CHAPTER 3
MAIN RESULTS

In this chapter, we divide into 4 sections. In section 3.1, we study the
necessary conditions to be super vertex-magic graphs. In section 3.2 we study the
conditions of paths and cycles to be super vertex-magic [7]. In section 3.3 we study
the conditions of circulant graphs. In section 3.4 we study product of path P to be

super vertex-magic . In section 3.5 we collect the non super vertex-magic graphs.

3.1 On the Degrees of a Super Vertex-Magic Graphs

In this section we study the upper bounds and lower bounds of degrees of vertices

in any super vertex-magic graphs.

Lemma 3.1.1 Let G = (V, E) be a super vertez-magic graph of n wvertices and e
edges and X a super vertex-magic total labeling of G' in which the weight of each

vertex is h. Then h = e + "TH + @

Proof. Let V = {vy,vs,...,v,} which implies that

nh = Zw,\(aj) =S, +28S,,

zeV

where S, is the sum of all vertex labels and S, is the sum of all edge labels.

Therefore

nh=(e+1)+(e+2)+...+(e+n)+2(1+2+..+¢)

1 2 1
ey MY 2ot

Therefore

Note: We also can see some results in the section 3.2 in [8].
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Lemma 3.1.2 FEvery super vertex-magic graph has no isolated edges.

Proof. Let G be a super vertex-magic graph and )\ a super vertex-magic total
labeling of G.
We prove by contradiction.

Suppose s,t be the endpoints of an isolated edge in G, then
wx(s) = A(s) + A(st) = A(t) + A(st) = wy(t).

This implies that A(s) = A(%),
which is a contradiction.

Therefore, G has no isolated edges. 0
Theorem 3.1.3 FEvery super vertex-magic graph has no isolated points.

Proof. Let G = (V, E) be a super vertex-magic graph with V' = {vg,v1, ..., 0,1}
e edges and \ a super vertex-magic total labeling of G.

From the definition of the super vertex-magic total labeling, G cannot have
more than one isolated vertex.

Suppose G has exactly one isolated vertex, say vy, W.L.O.G. assume that \(vp)
bee+n, A(v(i)) =e+n—ifori=1,2,..,n—1.

wy(v;) = AMv;) + Z AMviz) =e+n

€N (v;)
e+n—1i+ Z AMvix) =e+n= Z AMvix) =i
ZEN (v;) €N (v;)

d(v;) =1 and A(v;z) = 1.
There exists an isolated edge, contradiction.

Hence G has no isolated points. 0
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Corollary 3.1.4 Let G be a super vertex-magic graph of n vertices vy, va, ..., v, and

e edges. Then e > "L,

Proof. By Theorem 3.1.3, the graph G has no isolated points, d(v;) > 1
we have n < Zd(vi).

i=1
Assume that Z d(v;) = n.
i=1
By Theorem 3.1.3, we have d(v;) = 1 for all ¢ = 1,2,...,n, thus G has isolated
edges. which is a contradiction with Lemma 3.1.2.

Then n +1 < Z d(v;).

i=1
By the Handshaking Lemma we have Z d(v;) = 2e.
i=1
We have 2e > n + 1, therefore e > ”T“ O
Corollary 3.1.5 Let G be a super vertex-magic graph of n vertices and e edges
(i) If G is a reqular graph of even degree, then n is odd.
(i1) If G is a reqular graph of odd degree, then n is even.

Proof. (i) Let G be a regular graph of degree 2m for some positive integer m.

By the Handshaking Lemma we have

2mn = d(v) = 2e.
veV(G)

Hence e = mn.

By Lemma 3.1.1 h =e+ @ + "T“, we have

mn(mn+1) n+1
+

n 2
n—+1

h=mn+

=mn+m(mn+ 1) +

_ 2mn42mPn+2m+n+ 1
= 5 _

Therefore, n is odd because h must be an integer.
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(ii) Let G be a regular graph of degree 2m + 1 for some positive integer m.

By the Handshaking Lemma, we have

(2m+1)n = Zd(vi) = 2e.
i=1
(2m+1)n'

Hence e = 5

Therefore, n is even. O

Theorem 3.1.6 Let G be a super vertex magic graph of n vertices and e edges.

Ifn < —(26—2_1) +4/3e2+e+ i then the minimum degree of G is at least 2.

Proof. By Lemma 3.1.2 G has no isolated points, the minimum degree is at least
1.
We prove by contradiction.

Assume that there exists a vertex v with degree 1. Then the magic number
h=wx(v) <(e+n)+e=n+2e.
By Lemma 3.1.1 h = e+ @ + "T“ We have

1 1
e+6(e+ )+n—2k <n+2e (1)
n

(1) x 2n;2ne + 2e(e + 1) +n(n + 1) < 2n® + 4ne
2ne + 2e? +2e +n? +n < 2n% + 4ne
n?+2ne—n—2e—2e>0

n® + (2e — 1)n — (2€* +2¢) > 0

[n+(2€2— 1)]2 ) <2€2— 1

)2 —2e—2¢ >0

2e—1.12 2e — 1
>
| =
2e — 1712 1
€ ) 262—64-1—1—262—1—26

)2 4+ 2e% 4 2

_n—l—(

2 1
) 2362+6+1.
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2e — 1 / 1
n—l—(e2 ) > 362—1-6—1—1
2e — 1 / 1
n>—( 62 )+ 3e2+e+1.

Which is a contradiction with the hypothesis n < —(221) + /3¢ + € + 1.

2e —1 1
[n+(62 )]S—\/362+e+1
2e—1 1
n < —( 62 )—1/362+e+1.

Which is a contradiction because n is a positive integer.

Then

or

Hence the minimum degree is at least two. 0

Theorem 3.1.7 Let G be a super vertex magic graph of n vertices and e edges with

magic number h. Then the mazimum degree A < 5 + 1/2(h —e) — 1.

Proof. Let us consider a vertex v with maximum degree A.

