, s) is a super vertex-magic graph with magic number 25n+7
2

. �
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Example. The super vertex-magic graph C9(1,2,4). 
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Theorem 2.0.1 For n ≥ 7 and n is odd. The graph kCn(1, 2, s) is a super vertex-

magic graph iff k is odd.

Proof. (⇒) Assume that kCn(1, 2, s) is a super vertex-magic graph.

We have e = 3nk.

By Lemma 3.1.1,

h = e +
e(e + 1)

n
+

n + 1

2

= 3nk +
3nk(3nk + 1)

nk
+

nk + 1

2

= 3nk + 9nk + 3 +
nk + 1

2

=
24nk + 6 + nk + 1

2

=
25nk + 7

2
.

Hence k is odd.

(⇐) Assume that k is odd.

By Theorem 3.3.4 and Cn(1, 2, s) is 6-regular and super vertex-magic with n ≥ 7.

(k−1)(r+1)
2

= (k−1)(6+1)
2

= 7(k−1)
2

is an integer.

By Theorem 3.3.2, kCn(1, 2, s) is a super vertex-magic graph. �
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2.1 Product of Paths P2

Theorem 2.1.1 The graph k(P2�P2�P2) is a super vertex-magic graph iff k is a

positive integer.

Proof. (⇒) Assume that k(P2�P2�P2) is a super vertex-magic graph.

We have n = 8k and e = 12k.

By Lemma 3.1.1,

h = e +
e(e + 1)

n
+

n + 1

2

= 12k +
12k(12k + 1)

8k
+

8k + 1

2

= 12k +
3(12k + 1)

2
+

8k + 1

2

= 12k +
36k + 3 + 8k + 1

2

= 12k +
44k + 4

2

= 12k + 22k + 2

= 34k + 2.

Therefore, k is a positive integer.

(⇐) assume that k is a positive integer.

� �

� �

�
�

��

�
�

��

�
�

��

�
�

��

� �

� �

14

15

18

17

7 4

6

3

1

2

5 10
20

19

16

13

11

9

12

8

The above labeling on P2�P2�P2 shows that the graph P2�P2�P2 is super

vertex-magic, 3- regular and (k−1)(r+1)
2

= (k−1)(3+1)
2

= 2(k − 1) = 2k − 2 is an

integer for all positive integer k. By Theorem 3.3.2, k(P2�P2�P2) is a super

vertex-magic graph. �
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2.2 Non Super Vertex-Magic Graphs

Theorem 2.2.1 Let G be an (r, s)- semiregular bipartite graph of n ≥ 4 vertices

and e edges , where r > s and e + 1 > n . Then G is not a super vertex-magic

graph.

Proof. Let k be the number of vertices of degree r and l the number of vertices of

degree s. we have,

n = k + l, e = kr = ls.

Therefore,

kr = (n − k)s

kr = ns − ks

kr + ks = ns

k(r + s) = ns

k =
ns

r + s

and

ls = (n − l)r

ls = nr − lr

lr + ls = nr

l(r + s) = nr

l =
nr

r + s
.

We prove by contradiction.

Let us assume that G is a super vertex-magic graph.

Since r > s, which implies that l > k. The sum of the weights of the first k

vertices is at least the sum,

kh ≥
k∑

i=1

(e + i) +
e∑

i=1

(i) = (e + 1) + ... + (e + k) + 1 + 2 + ... + e

= ke +
k(k + 1)

2
+

e(e + 1)

2
...(9)
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On the an other part, the sum of the weights another part of l vertices is at most,

lh ≤
n∑

i=k+1

(e + i) +
e∑

i=1

i = (e + k + 1) + ... + (e + n) + 1 + 2 + ... + e

=
(n + e)(n + e + 1)

2
− (e + k)(e + k + 1)

2
+

e(e + 1)

2
...(10)

By (9) and (10) we have,

h ≥ e +
k + 1

2
+

e(e + 1)

2k

h ≤ (n + e)(n + e + 1)

2l
− (e + k)(e + k + 1)

2l
+

e(e + 1)

2l
.

It implies that,

e +
k + 1

2
+

e(e + 1)

2k
≤ (n + e)(n + e + 1)

2l
− (e + k)(e + k + 1)

2l
+

e(e + 1)

2l
.

