Chapter 2

Basic Concepts and Preliminaries

The aim of this chapter is to give some definitions and properties of the distri-
bution, the special function, the Fourier transform, partial differential equaticns
and the elementary solutions of the partial differential operators which will be
used in the later chapters.

ﬁ.l Distribution

In this section, we shall use the standard notation D the space of testing fune-
tions, which consists of all real or complex functions with continuous derivative
of all orders and with compact support. Every element in D is called a festing
function.

Definition 2.1.1 A sequence of testing function ()i, is said to converge to
w(z) in D if all w;(x) are zero outside a certain region in B™ and if for every non-
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Proposition 2.1.2 ([3]) D is closed under convergence, that is, the limit of every
sequence that converge in D is also in D.

Definition 2.1.3 A functional on a linear space £ is mapping f : E — C which
assigns to each member ¢ of £ a certain complex number; the image of p € E
under f is usually written as f{@) or {f, ).

One way to generate distributions is as follows. Let f(z) be a locally integrable
function, that is, a function that is integrable in the Lebesgue sense over every
compact subset of B*. Corresponding to f(z), we can define a distribution
through the convergence integral

(oot = [ @i, 2.1)



Then by ([5]), (£, ) is a distribution.

Definition 2.1.4 Distributions that can be generated through (2.1) from locally
integrable functions shall be called regular, and all others will be called singular.

An important singular distribution is the so-called Dirac-delta function 4,

which is defined by
(6,0) = w(0). (2.2)

It is to note that the Dirac-delta function is a singular distribution see ([5]) .
Propesition 2.1.5 ([25]) Let = be an n-dimensional real varigble and y an m-
dimensional real variable. Also, let p(z,y) be a testing function in D define over
R™. If f(x) 15 a distribution defined over R™, then 6(y) = (f(z),p(z,y)) is
a iesting function of y in D.

Proposition 2.1.8 ([5]) Let f be any distribution ( in one dimension ), then the
functional g defined by
{g:¢) = {f, —¥)

is also o distribution.

Definition 2.1.7 The distribution g in proposition 2.1.6 is called the derivative
of f and is denoted by f or %, that is,

(foy={f,-¢) (2.3)

Similarly, in the case of several variable, the partial derivative of a distribution
f with respect to each of the variables can be defined as

('a?‘s{!p} = {f: _E}T [24}
fori=1,...,n.

Proposition 2.1.8 ([5]) Let f be a distribution in m dimensions and g be a
distribution in n dimensions. Then the functional h defined by

(h(z, v), o(z, ) = {F (), (g(v), wlz, 2)})
is a distribufion in m + n dimensions.

Definition 2.1.9 The distribution k in proposition 2.1.8 is called the tensor ( or
direct ) product of f(z) and g{y) and is denoted by h(z,%) = f(z) x g(v), that

’ () x o), olz. 1)) = (&), loly), wlz, v))). 2.5)
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Definition 2.1.10 The support of a distribution f is defined as the complement
of the largest open set on which f is zero.

Proposition 2.1.11 ({5]) Let f and g be distributions in n dimensions. Then the
Sunction h defined by

(hye) = (f(z) x gly), wlz + 1)} (2.6)
is a distribution provided that it satisfies either of the following conditions:
(1) Either f or g has bounded support, or

(2) In one dimension the supports of both f and g are bounded on the same
side ( for instance, f =0 forz <a, andg=0 fory <b ).

Definition 2.1.12 The distribution h in proposition 2.1.11 is called the convo-
lution of f and g and is denoted by h = f * g, that is,

fxg.0) = (flz) x g(v). plz + 1)) (2.7)
Now we shall give some helpful properties of convolutions.

Proposition 2.1.13 ([5],(25]) Let f,g and h be distributions.
(1)} For ¢ is the Dirac-delta function, we have

f=8=1F (2.8)

(2} If [ and g solisfy af least one of the (1) and (2} of proposition £2.1.12,
then

frg=g=f (2.9)

{(3) If P{D) is linear partial differential operntor with constant coefficients and
f and g satisfy at least ome of the (1) and (2) of proposition 2.1.12, then

P(D)f x g = P(D)(f *g) = [ » P(D)g. (2.10)

Proposition 2.1.14 ([8]) e®*") = (D — a)*é where D = 4 and ™) =
(D — a)*§ is o Tempered distribution of order k with support 0.
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2.2 The Special Functions and Fourier Transform

In this section, we shall present the definitions of the special function and Fourier
transform given by Euler. In addition, we shall give some properties of the
gamma function. '

Definition 2.2.1 The gamma function is denote by I" and is defined by
I'(z) = f et dt, (2.11)
0

where z is a complex number with Rez > 0.
A result that yields an immediate analytic continuation from the left haft
plane is the following properties.