We have the magic number

h=w\(v)>e+1+1+2+..+A)
A(A+1)

= 1
e+ 1+ 5

Since h = e + —e(e:lrl) + ”T“,

e+1+A(A+1)§e+e(e+1) n—2l—1
n
A(A+1)<e(e+1)+n—1
2 a n 2
2 1
AAt1y<et )
n
A pag et oy
n
1 2 1
A2+A+—§M+n—§
4 n 4
2
(A—l—l) SM—FR—%
2 n 4
-1 2e(e+1) 3
< = _Z
As 2 \/ n T 4

Therefore, A < =t + (/2(h —e) — 1. O



17

Theorem 3.1.8 Let G be a super vertex magic graph with n vertices, e edges and
magic number h. Then the degree d of any vertices of G satisfy the following
inequalities

7

1 —1
6—1—5—\/(e—|—1)2—2(h—e—n)§d§7+ 2(h—e)—1.

Proof. Let us consider a super vertex magic labeling A of G in which magic
number h.
Let v be a vertex of degree d.
Let vy, v9,...,v,_1 be the n — 1 vertices other than v.
Let ey, eq, ..., eq be all edges which joint vy and other edges are

/ / !/
e}, ey, ..., e,_4, We have

h=wa(v) = A©)+ D" Aed) (2)
and B y A
(n—1)h = Z Av;) + 2 Z M)+ Mew)  .(3)
From these two relations, we get
d n—1 d
(n—l)()\(v)—i—Z)\(ez)) Zm +22)\ Z ex)
=1+2+...+(n+e)) — Auvy) + GZA(e;)
It follows that
d e—d
PA@) + (0= 1) 3" Med) = YA (nte +21)<” 9w

Letz (a+1)+(a+2)+...+b

Among all the total labeling of G, the left-hand side of (4) is maximum when

U

e— e—d

Av) =n+e, ZAel:Z, M) =

i=1 e—d j=1
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Substituting these values in (4) we get

e e—d

1)
nnte) -1y -3 > BEEE DL
e—d 0

It follow that

2 O [—nd2—|—2ned+nd+d2—26d—d}
n’® + ne
2
[62—2€d+d2+6—d] I n>+e’>+n+e+2ne
2 - 2

on% 4 2ne — nd* 4+ 2ned +nd + d*> — 2ed —d — e* +2ed —d®> —e+d >n*>+e*>+n+e+ 2ne
—nd?® + 2ned +nd > —n® + 2¢* + 2e +n

2¢2 2
—d2+26d+d2—n+%—|—f—l—l

Therefore
—~d* +2ed+d>2(h—e—n)
d* —2ed —d < —2(h—e—n)
1 1
d2—2ed—d+62+e+zl§e2+e+1—2(h—e—n)

1\2 1
o — < 2 - — — e —
(e d—|—2> <e +e+4 2(h —e—n)

1 1
e—d+§§\/62+e+1—2(h—e—n)

1 1
d26+§—\/€2+6+1—2<h—6—n)

dZe—l—%—\/(e—l—%)Q—Q(h—e—n)

By Theorem 3.1.7 the Theorem hold. (|
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3.2 Super Vertex-Magic of Paths and Cycles

In this section we study condition of paths and cycles to be a super vertex-

magic graph.
Theorem 3.2.1 ([7]) A path P, is a super vertez-magic graph iff n is odd.

Proof. (=) Assume that path P, is a super vertex-magic graph with magic
number h.
We have e = n — 1.

By Lemma 3.1.1, h = e + 242 4 &t

n

Then
1 —1
h:n—1+n+ —i-(n Jn
2 n
1
:n—1+%+n—1
1
_op_o4 2t

5n — 3
5T

Hence n is odd.
(<) Assume that n is odd.
Let V = {vg, vy, ..., 1,1} and define a labeling A by
AMvg) =2n—1
AMv;)) =n+i—1 forall i#0
At = ”—T—l i=20,2,..,n—3
n—4l ;i=13,.,n-2
It is clear that X is well defined and 1-1 and A(v;v;11) is a positive integers
foralli=0,1,....,n — 1.
To show that A is a super vertex-magic total labeling of P,.
we will show that
(i) M(E(P,)) ={1,2,....,n— 1}.
(ii) MV (Pp)) ={n,n—1,...,2n — 1}.

(iii) wa(v;) = 222 for all i = 0,1,2,...,n — 1.
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Consider when i =1,3,....,.n — 2,

)‘<Uivi+1) —1=n— % — 1= 2n72i71 > 2n—(n2—2)—1 _ nTH >0,

and when i = 2,4, ...,n — 3, M(vvi41) — 1 =221 — 1> %—1:0.

Therefore A(v;v;41) > 1.
Consider when ¢ =1,3,....,.n — 2,

(n—1) = Avivigy) =n—1—(n— &)y ==l < =271 _ w3 >

and when ¢ =2,4,....,.n — 1,

(n—1) = Awwipr) = (n — 1) — 25i=t = n=lid cnoliblnml)  2nc2 _ 5,

Therefore A\(vv;11) <n — 1.
Hence A(E(P,)) € {1,2,....,n — 1}.

To show that {1,2,....n — 1} C A(E(P,)).
Let i € {1,2,..,n — 1}.

If1<i<22t then2<2i<n-—1

Hence 2n —3>2n—2¢ — 1 > n and 2n — 2¢ — 1 is odd.

2n—20—1+1
>\(02n—2z‘—17}2n—2i) =n—- 5
B 2n —2n+ 21
N 2

If 22l <i< n—1,thenn+1<2 <2n—2.

Hence —2> —2i+n—1> —n-+1and —2¢+n — 1 is even.

n—(—2i+n-1)—1
2

)\(Uf2i+n717172i+n) =

Therefore {1,2,...,n — 1} CA(E(F,)).
Altogether, we get A(E(P,)) ={1,2,...,n — 1}.
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(ii) From the defining of A\(v;),

AMvpp1) =n+(r+1)—1=n+rforallr=0,1,...,n—2. and A\(vy) = 2n — 1.
Therefore the value A(v1), A(ve), ..., A(v,—1) are n,n+1,n+2, ..., 2n—2, respectively.

Hence A(V(P,)) ={n,n+1,n+2,...,2n — 1}.