Hence

e +
k + 1

2
+

e(e + 1)

2k
− (n + e)(n + e + 1)

2l
+

(e + k)(e + k + 1)

2l
− e(e + 1)

2l
≤ 0

e +
e(e + 1)

2k
− e(e + 1)

2l
+

k + 1

2
+

(e + k)(e + k + 1) − (n + e)(n + e + 1)

2l
≤ 0

e + e(e + 1)
[ 1

2k
− 1

2l

]
+

k + 1

2
+

(e + k)(e + k + 1) − (n + e)(n + e + 1)

2l
≤ 0

e(e + 1)
[1

k
− 1

l

]
+ 2e + k + 1 +

(e + k)(e + k + 1) − (n + e)(n + e + 1)

l
≤ 0. ...(11)

Since

(e + k)(e + k + 1) = e2 + 2ke + k2 + e + k

(n+e)(n+e+1) = n2+2ne+e2+n+e ...(12)

Substituting n = k + l in (12) then,

(n + e)(n + e + 1) = (k + l)2 + 2(k + l)e + e2 + k + l + e

= k2 + 2kl + l2 + 2ke + 2el + e2 + k + l + e

= k2 + l2 + e2 + 2kl + 2ke + 2el + k + l + e.
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It implies that

(e + k)(e + k + 1) − (n + e)(n + e + 1)

=
[
e2 + k2 + 2ke + e + k

]
−

[
k2 + l2 + e2 + 2kl + 2ke + 2el + k + l + e

]
= −l2 − 2kl − 2el − l.

Thus
(e + k)(e + k + 1) − (n + e)(n + e + 1)

l
= −l − 2k − 2e − 1.

Hence (11) becomes

(e + 1)
[ e

k
− e

l

]
+ 2e + k + 1 − l − 2k − 2e − 1 ≤ 0

(e + 1)(r − s) − l − k ≤ 0

(e + 1)(r − s) − (l + k) ≤ 0

(e + 1)(r − s) − n ≤ 0.

Since r − s ≥ 1, then n ≥ e + 1.

which is a contradiction.

Hence G is not a super vertex-magic graph. �

Lemma 2.2.2 The complete bipartite graph K1,n or the star where n ≥ 3 is not a

super vertex-magic graph.

Proof. Let K1,n be the complete bipartite graph and n ≥ 3.

Let x be the central vertex of the star K1,n and y be any remaining vertex.

Therefore e = n.

We prove by contradiction.

Assume that K1,n is a super vertex-magic graph.

It follow that

wλ(x) ≥ n + 1 + (1 + 2 + ... + n)

= n + 1 +
n(n + 1)

2
.

wλ(y) ≤ (n + e) + n

= 2n + e

= 3n.
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Therefore

n + 1 +
n(n + 1)

2
≤ 3n

2n + 2 + n2 + n

2
≤ 3n

n2 + 3n + 2 ≤ 6n

n2 − 3n + 2 ≤ 0

(n − 2)(n − 1) ≤ 0

1 ≤ n ≤ 2

Which is a contradiction because n ≥ 3.

Hence K1,n is not a super vertex-magic graph. �

Note that the complete bipartite graph of 3 vertices(or P3) is a super vertex-

magic graph by Theorem 3.2.1. and the complete bipartite graph of 2 vertices(or

P2) is not a super vertex-magic graph by Theorem 3.1.2.

Theorem 2.2.3 Every complete bipartite graph of n ≥ 4 vertices is not a super

vertex-magic graph.

Proof. Let Kx,y be a complete bipartite graph of n ≥ 4 vertices and e edges.

We have n = x + y.

Case I: x �= y,

If x = 1 or y = 1 , by Lemma 3.5.2. Kx,y is not a super vertex-magic graph.

If x, y ≥ 2, we have xy ≥ x + y.

It implied that xy + 1 > x + y.

Therefore e + 1 > n.

By Theorem 3.5.1 Kx,y is not a super vertex-magic graph.

Case II: x = y,

We prove by contradiction.

Assume that Kx,x is a super vertex-magic graph.

By Lemma 3.1.1 h = e + e(e+1)
n

+ n+1
2

.
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Therefore

h = x2 +
x2(r2 + 1)

2x
+

2x + 1

2

= x2 +
x(x2 + 1)

2
+

2x + 1

2
.

If x is odd. we see that x2 + 1 is even.

Therefore x(x2+1)
2

is a positive integer.

It implies that h is not an integer.

Which is a contradiction.

If x is even. we see that x(x2+1)
2

is an positive integer.

It implied that h is not an integer.

Which is a contradiction.

From Case I and Case II.

Hence Kx,y is not a super vertex-magic graph. �

Theorem 2.2.4 Let m > 1 be a positive integer and m �= 4. Every m × m square

lattice graph is not a super vertex-magic graph.

Proof. Let G be a m × m square lattice graph of n vertices and e edges

We have n = m2 and e = 2m2 − 2m.

We prove by contradiction.

Assume that G is a super vertex-magic graph.