Proposition 2.2.2 ([1]) Let z be a complex number. Then
(1) T(e) =20 | 2 2£0,-1,-2,...
(2) T(z)P(1—2) = =, =z#0,+1,£2,....
Proposition 2.2.3 ([1]) Let z be a complex number. Then
I'(z)T(z + %) =21"B/ml(2z), z#0,-1,-2,.... (2.12)
Definition 2.2.4 Let © = (1.2, .. ..%.) € R™ and write

u=z¥+:«‘:§+---+x§—mﬁ_,_l—xzﬂ----—ﬂ:;ﬂ, ptg=mn.

Denote by I'y = {x € R" : 2, > 0 and v > 0} the interior of forward cone and
T, denote its closure.
For any complex number o, we define the function

WP ifrel
RE(v) = { Kale] = 2.13

= () {u iz ¢, (213)
where the constant K,,(a) is given by the formula

rinDAr (2te=2)T (152) T (a)
TR I

Ky(a) = (2.14)

Let suppRH(v) C T, where suppR¥{v) denotes the support of R7(v).
The function R is first introduced by Nozaki {20, p. 72] and is called the
ultra-hyperbolic kernel of Marcel Riesz. Now R (v) ia an ordinary function if
Re{a) > n and is a distribution of « if Re{a) < n.
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Definition 2.2.5 Let z = (z,, 2, .. .,n:,,:! € "™ and write
8 =a:f+1:§+---+:t:i+
For any complex number 3, define the function
glB-n)/2
r(z)

The function R5(s) is called the elliptic kernel of Marcel Riesz and is ordinary
function if Re(8) > n and is a distribution of 8 if Re(d) < n.

500 = 5w (222)

5 (2.15)

Definition 2.2.6 Let x = (2,,2,...,2,) be a point of R* and we write

w=zl+ag 4+ zk (el ol e+ Th)

Z=a+ a3+ T+ i(alg + 2+ 22), DPHg=n.

For any complex number -y and 1/, we define

| ( "
S (w) = 2~ T~/ (" - "') ‘”:(-;) (2.16)
and (v-n)/2
T.(z) = 2 %x— ™2 (“ ; ”) ”P AR (2.17)

Definition 2.2.7 Let x = (1, 22,...,2,) be a point of B™ and the function
Yag40(v,8,w, z,m) is defined by '

2 (=1yT (24~
Ya.ﬂ,ﬁ,v[‘u: &, 2, m} = Z ( 3_1.!-. E;} ) {mi}erﬂr,.ﬂ+2r.'r+2r.u+ﬂr{u: &, w, 3)1
M

=0
(2.18)

and an.:ﬁﬂ.:,.g.-.ﬁw_ﬁgr[t}, &, w, z] i defined b_'f

Kovorgtzraiarpize(v, 8, w,2) = {—1]g""Rﬁ_‘,w{w]*R§+2,.{s)*5’.,+2,{w)#1",,+2,{z}
(2.19)
where 7 be any complex number and m is a nonnegative real number.

Definition 2.2.8 The spectrum of the kernel E(z,t) of (1.17) is the bounded
support of the Fourier transform E(£,¢) for any fixed £ > 0,
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Definition 2.2.9 Let £ = (£,£,...,&) € R* and denote by
r+={§en’*:g‘;‘+§§+...+§§—¢;§+1-5§+,-...—gﬁﬂ}u:md.s; > 0}

the set of an interior of the forward cone, and T, denotes the closure of T,
Let. §! be spectrum of E(z, () defined by definition 2.2.8 and Q < T',. Let

E{{, t) be the Fourier transform of E{z,t) and define

Blf= Eimﬂrp[ (( NN (E=,H{=] )kzl forz €Ty,

0 for £ €,.
(2.20)

Lemma 2.2.10 ([3]) The function R®,.(3) is the inverse of the convolution al-
gebra of RS, (s}, that is

FZoi(s) * Rj(s) = Rigy on(s) = Eols) = 4.