(iii) we will show that wy(v;) = 222 for all i = 0,1,2...,n — 1.

If i = 0, we have A(vg) =2n — 1, A(vovy) = 5.

It follows that

w,\(vo):2n—1+n_1
_4dn—-24n-1
\ 2
_on—3
=

Ifi=n—1,wehave Av,_1)=2n—2, N(Vy_20,_1) =N — "Tfl

It follows that

-1
wA(vn,l):2n—2+n—n2

-1
:3n—2—n
_bn—4-—n+1
Ve 2
_dn—3
2

If i #0,n — 1, and 7 is ood.
We have )\(Uz) =n+1i— 1, )\(viviﬂ) =n— %, /\(Ui_ﬂ}i) =1 i.

It follows that

. 1+1 n—z1
wy(v;)) =n+i—1+n-— +
2 2
—2i =1
:2n+i—1+%
A2 —2+n—2i—1
- 2

_5n—3
-
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Ifi #0,n — 1, and ¢ is even.

We have A(v;) =n+i—1, A(vvi1) = 2=, Mvimv;) = n —

It follows that

, n—i1—1 i
wA(vl):n%—z—l—I—TjLn—é
—21—1
:%H%—1+E—g——
dn+2i—-2+n—21—1
B 2
~5dn—3
=
Hence wy(v;) = 5"2_3 foralli=0,1,2,...,n — 1.

It implies that X is a super vertex-magic total labeling of P,.

Hence P, is a super vertex-magic graph with magic number 5"2—_3 0

Example 3.2.2 A path Ps is a super vertex-magic graph with magic number 11.

P5:‘

Theorem 3.2.3 ([7]) The Cycle C,, is a super vertex-magic graph iff n is odd.

Proof. (=) Assume that C,, is a super vertex-magic graph.
We have e = n.

By Lemma 3.1.1 h =e + ”TH + e(e—H),

n

Then
1 1
et +n(n+ )
2 n
n+1
=n+——+n+l
1
:2n+1+ﬁg—
_4n—|—2+n+1
N 2
5n + 3

2
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Hence n is odd.
(<) Assume that n is odd.
Let V = {vg,v1, ..., 1,1 } and defind a labeling A\ by
AMv;))=n+1+i ;i=0,1,...n—1

A(Un_lvo) = nTH

i
W3

L i=1,3,...,n—2

1=0,2,...n—3
)\(Uz'UH—I) =

3

It is clear that A is well defined and 1-1 and A(v;v;41) is a positive integers
foralli=0,1,....,.n — 1.
To show that A is a super vertex-magic total labeling of C,.
we will show that
(i) AME(Cy)) =41,2,...,n}
(i) A(V(Cn)) ={n+1,n+2,..,2n}
(ili) wx(v;) = 223 for all ¢ = 0,1,2,...,n — 1.
(i) From the defining of A\, we have
A{vov1, Vovs, ooy V30 o }) = {n,n — 1, ..., "TJ“?’ )
and A({v1va, V304, ..., Up—100}) = {1,2, ..., 251} and A(v,_1vp) = 25 .
Therefore A\(E(C,,)) ={1,2,...,n}.
(ii) From the defining of A\, we have
A{vo, v1, .oy vp1}) ={n+1,n+2,...,2n}.
Therefore A(V(C,,)) ={n+1,n+2,...,2n}.
(iii) we will show that wy(v;) = 2% for all i = 0,1,2...,n — 1.
If i =n—1, wehave A(v,_1) =2n, Mvp_oUn_1) = 1, Mvp_1v9) = 2.

n+1
wy(vy,) =2n+1+ 5
_dn+2+4+n+1

2
M+ 3

5
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If i = 0, we have A(vg) = n+ 1, AMvov1) = n, A(vp_1v0) = 25+

n+1
wA(vn):n+1+n+T

1
:2n+1+%

_4n+2—|—n—|—1

2
5n + 3

5

If i is odd, we have A(v;) =n+ 141, A(vvi41) = "T_i, AMvi1v) =n — %

It follows that

(W) =n+1+i n—z’+ 1—1
wx(v;) =n 1 5 n 5
—2i+1
:2n—|—1+i+%
_4n+2+2i+n—22’+1
N 2
_5n+3
= 5\

If ¢ is even, we have A(v;) =n+ 1+, A(vvi41) =n — %, Mv;_qv;) = =L

2
It follows that

! i n—i1+1
w,\(vi):n+1~l—z+n—§+T
—2i+1
:2n+1+i+%
_An+24+2i+n—2i+1
~ 2
_5dn+3
>

Hence wy(v;) = 258 for all i = 0,1,2,...,n — 1.
It implies that X is a super vertex-magic total labeling of C,,.

Hence C, is a super vertex-magic graph with magic number 5”—;3 0
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Example 3.2.4 The cycle Cs is a super vertex-magic graph with magic number 14.

9
1 4
10 8
Cs .
> 3 2
6 7
5

3.3 Super Vertex-Magic of Circulant Graphs

The circulant graphs are important class of graphs, which can be used in the
design of local area networks [2]. From [7], Balbuena, Barker, Das, Lin, Miller,
Ryan, Slam, Sugeng and Tkac characterized the super vertex-magic graphs of the
forms C,(1,m) and C,(1,2,3). In this section, we generalize those results into
the circulant graphs of the forms C), (1,2, s) and the disjoint union of k copies of

Cn(1,m) or Cy,(1,2,s).

Theorem 3.3.1 Forn > 2m + 1, The circulant graph C,(1,m) is a super vertex-

magic graph with the magic number h = % iff n is odd.

Proof. (=) Let m be a positive integer greater than or equal to 2.
Assume that C,(1,m) is a super vertex-magic graph.

Since e = 2n, by Lemma 3.1.1,

ele+1) n+1
_l’_
n 2
2n(2n+1) n+1
_.I_

2

1
:2n+4n+2+%

h=e+

=2n+

n+1
2

=6n-+2+

13n+5
SE
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Then n is odd.
(<) Assume that n is odd.
Let V = {vg,v1, ..., 1,1} and define a labelling A by

3n—m-+1+4 1=0,1,....m—1 ..(5)
Av;) =
2n—m+1+4+1, i=mm-+1,...,n—1
it §=0,2,4,..,n— 1
Mvivigr) = 20 o N | ¢
%, 1=1,3,5,...,n—2 ...(6)

AVivigm) =n—1, i=0,1,2,...,n—1.