By Lemma 3.1.1,

h = e +
e(e + 1)

n
+

n + 1

2

= 2m2 − 2m +
(2m2 − 2m)(2m2 − 2m + 1)

m2
+

m2 + 1

2

= 2m2 − 2m +
4m4 − 8m3 + 4m2 + 2m2 − 2m

m2
+

m2 + 1

2

= 2m2 − 2m + 4m2 − 8m + 6 − 2

m
+

m2 + 1

2

= 6m2 − 10m + 6 − 2

m
+

m2 + 1

2

= 6m2 − 10m + 6 +
m3 + m − 4

2m
.
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Case I: m is odd, therefore m3+m−4
2m

is an integer.

It implies that m=1.

Case II: m is even, we have m = 2t for some t ∈ Z
+.

We see that m3+m−4
2m

= 8t3+2t−4
4t

= 2t2 + 1
2
− 1

t
.

Therefore t = 2 and implies that m = 4.

Form Case I and Case II, if m �= 1, 4 then h is not an integer.

Which is a contradiction.

Hence G is not a super vertex-magic graph. �

Theorem 2.2.5 Every ladder graph Lk = P2�Pk is not a super vertex-magic graph

for all positive integer k.

Proof. Let k be a positive integer.

Let Lk be a ladder graph of n vertices and e edges

We have n = 2k and e = 3k − 2.

We prove by contradiction.

Assume that Lk is a super vertex-magic graph.

By Lemma 3.1.1, h = e + e(e+1)
2

+ n+1
2

.

Therefore

h = 3k − 2 +
(3k − 2)(3k − 1)

2k
+

2k + 1

2

= 3k − 2 +
9k2 − 9k + 2

2k
+

2k + 1

2

= 3k − 2 +
18k2 − 18k + 4 + 4k2 + 2k

4k

= 3k − 2 +
22k2 − 16k + 4

4k

= 3k − 2 +
11k

2
− 4 +

1

k

= 3k − 6 +
11k

2
+

1

k

= 3k − 6 +
11k2 + 2

2k
.

Case I: k is even, then k = 2t for some t ∈ Z
+.

Therefore 11k2+2
2k

= 44t2+2
4t

= 11t + 1
2

is not an integer.

It implied that h is not an integer.
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Case II: k is odd, then 11k2+2
2k

is not an integer.

It implied that h is not an integer.

From Case I and Case II, h is not an integer.

Which is a contradiction.

Hence ladder graph Lk is not a super vertex-magic graph. �

Theorem 2.2.6 The graph Pm�Pm+1 is not a super vertex-magic graph for all

positive integer m.

Proof. Let m be a positive integer and G is a graph Pm�Pm+1.

We have n = m2 + m and e = 2m2 − 1.

We prove by contradiction.

Assume that G is a super vertex-magic graph.

By Lemma 3.1.1 h = e + e(e+1)
n

+ n+1
2

.

Therefore

h = 2m2 − 1 +
(2m2 − 1)(2m2)

m2 + m
+

m2 + m + 1

2

= 2m2 − 1 +
4m4 − 2m2

m2 + m
+

m2 + m + 1

2

= 2m2 − 1 +
4m3 − 2m

m + 1
+

m2 + m + 1

2

= 2m2 − 1 + 4m2 − 4m + 2 − 2

m + 1
+

m2 + m + 1

2
.

Case I: m is even, m = 2t for some t ∈ Z
+, then

−2

m + 1
+

m2 + m + 1

2
=

−2

2t + 1
+

4t2 + 2t + 1

2

=
−2

2t + 1
+ 2t2 + t +

1

2

= 2t2 + t +
1

2
− 2

2t + 1

= 2t2 + t +
2t + 1 − 4

4t + 2

= 2t2 + t +
2t − 3

4t + 2
.
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Therefore 2t−3
4t+2

is an integer. It implies that

2t − 3 ≥ 4t + 2

−5 ≥ 2t

−5

2
≥ t.

Which is a contradiction.

Case II: m is odd, m = 2t + 1 for some t ∈ Z
+ ∪ {0}, then

−2

m + 1
+

m2 + m + 1

2
=

−2

2t + 2
+

4t2 + 4t + 1 + 2t + 1 + 1

2

=
−1

t + 1
+

4t2 + 6t + 3

2

=
−1

t + 1
+ 2t2 + 3t + 1 +

1

2

= 2t2 + 3t + 1 +
1

2
− 1

t + 1

= 2t2 + 3t + 1 +
t + 1 − 2

2t + 2

= 2t2 + 3t + 1 +
t − 1

2t + 2
.

