Chapter 1

Introduction

Generalized functions have of late been commanding constantly expanding
interest in several different branches of mathematics. In somewhat nonrigorous
form, they have already long been used in essence by physicists and opened
up a new area of mathematical research, which in turn provided an impetus in
the development of a number of & number of mathematical disciplines, such as
ordinary and partial differential equations, operational calculus, transformation
theory, and functional analysis.

Modern developments in partial differential equations require a thorough
grounding in the theory of distributions in more than one variable; for instance,
in 3-space we can have sources concentrated not only at points but also on
curves and surfaces, thereby giving rise to equivalent volume source densities
which are clearly singular in varying degrees.

Euclidean n-space is denoted by R™ and a point in R" is labeled 2 =
(£1,...,2y5), where 1,...,x, are Cartesian coordinates with respect to a fixed
frame of reference. We shall write

=zl = (af+ - +£0)

for the distance between the point x and the origin. An element of volume
dz) . ..dz, will be abbreviated dr, so that the integral of a function f of position
over a region R is written in either of the forms

jf{ml,...,mﬂ)dml...dzﬂ or f_f(:{:]d:c.
R R

We shall also consider integrals over hypersurfaces of dimension n —1 in R™.
Thus in R? a hypersurface is an ordinary surface, whereas in ®? it is an ordinary
curve. Typically a hypersurface is denoted by the letter {2 and an element of
surface on {1 by dS. Occasionally a subscript on 45 will be used to indicate the
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variable being integrated; for instance, if f(z, £} is a function depending on two
points in R and we are integrating f on Q with respect to the variable z, we
write

[ rw.6pas.
fl
It is well known that for the heat equation
%u[m, t) = ctAufz, 1) (1.1)
with the initial condition
u(z,0) = f(z)
where
g & &
_ LA @AW 1.2
N iz + oz +e o (1.2)

is the Laplace operator and (z,t) = (z1,%,...,%a,t) € R" x (0, 00), we obtain

the solution
uert) = g [ o (-E200) sy

or the solution in the convelution form

u(z,t) = E{z,t) » f(z)

where

1 |=/?
E(z,t) = BTy =P (E) (1.3)

and the symbol * designates as the convolution. The equation (1.3) is called

the heat kernel, where |z|? = (2% + 22 + .- +:r:’}5 and ¢ > 0, see ([7], pp. 208
209}. Moreover, we obtain E(z,t) — & as ¢ — 0, where § is the Dirac-delta
distribution.

In (18], K. Nonlaopon and A. Kananthai extended {1.1) to the equation
i)

3 Uz t) = Oz, £) (1.4)
with the initial condition
u(z,0) = f(z) (1.5)
where [J is the ultra-hyperbolic operator, that is
2 2
|:I=az & .+3 - & _ 0 _.,.._ﬁ..r (1.6)
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with p + ¢ = n the dimension of Euclidean space R. They obtain
u(z,t} = E(z,t) * f(z) (1.7)

as a solution of (1.4) which satisfies (1.5) where E(z,{) is the kernel of (1.4)
and is defined by

- 2 e 2
(1)@ (Zi-l Ty — j-p-l-lm.f)

E(z,t) = @iy &P 15 (1.8)

where p+q¢=mn,i= /=L and Y7 22 > 3 "1 22 Moreover, they obtain
E(z,t}) — d as t — 0, where 4 is the Dirac-delta distribution. In addition, they
studied the ultra-hyperbolic heat kernel which is related to the spectrum.
In [20], they studied the equation
%u{x, ) = 0ulz,b) (1.9)
with the initiel condition '
u(z,0) = f(z), for zeR" (1.10}

where the operator OF is named the ultra-hyperbolic operator iterated k-times
defined by

=zm+az+t -+ - + .
o2 ' B2 022 812, Oz, a2,

| 2 .:
(PP 2 2 & 32),(1_11}

p+4q = n is the dimension of the Euclidean space R", u(z, ¢) is an unknown func-
tion for (z,£) = (x1,22,..., % t) € R" % (0,00), f(z) is the given generalized
function, & is a positive integer and ¢ is a positive constant.

In [19], A. Kananthai studied the equation
%u{z, t} = EQ ulx,t) (1.12)
with the initial condition
u(zr,0) = f(z), for z€R", (1.13)

where the operator ¢ is first introduced by A. Kananthai ([9], pp. 27-37) and
is named the diamond operator which i1s defined by

P a7 2 e 52 )2
O = — — — | , 1.14
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p+¢ = nis the dimension of the Euclidean space R®, u{z, t) is an unknown func-
tion for (x,t) = (z1,%2,...,2Zn,t) € R™ x (0,00), f(z) is the given generalized
function and ¢ is a positive constant.

Now, the purpose of this work is to study the equation

-g—tu{r, 1) = oFu(r, ) (1.18)
with the initial condition
u(r,0) = f(z) for zeR",
where the operator {* is named the diamond operator iterated k-times defined

by
o[g)-(ES] o

i=1
p+ g = n is the dimension of space R*, u(z,t) is an unknown funetion for
(z,8) = (21, Ta,....Zn, 1) € R™ x (0,00), Fiz) is the given generalized function,
k is a nonnegative integer and ¢ is a positive constant.

We obtain u(z, t) = E(z,t) = f{z) as a solution of (1.15) where

2 e 2 K
E{::.-,t}- fExp (( ) — ZE}) t+i(g,x}} dE.
i=1 jmpd-1

(1.17)
and £ C R" is the spectrum of E(z,t) for any fixed t > 0. The function
E(z,t) is called the diamond heat kernel or the elementary solution of (1.15).
All properties of E{z,) will be studied in details. Now, if we put k = 1 in
(1.17) then we obtain the kernel of (1.12) which is satisfies (1.13).