It is clear that A is well defined and 1-1 and A(v;v;41) is a positive integers
foralli=0,1,....,.n — 1.
To show that A is a super vertex-magic total labelling of the graph C,,(1,m).
Since e = 2n, we will show that

(i) M(E(Cy(1,m))) ={1,2,...,2n}.

(i) A(V(Crn(1,m))) ={2n+1,2n+2,...,3n}

(ili) wy(v;) = 222 for all i = 0,1,...,n — 1.

(i) To show that A\(E(C,(1,m))) ={1,2,...,2n}.
From (6), AM(vivitm) =n—i,a=0,1,....n — 1, then 1 < ANvv;1m) < n.
AMvvigr) = 2”““ ,i=10,2,. — 1, then n + 1 < AM(vw;41) < 3”;1. and

)\(’Uﬂ)prl) = 3n+2+z ’L = 1 3 — 2, then % < )\(UiUiJrl) < 2n.

It is also easy to see that X is a 1 — 1 mapping.
Therefore A\(E(Cy,(1,m))) ={1,2,...,2n}.

(ii) To show that A(V(C,(1,m))) = {2n+ 1,2n + 2, ..., 3n}.
It is easy to see from (5) that

A{vo,v1y oy V1)) ={3n —m +1,3n —m +2,...,3n} and

A{Vmy Vmg1y oy tn1}) = {2n+ 1,2n+ 2, ...,3n — m}.
Therefore A(V(C,(1,m))) = {2n+1,2n+ 2, ..., 3n}.
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(iii) we will show that wy(v;) = 32 for all i = 0,1,...,n — 1.
If0<i<m-—1, and i is odd.

We have A(v;) =3n—m+ 1414, Avviq) = Wa Avi—1v;) = —2”21”,

AVvitm) =n — i, Nvi_pv) =n—(n+i—m)=m—i.

It follows that

. o3dn+2+1 2n+1+41 , ,
wi(v;) =3n—m+1+i+ 5 + 5 +n—i+m—i

S+ 3+ 2

2
_8n+2—-2i+5n+3+2

2

=4dn+1—17+

13n +5
~

If0<i<m-—1, and 7 is even.

We have A(v;) = 3n —m+ 1+ i, Mojvigr) = 222 \(v;_qy;) = 3214

AViVitm) =1 — i, Nvi_pv;) = m — 1.

It follows that

o o 2n+24+41 3n+1+14 . .
wy(v;)) =3n—m+1+1i+ 5 + 5 +n—i+m—i
5 3+ 21
:4n+1—i+$
_8n+2—-2i+5n+3+2i

2

13n+5
T~

Ifm<i<n-—1, and 7 is odd.

We have A(v;) =2n—m+ 1+, A(vv41) = 3"22Ha AMvio1v;) = —ZMQHi,

AVVim) =1 — iy MVi—pmv;) =n — i+ m.

It follows that

.o 3m+2+1 2n+1+41 , _
wa(v;)) =2n—m+1+4+i+ 5 + 5 +n—i+n—i+m
on+3+ 21

2
8 +2—-2i+5n+3+2i

2

=4dn+1—17+

13n +5
5
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Ifm<i<n-—1, and 7 is even.

We have A(v;) =2n—m+ 1414, A(vv;41) = %, AMvi_1v;) = W,

AMUVm) =1 — iy MVi—pmv;) =n — i+ m.

It follows that

. o 2n+2+41 3n+1+1 . .
wi(v) =2n—m+1+4+i+ 5 + 5 +n—i+n—i+m
on+3+ 21

2
8n+2—2i+5n+3+ 21

2

=4dn+1—-1+

13n +5
7

Hence wy(v;) = BLQ% foralli=0,1,...,n — 1.
It implies that A is a super vertex-magic total labeling of C,, (1, m).

Hence C,(1,m) is a super vertex-magic graph with magic number 13’;—+5
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Example. The super vertex-magic graph C9(1,2) with the magic number
6l.

61.
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Theorem 2.0.1 ([3]) Let k be a positive integer. If the graph G is r— reqular graph
that admits a super vertez-magic total labeling and (k — 1)(r +1)/2 is an integer,

then the graph kG has a super vertez-magic total labeling.

Theorem 2.0.2 Forn > 5 and n is odd and m < |§]. The graph C,(1,m) is a

super vertez-magic graph iff k is odd.

Proof. (=) Assume that k£C,(1,m) is a super vertex-magic graph.
We have e = 2nk.

By Lemma 3.1.1,
efe+1) n+1
+

h=e+
n 2
2
—onk + nk(2nk + 1) +nk+1
nk 2
nk +1

=2nk +4nk + 2 + 5

Hence & is odd.
(<) Assume that k is odd.

By Theorem 3.3.1 C,(1,m) is super when n is odd(n > 5) and C,,(1, m) is 4-regular,

(k=1)(r+1) _ (k=1)(4+1)
2 2

5(k—1)
2

is an integer.

By Theorem 3.3.2, kC,,(1,m) is a super vertex-magic graph. O

Theorem 2.0.3 Forn > 2s+ 1. A circulant graph C,(1,2,s) is a super vertex-

: : - _ 25m47 -
magic graph with the magic number h = =% iff n is odd.