Therefore t−1
2t+2

is an integer. It implies that

t − 1 ≥ 2t + 2

−3 ≥ t.

Which is a contradiction.

From Case I and Case II.

Hence Pm�Pm+1 is not a super vertex-magic graph. �
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Theorem 2.2.7 Every 1- ladder square lattice of k- step is not a super vertex-magic

graph.

Proof. Let G be a 1- ladder square lattice graph of n vertices, e edges and k step.

We have n = k2+5k+2
2

, e = k2 + 3k.

We prove by contradiction.

Assume that G is a super vertex-magic graph.

By Lemma 3.1.1,

h = e +
e(e + 1)

n
+

n + 1

2

= k2 + 3k +
2(k2 + 3k)(k2 + 3k + 1)

k2 + 5k + 2
+

k2 + 5k + 4

4

= k2 + 3k +
8(k2 + 3k)(k2 + 3k + 1) + (k2 + 5k + 2)(k2 + 5k + 4)

4(k2 + 5k + 2)

= k2 + 3k +
8(k4 + 6k3 + 10k2 + 3k) + (k4 + 10k3 + 31k2 + 30k + 8)

4k2 + 20k + 8

= k2 + 3k +
8k4 + 48k3 + 80k2 + 24k + k4 + 10k3 + 31k2 + 30k + 8

4k2 + 20k + 8

= k2 + 3k +
9k4 + 58k3 + 111k2 + 54k + 8

4k2 + 20k + 8

= k2 + 3k +
9k2

4
+

13k

4
+ 7 − 112k + 48

4k2 + 20k + 8

= k2 + 3k +
9k2

4
+

13k

4
+ 7 − 28k + 12

k2 + 5k + 2

= k2 + 3k + 7 +
k(9k + 13)

4
− 28k + 12

k2 + 5k + 2
.

Case I: k = 4m for some m ∈ Z
+ , then k(9k+13)

4
is an integer.

It implies that 28k+12
k2+5k+2

is an integer, we have

28k + 12 ≥ k2 + 5k + 2

0 ≥ k2 − 23k − 10

23 − √
(23)2 − 4(1)(−10)

2
≤ k ≤ 23 +

√
(23)2 − 4(1)(−10)

2
23 −√

569

2
≤ k ≤ 23 +

√
569

2
23 − 23.85

2
≤ k ≤ 23 + 23.85

2

0 ≤ k ≤ 23.
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Consider

If k = 4, n = 19 and e = 28, we have h = 38 + 812
19

≈ 80.74

If k = 8, n = 53 and e = 88, we have h = 105 + 1991
26

≈ 116.58

If k = 12, n = 103 and e = 180, we have h = 232 + 32,580
103

≈ 548.31

If k = 16, n = 169 and e = 304, we have h = 389 + 92,720
169

≈ 937.64

If k = 20, n = 251 and e = 460, we have h = 586 + 212,060
251

≈ 1, 430.86

We see that if 0 ≤ k ≤ 23 and k = 4m for some m ∈ Z
+, then h is not integer.

Which is a contradiction.

Hence G is not a super vertex-magic graph.

Case II: k = 4t + 1 for some t ∈ Z
+ ∪ {0}, we have

9k2

4
+

13k

4
− 28k + 12

k2 + 5k + 2
=

9(4t + 1)2

4
+

13(4t + 1)

4
− 28(4t + 1) + 12

(4t + 1)2 + 5(4t + 1) + 2

=
9(16t2 + 8t + 1)

4
+

52t + 13

4
− 112t + 40

16t2 + 8t + 1 + 20t + 5 + 2

=
144t2 + 72t + 9

4
+

52t + 13

4
− 112t + 40

16t2 + 28t + 8

=
144t2 + 72t + 9

4
+

52t + 13

4
− 28t + 10

4t2 + 7t + 2

=
144t2 + 124t + 22

4
− 28t + 10

4t2 + 7t + 2

=
72t2 + 62t + 11

2
− 28t + 10

4t2 + 7t + 2

=36t2 + 31t + 5 +
1

2
− 28t + 10

4t2 + 7t + 2

=36t2 + 31t + 5 +
4t2 + 7t + 2 − 56t − 20

8t2 + 14t + 4

=36t2 + 31t + 5 +
4t2 − 49t − 18

8t2 + 14t + 4
.
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Therefore 4t2−49t−18
8t2+14t+4

is an integer, we have

4t2 − 49t − 18 ≥ 8t2 + 14t + 4

0 ≥ 4t2 + 63t + 22

−63 − √
632 − 4(4)(22)

8
≤ t ≤ −63 +

√
632 − 4(4)(22)

8
−63 −√

3, 617

8
≤ t ≤ −63 +

√
3, 617

8
−63 − 60.14

8
≤ t ≤ −63 + 60.14

8

−15 ≤ t < 0.