Definition 2.2.11 Let f be a mntinuc;us function, the Fourier transform of f

dencted by .
Ff = Wjﬂ;ﬂ e~ %" f(x)dz, (2.21)

where z = (2,...,2,) € R", £ = (&),..., &) € R" and & = {101 + &z + -+ +
EnTn- Sometimes we write Ff = f(£). By Eq. (2.21), we can define the inverse
of the Fourier transform of f(£) by

10)=87'6) = s || ) (222

If f is a distribution with compact supports by ([25]}, Theorem 7.4-3, p. 187
Eq. (7) can be written as

5= (flz), e (2.23)

T

2.3 Partial Differential Equations

Let L be an arbitrary linear differential operator of order pin the n independent
variables xy, ..., 7, can be written

L= Z ax(z) D*, (2.24)
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where we shall assume that the functions ap(z) have partial derivatives of all
orders. The formal adjoint of L is denoted by L* defined from

L'uv= z (—1)H D¥{a,2).

lkl<p
Now let » and v be functions having continuous derivatives of order p in R®,

that is, D*u and D*v are continuous for every multi-index & with |£| < p. Then
it can be shown that

viu — ul'v = divJ{u,v), (2.25)
where J is a vectorial bilinear form in u and v invelving only derivatives of u

and v of order p — 1 or less. The integral form of (2.25) is known as Green's
theorem.

Let s{z) be a given continuous function in R™, and comsider the partial

differential equation

Lu=s (2.26)
A function u(z) is said to be a strict solution of (2.26) in an open region R in
R", if u has continuous derivatives of order p in R and if at every point of R we
have Lu = s.

If 5 is a given distribution (and this, of course, includes the possibility that s
is a continuous function), we may consider (2.26} as an equation for an unknown
distribution #. We shall say that u is a generalized solution of (2.26) if it satisfies
the equation in the distributional sense. that is, if {Lu, @} = (s,¢). Here the
left side is defined for any distribution u from (Lu, ) = (u, L*p).so that uis a
generalized solution of (2.26) if and only if

{u, L) = (s. ), (2.27)
for every test funetion o in 1.

Although (2.27) gives no hint for finding & solution w, it enables us in prin-
ciple to determine if a distribution u actually satisfies (2.26}). We only have to
verify that, for each @, the action of w on the test function Ly is the same as
the action of & on ¢.

The definition just given for a generalized solution is global in character;
that is, it applies to the whole of R™. We would also like to define a notion of
generalized solution in an open region K. In the light of our earlier discussion
of the values of a distribution, it is natural to use the following definition: u is
a generalized solution of (2.26) in R if (2.27) holds for all test functions  with
support contained in A,

A partial differential equation is an equation containing a partial derivative
which is to be taken of an unknown of more than one variable. A partial
differential is called linear if it can be written in the form

1+ e
Z %,,.,M{$1,...,$n]&n+ H[II,...,IH} =I($1:---;rn),

gz - -Jzme
Ly TRy
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where summation is taken over all nonnegative integer mj + -+ - + m,, the a’s
and [ are given functions, u is an unknown function, and m is a nonnegative
integer. A partial differential equation is called nonlinear if it is not linear.

Now we shall given some examples of partial differential equations.
Example 2.3.1 The heat equation in n dimensions for u = u(zy,...,zn,t) is

%u{:, t) = cfAulz, 1) (2.28)

with the initial condition
u(z,0) = f{z)
where A is the Laplace operator defined by

o & b*
=E¥+E§+-“+a—ﬁ“ (229]

and (z,t) = (z1,...,Zn.t) € R® x (0, 00), we obtain the solution

e = (wﬂjnfs f i ( . 4ef|2) Twidy

or the solution in the convolution form
u(z,t} = E(x,t) * f(z)
where

1 |z|?
E{x, f:l = W exp (—E) {23{})

and the symbol * designates as the convolution. The equation (2.30) is called

the heat kernel, where |z|? = |[n:§-|-:r:§+---+$,’,}i and t > 0, see {[7], pp.
208-200}.

Example 2.3.2 The Schidinger equation in quantum mechanics is the operator
equation corresponding to the non-relativistic expression for the energy,

- .P—z (2.31)

2m’

under the substitution £ — ig'-“ p — —1V. Qur starting point 15 the relativistic
energy-momentum eguation,

=p® + m?®. (2.32)
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We may try to quantise the theory by replacing observable by the corresponding
hermitian operators, which gives

_%ﬂm, t) = —Ag(z, 1) + mPg(s, 1), (2.33)

where ¢(z,t) is the wavefunction. This can be rewritten as

(% - a) ¢(z,t) + m*g(z, t) = 0 = (0 +m*) é(z,t) =0, (2.34)

which is the Klein-Gordon eguation for a free particle.