Proof. (=) Let s be a positive integer greater than or equal to 2.
Assume that C),(1,2,s) is a super vertex-magic graph.
We have e = 3n.
By Lemma 3.1.1,

ele+1) n+1
_l’_
n 2
3n(3n+1) n+1
_.I_

2

1
:3n+9n+3+%

n+1

h=e+

=3n+

=12n+ 3+

25n + 7
SE
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Then n is odd.
(<) Assume that n is odd.
Let V = {vg, vy, ..., 1,1} and defined a labeling A by

dn—s+1+12, 1=0,1,....,s —1

) = b
3n—s+1+1i i=ss+1,..n=1 ..(7)
Mm+1, i=0
A(vivir) = § 542210 =135, ...,n—2
Int2t §=2,4,6,..,n—1 ..(8)

AMvvize) =n+14+4, i=0,1,2,...,n— 1.
AMvvis) = n — 1, i=0,1,2,....,n — 1.
It is clear that A is well defined and 1-1 and A(v;v;51) is a positive integers
foralli=0,1,....,n — 1.
To show that A is a super vertex-magic total labeling of graph C, (1,2, s).
Since e = 3n, we will show that
(i) M(E(C,(1,2,5))) ={1,2,...,3n}
(i) MV (Cn(1,2,5))) ={3n+1,3n+2,...,4n}
(iii) wx(v;) = 227 for all i = 0,1,...,n — 1.
(i) To show that A(E(C,(1,2,s))) ={1,2,...,3n}.
From (8), M(vovy) = 2n + 1,

M) = 22222 1 =1,3,5, ...,n — 2, then 2n < A(v;v;41) < 255,
Avivig1) = 6”“ L i =2,4,6,. — 1, then 5"—;3 < AMwwi1) < 3n,

(
AMvivigo) =n+1+14,1=0,1,2,....,n— 1, then n + 1 < A(v;0;42) < 2n,
ANvivigs) =n—1,1=0,1,2,....n— 1, then 1 < A vv4,) < n,

It is also easy to see that A is a 1 — 1 mapping.
Therefore A\(E(Cy(1,2,s))) ={1,2,...,3n}.

(i) To show that A(V(C,(1,2,s))) = {3n+1,3n+2,...,4n}.
It is easy to see from (7) that

A{vo,v1,.sv5-1}) ={dn —s+1,4n — s+ 2,...,4n} and

A{vs, Vi1, ooy Un1}) = {30+ 1,3n +2,...,4n — s}.
Then AM(V(C,(1,2,5))) = {3n+ 1,3n +2,...,4n}.



32

(iii) we will show that wy(v;) = 2% for all i = 0,1,...,n — 1.
If0<i<s—1,and i is even.

We have \(v;) =4n — s+ 1+, Avv;41) = %,)\(vi,lvi) = %,

AMoivia) =n+ 144, Moj_ov) =n — 141,
AMvivips) =n —i, Mv,_v;)) =n—(n+1—38)=s—1i.
It follows that
6bn+2—1 dn+3—1

wi(v)) =4n—s+1+i+ 5 + i +n+l4+i+n—14+i4+n—i+s—i

o 1In+5—2¢
=Tn+ltit ————

I4n+2+20+11ln+5— 21
2

25m+ 7
5

If s<i7<n-—1,and i is odd.

We have A(v;) = 3n — s+ 1 +14, Avivgpr) = 228224 A(v;_q0;) = 3=

Aviviga) =n+ 1+, Mvi_ov;) =n — 141,
AVivirs) = n — iy Mvi—sv;) =n — i+ s.
It follows that
om+2—1 6n+3—1

wi(v;) =3n—s+1+i+ 5 + 5 +n+l+i+n—1+i+n—i+n—i+s

11n +5 - 2i
:7n+1+i+—£j§——l

B 1dn+24+2i+11n+5— 21
N 2

25n + 7
NN

If s<i<n-—1,and i is even.
We have )\(Ul) =3n—-s+1+ ’i, )\(Uivi+1> = %, )\(Ui_ﬂ}i) = %,
A('UZ'/UiJ,_Q) =n+1+ 'i, )\(’UZ‘_QUi) =n—1+ i,

AViviss) =n — 1, Mvi_sv;)) =n — i+ s.
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It follows that

. o bn+2—9 dn+3—1 , . . .
wy(v;) =3n—s+1+i+ 5 + 5 +n+l+i+n—1+i+n—i+n—i+s

o lln+5—2
=Tn+1+i+——"—

B dn+24+2t1+11ln+5— 2
N 2

25n + 7
I

[f0<i<s—1,and 1 is odd.

We have A(v;) =4n — s+ 1414, AMvv;1) = %, AMvi_1v;) = %,

AMvivipa) =n+ 144, Moj_ov) =n — 141,
Avvits) =n—i, Nvi_gv;) =n—(n+i—8)=s—1i.
It follows that
om+2—1 6n+3—1

wi(v;) =4dn—s+1+i+ 5 + 5 +n+1+i+n—14+i4+n—i+s—i

1n+5— 2
—7n+1+i+—£jé——i

4n+2+ 20+ 11n+5— 21
2

25n + 7
5T

Hence wy(v;) = % foralli=0,1,...,n — 1.
It implies that A is a super vertex-magic total labeling of C),(1,2, s).

Hence C,(1,2,s) is a super vertex-magic graph with magic number % O



34

Example. The super vertex-magic graph C9(1,2,4).
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Theorem 2.0.1 Forn > 7 and n is odd. The graph kC,(1,2,s) is a super vertex-
magic graph iff k is odd.

Proof. (=) Assume that kC, (1,2, s) is a super vertex-magic graph.
We have e = 3nk.
By Lemma 3.1.1,

efe+1) n+1
+

h=e+
n 2
1
:3nk+3nk(3nk+ )_I_nk—i—l
nk 2
k+1
:3nk+9nk‘+3+n *
_ 24nk +6 +nk +1
\ 2

B 25nk + 7
— 5 ,

Hence & is odd.
(<) Assume that k is odd.

By Theorem 3.3.4 and C, (1,2, s) is 6-regular and super vertex-magic with n > 7.

(k=D)(r+1) _ (k=1)(6+1) _ 7(k—1)
2 2 2

is an integer.

By Theorem 3.3.2, kC,,(1,2, s) is a super vertex-magic graph. O
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2.1 Product of Paths P

Theorem 2.1.1 The graph k(P,OP,0P,) is a super vertex-magic graph iff k is a

positive integer.

