Chapter 6

App.lication of the Distributions
e®k§ to the Telegraph Equation

In this chapter, we introduce a new technique for solving the telegraph equa-
tion by using the distribution *[3%§.

6.1 Main Results

Consider the Telegraph equation

TFu(x, t) = &(z, t) (6.1)
and

Tru(z,t) = 6(z,t) (6.2)
where T¥ and T¥ are defined by (1.33) and (1.34), respectively, (x,1) € R™ x
(0, ca).

Changing the independent variables from z; to ¢, where t is the time and
putting p = 1 and ¢ = n, then the n-dimensional to be n + l-dimensional and

choosing aa = a3 ... = a, = 0 of the distribution e®[*§ , we obtain
32 3
kS = et (ﬁ » &) 8(z, 1), (6.3)

where A is the Laplace operator defined by (1.2).
Next, we recalling the Legendre's duplication of I'(z},

[(2z) = 2% 20 ()0 (2 + %}
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then the function (2.13} may reduces to the function

e LTS |
My(v)={ Fantn 1€ (6.4)
0 iftegl,
where v =¢* — 2] — -.- — 22, { is the time and

-n+1
Holy) = ARG ¥ (1-;_) I‘{%}:

the funetion M.(s) is called the hyperbolic kernel of Marcel Riesz.
By the property of d(z,t) = §(z)8(t) and using the Proposition 2.1.14 of
et§® = (£ —n)k-:i and e™*d = § we can express (6.3) for k = 1 as

gt (% - ﬁ) &z, t) = e"’*% 8 —e™ A
2
:(%- ) § — He™t§

Choosing a; = —§, it follows that

2
e (% - a) 8(z,t) = (% + Zﬁ% + 8% - &) é(z, t} = T18(x,¢t). (6.5)

Now, convolution both sides of {6.5) by the distribution e~ (ffg - -&) 3(z, t),
k-times we obtain

B a‘} az
g Bt (-éﬁ—ﬂ-.)ﬁ{m,t]*---te_m (E —&) Sz, t)=Tyd*---«Tid. (6.6)

Then we have : .
a
g5t (—Eﬁ — L\.) d(z,t) = Tl"ti. (6.7)

Solving the Telegraph equation (6.1} after substituting (6.7) in to {6.1) and
using the Lemma 2.4.9, thus

Tulz,1) = e (:—; - &) ) 8(z, t) * u(z,t) = d(z, ), (6.8)

convolving both side by e=#*Ma,(v) of (6.8), we obtain
| u(z, t) = e P My (v), (6.9)
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the elementary solution of the Telegraph equation of the (6.1).
We next consider the distribution e™% with k= 1, o) = =3, p=n+1,
g =0 and =; ={. then we obtain

i
-4t e -
[ (ﬁi-&) dlz,t)=¢ @E‘F " AS

2
= (E +ﬁ) 0+ Ne PP

aﬂ
(&2 +2ﬂ + g +r‘_‘u.)

Similarly, mnvulvmg the distribution e~?* (—5 + r‘}.) d(x, 1), k-times we obtain
the operator T as

.5t (-;—g 3 .a.) 5z t) = THS, (6.10)

where TF is defined by (1.34), (z.£) € B™ x (0,00). By Legendre’s duplication
of I'(z) with p =n + 1 and g = 0, the hyperbolic kernel reduce to the elliptic
kernel of Marcel Riesz denoted by Ry(s) = s™ "2/ W, . (}), where s* =
2+ x5+ -+ 22 and W, (A) = a"H223T(A/2) /T ({(n+1 — A}/2). Solving
the Telegraph equation (6.2} after substituting (6.10) in to (6.2) and using the
Lemma 2.4.2, see also [11], we have

k
Thu(z, t) = e~ (% + ﬂ) 8(x, 1) # w{z, t) = 8(x, 1), (6.11)

convolving both side by e #{—1)* Ry (s) of (6.11), we obtain
u(z,t) = e *(—1)"Ruls), (6.12)
the elementary solution of the Telegraph equation of the {6.2) as required.

6.2 Example

In this section, we want to show an example about application of the distribu-
tions to the telegraph equation.

Example 6.2.1 We now to fine the elementary solution of the equation

& -u[:: t) -+ Eﬁ&tu{r t) + FPrul(z, 1) — Ca u[z,t} (6.13)
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with the initial conditions
u(x, 0) = 0, %u(:&, 0} = &{x) (6.14)

where §(z) is the Dirac-delta function.
Now, we consider the equation

%u[m, t) + Eﬁ%u[z, ) + BPulz, t) — aiu[z, t) = &§(x)d(t). (6.15)

2
Taking the Fourier transform to both side of the equation (6.15)

%ﬁ{&t} + Eﬁ%ﬁ(& t) + BAa(E, 1) + E2a(E,t) = 6(t).  (6.16)

Now consider the equation

9
ar

with the initial conditions

(g, 1) + Eﬁ%ﬁ.(E,t] + BPA(E, t) + %ule, 1) =0 (6.17)

#(£,0) =0, %ﬂ(&ﬁ] =1

Then we obtain ¢(¢,) as a solution of equation (6.17) where

\ e~ Bt , .
P(&.t) = 5 (expléct] — exp{—it]).
Thus equation (6.16) has solution

(€, t) = H(t)o(E,t)

where H(t) a Heaviside function. Since the right hand side of the equation is
tempered distribution, but they are not locally integrable. Thus we can not find
the inverse Fourier transform u(z.t). So, we define

F°(€:t) = e748(E,1)
md e
#(6,8) — $(£,t)  uniformly as € — 0.
Thus

. Bt [ (it _ g-lebitie
AGOEEE z ]

15 locally integrable and then we can find the inverse Fourier transform &(z.t).
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Now
—t e+it

I e.z—i e™* ds.

#—il

Applying the inverse Fourier transform, we obtain

¥ (@0 = 5 f G (E, 1) dE

e _]:m T R
=— e*Fe™™ dsdt.
4mi e—it f—m
By directly computation, we have

e*Te % df = 2

e s2 4+ gz’

Thus
g~ht et o

¢ (x,t) = =—

dmi e—it 32+I2

- g (In[(e + it)® + x?] — Inj(e — it)* + 2%) .

Let € — 0, we obtain
-pt
oz, £) = ZT: (In[(2® — £2) + 0i] — In[(z* — £) — 0d]) .
Since, we have
In[(z® — £) + 0i] — In[(z® — £3) — 01] = 2miH (2 — 7).

Thus, we obtain "
oz, t) = ETH(E — 7).

Thus equation (6.13) has
=t
E(x,t) = H(t)$(z,t) = %H(F — 2?)H ()

as elementary solution.
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Now, we using the distribution €™ J*§ for solve this problem. Recalling the

solution of the telegraph equation (6.9) of the telegraph operator {6.1) with
k=1, we have

u(z.t) = e~ ¥ My(w).
Putting v = #* — 22, ¢ > 0 and n = 1, we obtain

-Gt

u(z.t) = ET

as elementary sclution.