Which is a contradiction.

Hence if k = 4t + 1 for some t ∈ Z
+ ∪ {0} then G is not a super vertex-magic

graph.

Case III: k = 4t + 2 for some t ∈ Z
+ ∪ {0}, we have

9k2

4
+

13k

4
− 28k + 12

k2 + 5k + 2
=

9(4t + 2)2

4
+

13(4t + 2)

4
− 28(4t + 2) + 12

(4t + 2)2 + 5(4t + 2) + 2

=
9(16t2 + 16t + 4)

4
+

52t + 2

4
− 112t + 68

16t2 + 16t + 4 + 20t + 10 + 2

=36t2 + 36t + 9 +
26t + 1

2
− 112t + 68

16t2 + 36t + 16

=36t2 + 36t + 9 +
26t + 1

2
− 28t + 17

4t2 + 9t + 4

=36t2 + 36t + 9 + 13t +
1

2
− 28t + 17

4t2 + 9t + 4

=36t2 + 36t + 9 + 13t +
4t2 + 9t + 4 − 56t − 34

8t2 + 18t + 8

=36t2 + 36t + 9 + 13t +
4t2 − 47t − 30

8t2 + 18t + 8
.
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Therefore 4t2−47t−30
8t2+18t+8

is an integer, we have

4t2 − 47t − 30 ≥ 8t2 + 18t + 18

0 ≥ 4t2 + 65t + 48

−65 − √
652 − 4(4)(48)

8
≤ t ≤ −65 +

√
652 − 4(4)(48)

8
−65 −√

3457

8
≤ t ≤ −65 +

√
3457

8
−65 − 58.80

8
≤ t ≤ −65 + 58.80

8

−15 ≤ t < 0.

Which is a contradiction.

Hence if k = 4t + 2 for some t ∈ Z
+ ∪ {0} then G is not a super vertex-magic

graph.

Case IV: k = 4t + 3 for some t ∈ Z
+ ∪ {0}, we have

9k + 13

4
=

9(4t + 3) + 13

4

=
36t + 27 + 13

4

=
36t + 40

4

= 9t + 10.

we see that 9k+13
4

is an integer.

Therefore 28k+12
k2+5k+2

is an integer.

We see that 0 ≤ k ≤ 23.

Consider

If k = 3, n = 13 and e = 18, we have h = 25 + 342
13

≈ 51.31

If k = 7, n = 43 and e = 71, we have h = 93 + 5,112
43

≈ 211.88

If k = 11, n = 89 and e = 154, we have h = 199 + 23,870
89

≈ 467.20

If k = 15, n = 151 and e = 270, we have h = 346 + 73,170
151

≈ 830.57

If k = 19, n = 229 and e = 418, we have h = 553 + 175,142
229

≈ 1, 297.81

If k = 23, n = 323 and e = 598, we have h = 760 + 358,202
323

≈ 1, 868.98

We see that if 0 ≤ k ≤ 23 and k = 4t + 3 ∃t ∈ Z
+ ∪ {0}, then h is not integer.

Which is a contradiction.
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Hence G is not a super vertex-magic graph.

From Case I, Case II, Case III and Case IV.

Hence G is not a super vertex magic graph. �

Theorem 2.2.8 Let k be a positive integer where k �= 2, 6. A k- level of Q3 is not

a super vertex-magic graph.

Proof. Let G be a k- level of P2 of n vertices and e edges .

We have n = 4k and e = 8k − 4.

We prove by contradiction.

Assume that G is a super vertex-magic graph.

By Lemma 3.1.1,

h = e +
e(e + 1)

n
+

n + 1

2

= 8k − 4 +
(8k − 4)(8k − 3)

4k
+

4k + 1

2

= 8k − 4 +
1

4k
(64k2 − 56k + 12) +

4k + 1

2

= 8k − 4 + 16k − 14 +
3

k
+ 2k +

1

2

= 26k − 18 +
3

k
+

1

2
.

We see that 3
k

+ 1
2

= 6+k
2k

is a positive integer, then

6 + k = 2kt for some t ∈ Z
+

k(2t − 1) = 6

k =
6

2t − 1

∴ t = 1, 2.

It implies that k = 2 or k = 6.

We see that if k �= 2, 6 then h is not an integer, which is a contradiction.

Hence G is not a super vertex-magic graph. �

Note that if k=2 by Theorem 3.4.1, G is super vertex-magic graph. We still

cannot show whether the 6− level of Q3 is super vertex-magic or not.