Proof. (=) Assume that k(P,O0P,0P,) is a super vertex-magic graph.
We have n = 8k and e = 12k.
By Lemma 3.1.1,

efe+1) n+1
+
n 2
12k(12k +1) | 8k + 1
8k 2
3(12k +1) | 8k +1

2 2
36k + 3+ 8k +1

2
44k + 4

2
= 12k + 22k + 2

h=e+

=12k +

=12k +

=12k +

=12k +

= 34k + 2.

Therefore, k is a positive integer.

(<) assume that k is a positive integer.

14 6 18

15 17

The above labeling on P,O0FP,0PF, shows that the graph P,O0FP,0P; is super

vertex-magic, 3- regular and (k;—1)2(7~+1) = (k_1)2(3+1) =2k—-1) =2k —2is an

integer for all positive integer k. By Theorem 3.3.2, k(P,O0P,0P,) is a super

vertex-magic graph. 0
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2.2 Non Super Vertex-Magic Graphs

Theorem 2.2.1 Let G be an (r, s)- semireqular bipartite graph of n > 4 wvertices
and e edges , where r > s and e +1 > n . Then G is not a super vertex-magic

graph.

Proof. Let k£ be the number of vertices of degree r and [ the number of vertices of

degree s. we have,

n==k+I, e=kr=lIs.
Therefore,
kr =(n—k)s
kr =ns — ks
kr + ks =ns
k(r+s) =mns
. ns
r+s
and

ls=(n—1Dr
ls=nr—Ir
lr+1s=mnr

l(r+s)=mnr
nr

)= .
r+s

We prove by contradiction.
Let us assume that G is a super vertex-magic graph.
Since r > s, which implies that [ > k. The sum of the weights of the first k

vertices is at least the sum,

kh22(6+i)+i(i):(e+1)+...+(e+k)+1+2+...+e

k(k+1)  e(e+1)
e .(9)

=k
e+ 7
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On the an other part, the sum of the weights another part of [ vertices is at most,

n

W< > (e+i)+ Y i=(etk+1)+..+(e+n)+1+2+. . +e

i=k+1 i=1
:(n+e)(n+e+1)_(e+k)(6+k+1)+e(e—l—1) .(10)
2 2 2
By (9) and (10) we have,
k+1 e(e+1)
>
h>e+ 5 + 5%
(n+e)in+e+1) (e+k)letk+1) ele+1)
h= 2l ) 21 N

It implies that,

6+k+1+e(e+1) < (nt+e)nt+e+l) (e—{—k)(e—l—k—l—l)_ke(e—i—l)'

2 2k 21 21 21

Hence

E+1 ele+1l) (n+e)(n+e+1) (e+k)e+k+1) ele+1)

_ _ <
I Y? 2 . 2 o =0
efe+1) ele+1) k+1 (e+k)e+k+1)—(n+e)(nt+e+])

_ <0
SR a2 2l =
1 1 k+1 (e+k)e+k+1)—(n+e)(n+e+1)

[, _ D <
6+6(6+1>[2k 2l}+ 2 21 =0
11 k k+1)— 1
e(e—i—l)[g—ﬂ+2€+k+1+(e+ etk )l(”+e)(”+€+ <o, )

Since
(e+k)e+k+1)=e2+2ke+ Kk +e+k
(n+e)(n+e+1) = n>+2ne+e?+n+e ..(12)

Substituting n = k + [ in (12) then,

(n+e)n+e+1l)=(k+1)>+2k+De+e+k+l+e
— k24 2kl + 2+ 2ke+2el+ 2+ k+1+e

= k2 + 124+ 2kl +2ke +2el + k+ 1 +e.
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It implies that
(e+k)e+thk+1)—(n+e)n+e+1)
= €2+k2+2k€+6+/€} — [k2+l2+62+2/€l+2k’6+2€l+k+l+€]
= 1?2 =2kl — 2el — .

Thus
(e+k)(e+k+1);(n+e)(n—|—e+1) _ 9\
Hence (11) becomes
(e—l—l)[%—ﬂ+26+k+1—l—2k—26—1§0

(e+1)(r—s)—1—k<0
(e+D)(r—s)—(1+k)<0

(e+1)(r—s)—n<0.

Since r — s > 1, then n > e+ 1.
which is a contradiction.

Hence G is not a super vertex-magic graph. 0

Lemma 2.2.2 The complete bipartite graph K, , or the star where n > 3 is not a

super vertez-magic graph.

Proof. Let K, be the complete bipartite graph and n > 3.

Let x be the central vertex of the star K, and y be any remaining vertex.
Therefore e = n.

We prove by contradiction.
Assume that K, is a super vertex-magic graph.

It follow that

wy(x) >n+14+(1+2+...+n)
n(n+1)
—
wi(y) < (n+e)+n

=n+1+

=2n+e

= 3n.
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Therefore

n(n+1)
5 <
2 2 2
n+2+n +n§3n
2
n?+3n+2<6n

n+1+

n?—3n+2<0
(n—2)(n—1)<0

1<n

IN

2

Which is a contradiction because n > 3.

Hence K, is not a super vertex-magic graph. U

Note that the complete bipartite graph of 3 vertices(or P3) is a super vertex-
magic graph by Theorem 3.2.1. and the complete bipartite graph of 2 vertices(or
P,) is not a super vertex-magic graph by Theorem 3.1.2.

Theorem 2.2.3 Fvery complete bipartite graph of n > 4 wertices is not a super

vertex-magic graph.

Proof. Let K, , be a complete bipartite graph of n > 4 vertices and e edges.
We have n =z + y.
Case I: = # v,
Ifzx=1ory=1,byLemma 3.5.2. K,, is not a super vertex-magic graph.
If x,y > 2, we have xy > x + y.
It implied that zy +1 > 2z + y.
Therefore e +1 > n.
By Theorem 3.5.1 K, , is not a super vertex-magic graph.
Case II: x =y,
We prove by contradiction.
Assume that K, , is a super vertex-magic graph.