Example 2.3.3 In the study of the boundary value problems in elasticity cne
encounters the biharmonic equation Au = 0. Indeed, many plane problems of
elasticity, when studied with the help of analytic functions, reduce to the solu-
tion of the two-dimensional biharmonic equation. Similarly, the discussion of
the theory of elastic plates and shells leads to the three-dimensional biharmonie
equation.

Example 2.3.4 In a long electrical cable or a telephone wire both the current
and voltage depend upon position along the wire as well as the time. [t is
possible to show, using basic laws of electrical circuit theory, that the electrical
current #(z, ) satisfies the PDEs

9% 8%
5~ gt

where the f2, L. €' and ( are, for unit length of cable, respectively the resis-
tance, inductance, capacitance and leskage conductance. The wvoltage v(z,t)
also satisfies (2.35). Renaming some constants we get the telegraph equation

(RC +GLyg: + RGi (2.35)

uy + (& + Bu, + afu = Pu, (2.36)
where

2.4 FElementary Solutions

We shall mainly be interested in the equations where in the coefficients are
constants. The theory of partial differential equations stems from the intensive
and extensive study of a few basic equations of mathematical physics, and the
coefficients in all of these are constants. Such equations arise in the study of
gravitation, electromagnetism, perfect fluids. elasticity. heat transfer, and quan-
tum mechanics. Of great importance in the study of these equations are their
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elementary solutions. Recall that a elementary sohition E(r) is a generalized
function that satisfies the equation

LE(z) = &(z). (2.87)

This solution is not unique, because we can add to it any solution of the homo-
geneous equation. This understood, in the sequel we shall select the elementary
solution from among the particular solutions according to its behavior at infin-
ity or other appropriate criteria. In the study of these solutions the following
interesting concept is helpful. It is called Hadamard's method of descent:

Given the solution of a partial differential equation in R**}, we can find
its solution in R™ or in a still lower dimension. In doing so, we descend from
the higher-dimensional problem to a lower-dimensional one. For instance, the
solution of the initial value problem for the wave equation in two dimensions
can be obtained from that in three dimensions. Specifically, let us consider a
linear partial differential equation

a'mlﬂ-l-l

in the space R™**! of variable (1, xn.1), where z = (z),...,%,), D is 8/0%;.
-‘_‘1:"'1“: IEI}J{R“}?

P
£(p.52 ) =3 5o Le(D) + Lo(D), (2:39)

n+41

2(0,52= ) u= @) 0 8lons, (238)

and Lg(D) are partial differential operators involving the variables z,..., n.

When we say that the generalized function g € T'(R**!) allows the contin-
uation over functions of the form @(z)1(x,+1) where ¢ € D(R™), we mean the
following: Given an arbitrary sequence of functions y,(z.41), m = 1,2,...,
belonging to D(R'), where R’ is the space with variables X,.; and converging
to 1 in RYi.e.1(z.41)], then there is the limit

Jim {g, p(@)m(Ear1)} = (9, (@) L(Ent1)} = (g0: ) (2.40)

€ D(R"). In view of the completeness of T, we find that gg € D'(R").
Specifically, for g(z) such that g(z} = f{z) ® §(2n41), the inhomogeneous
term in {2.38), we have

(0,0} = lim (g(z), (= )tbm(Tn1))
= lim (f(2) ® 0{zas1), (2} (2rr1))
= lim (f(x), d(Zns1)oT)thm(Tnsr))
= Jim {f(z), p(x)ym{0))
= {fz). wlz)), veD.
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Accordingly, the method of descent can be stated as follows: If the solution
u € D'(R*') of (2.37) allows the continuation {2.40), then the distribution
ug € D'(R") is the solution of the equation

Lo(D)up = f(z). (2.41)

For instance, if the locally integrable function E(z,t) is the elementary so-
lution of the operator L{D, 8/8t), then the distribution

Ea) = [ B d, (2.42)

is the elementary solution of the operator Ly. Indeed, in view of the Lebesgue
theorem on the passage of the limit under the integral sign, we have

Jim (B, 0, p()m(®) = lim_ [ B(a,hp(oim(@)dads
f E(z, yo(z)dadt

= fg::r (f_:E(zﬂdf)

= {En(=z), plx)),

where Ey is defined in (2.42) and p € D. Moreover, this limit does not depend
on the sequence v,,(t). Here Ej(z) is the elementary solution of the operator
Ly, as required.