The operator ©* has been studied first by A. Kananthai, S. Suantaj.and V.
Longani [15] and is defined by

k &
S T i S
(,.1 ) (Ea)] BEm S

Ea-gd

| r=1 " j=p+l

(&) -(£%)

&
(1.18)
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where p+¢ = n is the dimension of R". i = /1 and k is a nonnegative integer.
The Diamond operator ¢ is defined by (1.14) and the operators L, and L are

defined by
P iz . pig ag
L1=Z@+t Z@ (1.19)
r=l T J=p+l 4
and .
P a.z ptyq aa
Ly = —_— —- (1.20)
; O e ng

Thus (1.18) can be written by
o = O*LELE.

Otherwise, the operator ¢ can also be expressed in the form ¢ = OA =
AL where [ is the ultra-hyperbolic operator defined by (1.16) and A is the
Laplacian defined (1.2)

In 1988, S.E. Trione [23] was study the elementary solution of the ultra-
byperbolic Klein-Gordon operator iterate k—times is defined by

8 g bz & g & &

Rt T Ve A, A, e t™

[D -+ mi]k = [
and we obtain the elementary solution Wi (v, m) defined by

whitem) =3 CIC Dm0, )

where B[, (v) is defined by (2.13). See, also {[24] pp. 154-156). After that,
A. Kanathai [13], obtained the function

Glz) = [WE (v, m) « Wi (s, m)] = (S*(z)) " (1.23)
is & Green function for the operator

‘ e ey
oot ((£8)- (£ ) o

=1 =pi1

where W (s, m) is defined by

watom) =3 CULOE Dy i Ry (139




i}

and R, ,.(s) is defined by (2.15) with @ = 2k + 2r, m is a nonnegative real
number and

S(z) = 8 —m* (W (v, m) » We(s.m)) = (RF,(v) + Re4(s)) . (1.26)

S5**(z) denotes the convolution of S itself k-times, (S**(2)))" " is the inverse of
§+*%(z) in the convolution algebra.

Now, the purpose of this work is to find the elementary solution or Green
function of the operator (& +m3}k, that is

(@& +mA)U(2) = 8(z), (1.27)

where U{z) is the Green function, & is the Dirac-delta distribution,  is a non-
negative integer and r = (£, T3, ...,z,} € R". After that, we find the solution
of the equation (& + m?)*U(z) = f(z) where f is a given generalized function
and U(z) is an unknown function.

Now consider the non-linear equation
rulz) = flz, O '0Fu(z)), (1.28)

where O* is defined by (1.16), 4 is the Laplacian operator, [ is the ultre-
hyperbolic operator, p+q = n, 2 € B" and u(z) is am unknown. We know that
if f is continuous first derivative for all z € QU 89, Q is an open subset of R"
and 9 denotes the boundary of §2, n is even with n > 4 and if f is bounded
on £2, then u(z) = {—1}*‘1.@“_1}[3} * RY (v) »W(z) is a solution of (1.28) with
the boundary condition

u(@) = RE(v) » (=1)*"2(R5,_y (r)) ™
for z € 80 and m = (n — 4)/2, [16].
In this work, we study the non-linear equation of the form

OO+ mu(z) = f(z, A*ITHD + m?)u(z), (1.29)

with f defined and having continuous first derivative for all = € 0 U 892, where
{2 is an open subset of R™ and A5 denotes the boundary of £, f is bounded on
that is [f| < N, N is constant and the ultra-hyperbolic Klein-Gordon operator
is defined by (1.21). We can find the solution u(z) of (1.29) and is unique under
the boundary condition A*'0¥(0 + m2)*u(z) = 0 for z € 8Q2. By [[2], p.
369] there exists a unique solution U(z) of the equation AU(z) = f{z, U(z))
for all z € ) with the boundary condition U{z) = 0 for all # € 80 where
Ulz) = AID50O + m®)*u(z). Then if weput k =1, p=n and g = 0 in
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O8O+ m?)*V(2) = U(x), we found that V(z) = (=1)*'R5,_,(s) * u(z) is a
solution of the inhomogeneous biharmonic equation,

AV (x) + mP AV (z) = Ulz)

where /% denates the biharmonic operator is defined by

(O 8 LY
ﬁ'(ﬁ%*'a:cﬁ"' +ami)' (1.30)

The telegraph equation plays an important role in transmission and propa-
gation of electrical signals, vibrational systems and mechanical systems. Apart
from these situations, heat diffusion and wave propagation equations are par-
ticular cases of the telegraph equation. It is well known that separation of
variables technique is useful for obtaining exact series solutions and the Fourier
transform is used for the n-dimensional cases.

The distributions e*[1%§ have studied by Kananthai [10] where O* is the
ultra-hyperbolic operator defined by (1.11) and p + ¢ = n the dimension of the
space R™ and @ is a constant, @ = (&, @3. ..,a,) and of = anty + gty +--- +
Gty

In this work, we applied the distribution e®[0*§ for finding the elementary
solution of the n-dimensional telegraph equations of the type

(3:2 +21‘3 + 4 — &) u(z,t) = Tiulz, t) = d(z, t) (1.31)

a.z k
( T Eﬁ + 3% + .{a) u(z,t) = Tou(z, t) = &z, t) (1.32)

wh;!re 8= EE+EE+'"+EE is the Laplacian operator £ = (21,22, ...,%n) £

R", t is the time and § is the Dirac delta function and T¥, T¥ are the operator
iterated k-times defined by

T = (g; +2ﬁ—+ﬁ2 a)k, (1.33)

TF = (a—2+23—+ﬁ2+.&) : (1.34)