By Lemma 3.1.1 h = e + @ + "TH
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Therefore
2(,.2
xe(rc+1 20 + 1
h = 2* ( ) +
2x 2
2+a:(x2+1) +2.:1:+1
= r .
2 2
If z is odd. we see that 2% + 1 is even.
Therefore @ is a positive integer.
It implies that A is not an integer.
Which is a contradiction.
If z is even. we see that @ is an positive integer.
It implied that A is not an integer.
Which is a contradiction.
From Case I and Case II.
Hence K, is not a super vertex-magic graph. U

Theorem 2.2.4 Let m > 1 be a positive integer and m # 4. Every m X m square

lattice graph is not a super vertex-magic graph.

Proof. Let G be a m x m square lattice graph of n vertices and e edges
We have n. = m? and e = 2m? — 2m.

We prove by contradiction.
Assume that G is a super vertex-magic graph.

By Lemma 3.1.1,

e(e+1) n+1
+

h=e+
n 2

9 — 9m 4 (2m2—2m)(27;12—2m+1) +mz+1

m 2
) 4m* — 8m3 +4m? +2m?* —2m  m? +1

=2m” —2m + 5

m 2
2 m2+1

=2m?2 —2m+4m?> —8m+6 — — +
m 2

2 241
—6m—10m 46— — 4+

m 2
m3+m —4

2m

=6m? — 10m + 6 +
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. 3 4 - .
Case I: m is odd, therefore %7?4 is an integer.

It implies that m=1.

Case II: m is even, we have m = 2t for some t € Z™.

m3+m—4 _ 8342t-4 _ o542 | 1 1
We see that g = o =2t"+ 35— 7

Therefore t = 2 and implies that m = 4.
Form Case I and Case 11, if m # 1,4 then h is not an integer.
Which is a contradiction.

Hence G is not a super vertex-magic graph. 0

Theorem 2.2.5 FEwvery ladder graph L, = P,OPy 1s not a super vertex-magic graph

for all positive integer k.

Proof. Let k£ be a positive integer.
Let L; be a ladder graph of n vertices and e edges
We have n = 2k and e = 3k — 2.
We prove by contradiction.
Assume that Ly is a super vertex-magic graph.
By Lemma 3.1.1, h = e + @ + ”T“

Therefore

(3k—2)(3k —1) | 2k +1

_ 3k 9
h=3k—2+ = >
Ok2 — Ok +2 2k 41
_ 3k 9
Bk-24 =TS 2
2 2
R U R B R
1
99Kk2 — 16k + 4
_ 3k 9
+ I
11k |
BV oL ¥Hlaneg
R
e 1
R
R
1142 + 2
3k 2

2k

Case I: k is even, then k = 2t for some ¢t € Z™*.

2 2 . .
Therefore 111;;2 = 441t+2 =11t + % is not an integer.

It implied that h is not an integer.
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Case II: k is odd, then %?2 is not an integer.
It implied that h is not an integer.

From Case I and Case II, h is not an integer.
Which is a contradiction.

Hence ladder graph Lj is not a super vertex-magic graph.

Theorem 2.2.6 The graph P,,0P,, 1 is not a super vertex-magic graph for all

positive integer m.

Proof. Let m be a positive integer and G is a graph P,,0F,,11.
We have n = m? + m and e = 2m? — 1.

We prove by contradiction.
Assume that G is a super vertex-magic graph.

By Lemma 3.1.1 h = e + 4&H) 4 nt1,

Therefore
2m? — 1)(2m? 2 1
h=om? 14 M D@ i m
m2 +m 2
:2m2_1+4m4—2m2 m*+m+1
m2+m 2
:2m2_1+4m3—2m m?*+m+ 1
m—+1 2
2 2 1
—om2 —1+4m? —dm +2 — NP S

m+1 2
Case I: m is even, m = 2t for some t € Z*, then

—2 +nﬂ+nr%1_ —2 +4ﬁ+2r+1
m+1 2 C2t+1 2

S Y

2t 1 2
1 2

=20+t — ——

Ty T

2t+1—4
4t + 2
2t — 3
4t 42

=2+t +

=2t +t+
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Therefore % is an integer. It implies that
2t —3>4t+2
=522t
-5
— > 1.
5 2

Which is a contradiction.

Case II: m is odd, m = 2t + 1 for some ¢t € Z™ U {0}, then

-2 m’+m+1 -2 AP+ A+ 14+204+141
ml 2 Toy2 2

-1 4P +6t+3

41 2

-1 1
= 42243t + 1+ =
t+1+ tott +2

:21&2+3t+1+1—L
2 t+1

t+1-2
2t + 2

:2t2+3t+1—|—i.
o + 2

=22+ 3t+1+

Therefore % is an integer. It implies that

t—1>2t+2

—3 > t.

Which is a contradiction.
From Case I and Case I1.

Hence P,,0PF,, . is not a super vertex-magic graph.
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Theorem 2.2.7 Fvery 1- ladder square lattice of k- step is not a super vertex-magic

graph.

Proof. Let G be a 1- ladder square lattice graph of n vertices, e edges and k step.
We have n = %ﬁ,e: k? + 3k.

We prove by contradiction.
Assume that G is a super vertex-magic graph.

By Lemma 3.1.1,

e(e+1)+n+1
! 2(k? 223k;)(k2—|-3k+1) k* + 5k + 4
2 (k" +
K3k, k? + 5k + 2 LA
8(k* + 3k)(k* + 3k + 1) + (k* + 5k + 2)(k* + 5k + 4)
A(k? + 5k +2)
8(k* + 6k% + 10k* 4 3k) + (k* + 10k® + 31k + 30k + 8)
4k? + 20k + 8
8k* + 48k3 + 80k* + 24k + k* + 10k3 + 31k* + 30k + 8
4k2? 4 20k + 8
9k* + 58k® + 111k + 54k + 8
4k? + 20k + 8
3 9k? 13k 112k + 48
A S SR Ry g Y
) 9k? 13k 28k + 12
=K A3kt T T
k(9% +13) 28k +12

4 K245k +2

h=e¢+

=k + 3k +

=k*+ 3k +

=k*+ 3k +

=k*+ 3k +

=k +3k+7+

E(9k+13)

1 1S an Integer.