Proposition 2.4.1 Lei L be the operator defined by

ad k
L—E—C‘:} (243]

where OF is the Diamond operator iterated k-times defined by

-5 -(Ea)]

P+ g = n is the dimension of R*, (z1,%3,...,2Zn) € R™, t € (0,00), k is @
postiive integer and ¢ i5 a positive constant. Then we obiain

1 P 2 Py 2\ *
E@t) = g5 fn exp | (ga‘*) -2 a;’) t+i(€,2)| dE

=p+1

(2.44)
as a elementary solution of (2.43) in the spectrum Q C R® fort > 0.
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Proof. Let LE(z,t} = §(x,t) where E(z,t) is the kernel or the elementary

solution of operator L and 4 is the Dirac-delta distribution. Thus

EE’[.-::,#} - POEE(z, t) = §(z)8(t).

Teke the Fourier transform defined by (2.21) to both sides of the equation, we

obtain

&:t] C? ((ZQ) Z f_?) ) E(‘f:t]“ [2 ]nf:ﬁ(t)

i=1 je i1

Ht) ’ P 2 P+ 2\ k
B = —2 B P | ((EE?) -1 2 E?) ) t

i=1 =p+1

Thus

where H(t} is the Heaviside function. Since H(t) = 1 for t > 0. Therefore,

= | 1 he 2 g\ k7
B¢t} = Wﬁp (Eﬁ.) .Ei{f) t

which has been already defined by (2.20). Thus
= _‘l,_ (3]
E{$,t} - (‘27]’}"-"’2 _/l‘n c E(glt}d&.

.1 i(€x) e 1
= (Eﬂ'}"ﬂ LE E[E!t}df
where {1 is the spectrum of E{z,t). Thus from {2.20)

B@t) = s [ exp | ((}:e”) )3 e:“)) +ileo)| df

for > 0.

O

Lemma 2.4.2 ([9],[22]) The functions R5j(v) and (—1)*RS.(s) are the elemen-
tary solutions of the operator [ and AR, respectively, where OF and A¥ are the
operators iterated k-times defined by (1.6) and {1.2), respectively R (v) defined

by (2.18) with & = 2k and RS, (s) defined by (2.15) with 8 = 2k.

Lemma 2.4.3 ([9]) The convolution RE(v)+* (—1)*R5.(5) is an elementary so-

lution of the operalor {* ilerated k-times and is defined by (1.16).
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Lemma 2.4.4 The functions Sy{w) * Top(2) is the elementary solutions of the
operator L¥ = LX¥LY = LELY denoted by,

: p+g 21*
[( aﬂ) z azﬂ) ‘ (2.45)

where Sox(w) and Tye(z) are defined by (2.15) and (2.17}, respectively, with v =
v =2k. The operator L} and LY are defined by (1.19) and (1.20), respectively.

Proof. We need to show that
L* (Sar(w) * Tar(2)) = LF ((=1)*(—1)%2Sae(w)) * L§ ((=1)*(5)*Taa(2)) = 6.

To prove this, see ({13], p. 223). O
Lemma 2.4.5 ([23]} Given the equation
(O+m?)*G(z) = §(z) (2.46)

where (O + m?)¥ is the ultra-hyperbolic Klein-Gordon operator iterated k times
defined by (1.21) then

Glz) = Wil (v,m)
is an elementary solution or Green function of (2.46) where W3 (v, m) is defined
by (1.22) with o = 2k
Lexama 2.4.6 ([14],[16]) Given the equation

Aky(z) =0, . (2.47)
we obtain w(z) = (—1)F1 (RE,[,:_H[S])M as a solution of (2.47) where | is a

{)
nonnegative integer with [ = (n—4)/2, n > 4 and n is even and gﬁgi,ﬂ_q[sj)
15 a function defined by (2.15) with | derivatives and 8 = 2(k — 1}.

Lemma 2.4.7 ([2]) Given the eguation _

Mulz) = Flz, uz)) (2.48)
where f is defined and has continuous first derivatives for all z € QU IR, N is
an open subset of R™ and 911 is the boundary of ). Assume that [ iz bounded on
(2 that is [f(z,ulz))| < N for all z € Q. Then we obtain a continuous function
u(z) as o unique solution of (2.48) with the boundary condition u(z) = 0 for
z € oL
Lemma 2.4.8 ([10]) Let

(e0138) + u(t) = § (2.49)
be the differential equation, where u(l) is any tempered distribution. Then u{t) =

e* REL(v) is a unique elementary solution of (2.49), where RE (v) is defined by
(2.13) with a = 2k.