Case I: k = 4m for some m € Z* | then

28k+-12

T2 1opi2 1S an integer, we have

It implies that

28k + 12 > k> + 5k + 2
0> k%—23k—10

23 — 1/(23)2 — 4(1)(-10) cpe B V/(23)2 — 4(1)(-10)
2 - 2
23 — /569 cp < B4 V569

2 2
23 —23.85 23 +23.85

IN
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Consider

If k=4,n=19 and e = 28, we have h = 38 + 32 ~ 80.74

If k=8, n=>53and e =88, we have h = 105 4+ 5% ~ 116.58

If k=12, n = 103 and e = 180, we have h = 232 + 32580 ~ 548 31

103

If k =16, n = 169 and e = 304, we have h = 389 + 22220 ~ 937.64

If k =20, n = 251 and e = 460, we have h = 586 + 225% ~ 1,430.86

We see that if 0 < k < 23 and k& = 4m for some m € Z*, then h is not integer.
Which is a contradiction.
Hence G is not a super vertex-magic graph.

Case IT: k = 4t + 1 for some t € Z* U {0}, we have

Ok 13k 28k+12  9(4t+1)2  13(4t+1) 28(4t + 1) + 12

+ 1 TEiskr2 4 1 (4 + 1)+ 5(4t +1) + 2
9(16¢* + 8t + 1) N 52t +13 112¢ 4 40

4 4 162 + 8t + 1 + 20t + 5 + 2
1442+ 726+ 9 52t +13 112t + 40
B 4 T T 62848
144+ T2t +9 52t 413 28t + 10
- i T T @iy
 144¢% 124t +22 28t + 10
B 4 AT 2
T2 462t +11 28t 410

2 A2+ T+ 2

1 28t + 10

=36t>+31t+54+-— — —
N +2 A2 + Tt + 2

4t% + Tt + 2 — 56t — 20
82 + 14t + 4

4t% — 49t — 18

82+ 14t +4

=36t2 + 31t + 5 +

=36t + 31t + 5 +
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4¢2—-49t—18 - :
Therefore —ii74 1s an integer, we have

A4t — 49t — 18 > 8t + 14t + 4

0 > 4> + 63t + 22
—63 — /632 — 4(4)(22) —63 + /632 — 4(4)(22)

8 FiA 8
—63 — 3.617 _ _ —63+ 3617
8 = A= 8
—63 — 60.14 —63 + 60.14
_ <t —

8 Y= 8

—15<t<0.

Which is a contradiction.
Hence if k = 4t + 1 for some ¢t € ZT U {0} then G is not a super vertex-magic
graph.
Case ITI: k = 4t 4 2 for some t € Z* U {0}, we have

Ok? 13k 28k+12  9(4t+2)>  13(4t +2) 28(4t +2) + 12
T 1 T Riskr2 4 4 (At+2)2+5(4t+2)+2
 9(16t* + 16t + 4) § 52t+2 112t + 68
4 4 162 + 16t + 4 + 20t + 10 + 2
26t + 1 112t + 68

=36t> + 36t +9 +

2 162+ 36t + 16
26t + 1 28t + 17

2 A2+ 9t+4
) 1 28t + 17
=36t +36t+9+13t+§—m
At + 9t + 4 — 56t — 34

8t2 + 18t + 8

482 — 47t — 30

8t2 4+ 18t +8

=36t> + 36t + 9 +

=36t% + 36t + 9 + 13t +

=36t% + 36t + 9 + 13t +
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44247130 : :
Therefore ~isiis s an integer, we have

4% — 4Tt — 30 > 8% + 18t + 18

0 > 4t% + 65¢ + 48

—65 — /652 — 4(4)(48) —65 + /652 — 4(4)(48)
8 8
—65 — /3457 —65 + /3457

t
8 8

—65 — 58.80 / —65 + 58.80
8 8

-15<t<0.

<t

IA

IN
IN

IA
IN

Which is a contradiction.
Hence if k = 4t + 2 for some ¢t € ZT U {0} then G is not a super vertex-magic
graph.
Case IV: k = 4t + 3 for some t € Z*T U {0}, we have

Ok +13  9(4t +3) + 13

4 4
36t +27+13

1
36t + 40

4
= 9t + 10.

we see that %+B is an integer.

28k+12 :
Therefore ;5755 is an integer.

We see that 0 < k£ < 23.

Consider
If k=3,n=13 and e = 18, Wehaveh:25+%%51.31
If k=7, n=43 and e = 71, we have h = 93 + 2112 ~ 211.88

43

If k =11, n = 89 and e = 154, we have h = 199 + 257 ~ 467.20

If k =15, n =151 and e = 270, we have h = 346 + 7?1’51170 ~ 830.57

If k=19, n = 229 and e = 418, we have h = 553 + 12122 ~ 1,297.81

If k =23, n =323 and e = 598, we have h = 760 + 22222 ~ 1,868.98

We see that if 0 < k <23 and k =4t + 3 3t € Z* U {0}, then h is not integer.

Which is a contradiction.
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Hence G is not a super vertex-magic graph.
From Case I, Case II, Case III and Case IV.

Hence G is not a super vertex magic graph. 0

Theorem 2.2.8 Let k be a positive integer where k # 2,6. A k- level of Q3 is not

a super vertex-magic graph.

Proof. Let G be a k- level of P, of n vertices and e edges .
We have n = 4k and e = 8k — 4.

We prove by contradiction.
Assume that G is a super vertex-magic graph.

By Lemma 3.1.1,

efe+1) n+1
+

h=e+
n 2
(8k —4)(8k —3) 4k +1
=8k —4
8 + ik + 5

4k + 1

1
:8k—4+1%®M9—&%+1m+

3 1
=8k -4+ 16k — 14+ - + 2k + -

k 2
3 1
=26k — 18+ — + —.
TR
We see that % + % = % is a positive integer, then

6+k=2kt forsometcZ"

k(2t—1) =6
LA Ma
2% — 1
ct=1,2.

It implies that k = 2 or k = 6.
We see that if & # 2,6 then h is not an integer, which is a contradiction.

Hence G is not a super vertex-magic graph. O

Note that if k=2 by Theorem 3.4.1, G is super vertex-magic graph. We still

cannot show whether the 6— level of )3 is super vertex-magic or not.



