TABLE OF CONTENTS

		Page
ACI	KNOWLEDGEMENT	iii
ABS	STRACT	iv
LIS	T OF TABLES	xi
LIS	T OF FIGURES	xvi
ABI	BREVIATIONS AND SYMBOLS	xviii
CHA	APTERS	
I.	INTRODUCTION	1
II.	LITERATURE REVIEWS	3
	1. Lactic acid bacteria	3
	2. Ecology of lactobacilli	13
	3. Probiotics	13
	4. Antimicrobial activity by lactobacilli against pathogens	15
	5. Antimicrobial mechanism of bacteriocins	20
	6. Antimicrobial activity of bacteriocins against microbial	
	pathogens	22
	7. Oral microbial ecology	25
	8. Oral pathogens	28
	9. Porphyromonas gingivalis	33
III.	OBJECTIVES	46
IV.	MATERIALS AND METHODS	47
	1. Lactic acid bacteria	47
	1.1 Collection of the microorganisms	47
	1.2 Selection of antimicrobial lactic acid bacteria	47
	1.3 Identification of potent antimicrobial lactic acid bacteria	48
	1.4 Determination of casein utilization	49
	1.5 Determination of antimicrobial susceptibility	49
	1.6 Analysis of growth curve and generation time	50

TABLE OF CONTENTS (continued)

		Page
	2. Characterization of cell-free supernatants	50
	2.1 Preparation of cell-free supernatants	50
	2.2 Determination of pH sensitivity	51
	2.3 Determination of heat sensitivity	51
	2.4 Determination of enzyme sensitivity	52
	2.5 Extraction of crude bacteriocin by ammonium sulphate	
	precipitation	52
	2.6 Total protein assay	53
	2.7 One-dimension polyacrylamide gel electrophoresis	53
	2.8 Two-dimension polyacrylamide gel electrophoresis	54
	3. Partial purification of crude bacteriocins	55
	3.1 Anion exchange column chromatography	55
	3.2 Determination of the antimicrobial activity	56
	3.3 Effect of the solvent towards the antimicrobial activity	56
	3.4 Determination of bacteriocin unit	57
	3.5 Determination of minimum inhibitory concentration (MIC)	58
	3.6 Time-killing assay	58
v.	RESULTS	60
	1. Lactic acid bacteria	60
	1.1 Selection of antimicrobial lactic acid bacteria	60
	1.2 Identification of potent antimicrobial lactic acid bacteria	60
	1.3 Determination of casein utilization	61
	1.4 Determination of antimicrobial susceptibility	62
	1.5 Analysis of growth curve and generation time	63
	2. Characterization of cell-free supernatants	65
	2.1 Determination of pH sensitivity	65
	2.2 Determination of heat sensitivity	65

TABLE OF CONTENTS (continued)

			Page
	2.3 Determ	nination of enzyme sensitivity	68
	2.4 Extrac	tion of crude bacteriocin by ammonium sulphate	
	pre	cipitation	68
	2.5 Total p	protein assay of crude bacteriocin	76
	2.6 One-di	mension polyacrylamide gel electrophoresis	76
	2.7 Two-d	imension polyacrylamide gel electrophoresis	77
	3. Partial purifi	cation of crude bacteriocins	80
	3.1 Anion	exchange column chromatography	80
	3.2 Determ	nination the antimicrobial activity	88
	3.3 Effect	of the solvent towards the antimicrobial activity	88
	3.4 Deterr	nination of bacteriocin unit	90
	3.5 Deterr	nination of minimum inhibitory concentration (MIC)	92
	3.6 Time-	killing assay	92
VI.	DISCUSSION		93
VII.	SUMMARY		10:
VIII.	REFERENCE	S	10
IX.	APPENDICES	AT TIMITYER	13
	Appendix A	Chemical and media preparations	13
	Appendix B	Lactic acid bacteria	14
	Appendix C	Characterization of cell-free supernatants	16
	Appendix D	Partial purification of crude bacteriocins	17

LIST OF TABLES

Tab	le	Page
1	The habitats of genus Lactobacillus	9
2	Taxonomy of lactobacilli which based on the phenotypic	
	subdivision	11
3	The examples of bacteriocins	17
4	The antimicrobial studies of Lactobacillus bacteriocins against the	
	gastrointestinal pathogens	23
5	The antimicrobial studies of Lactobacillus bacteriocins against the	
	vaginal pathogens	24
6	The antimicrobial studies of Lactobacillus against the oral pathogens	25
7	Oral human microorganisms	26
8	Proinflammatory cytokine induction by P. gingivalis and its	
	cellular constituents	40
9	P. gingivalis proteinases; substrate specificity and genes	43
10	Identification of potent antimicrobial lactic acid bacteria by	
	API® software database	60
11	Identification of potent antimicrobial lactic acid bacteria by	
	BBL™ software database	61
12	Antibiogram patterns of the selected lactobacilli by using	
	agar-disc diffusion technique	62
13	The generation time of the potent antimicrobial lactobacilli	65
14	Total protein concentration of each pooled fraction of the	
	partial purified bacteriocin by using BCA protein assay kit	85
15	Bacteriocin purifications of L. paracasei subsp. paracasei strain	
	B85/4, B282 and B63/8	91
16	The killing times of ampicillin, B85/4 cell-free supernatant, partial	
	purified bacteriocin at MIC level and partial purified bacteriocin	
	at 2-fold MIC level	92

Table		Page
B1	The antimicrobial activity of the potent antimicrobial lactic	
	acid bacteria against various tested bacteria	148
B2	Biochemical identification table of some lactobacilli according	
	to API 50 CHL V5.0 biochemical identification software	149
B 3	Biochemical reactions of 3 potent antimicrobial producing lactic acid	151
	bacteria compared with 4 standard strains of lactobacilli according	
	to API 50 CHL kit	
B4	Biochemical reactions of 3 potent antimicrobial lactic acid	
	bacteria compared with 4 standard strains of lactobacilli	153
	according to BBL Crystal ID kit	
B5	The zone diameters interpretive standard of S. aureus ATCC	
	25923 provided by Oxoid®	154
В6	The zone diameters in millimeter of the potent antimicrobial	
	lactobacilli to antimicrobial agents	155
В7	The calculations of growth curve of L. paracasei subsp.	
	paracasei B85/4 according to their OD ₆₀₀ and viable counts	156
B8	The calculations of growth curve of L. paracasei subsp.	
	paracasei B282 according to their OD600 and viable counts	158
B9	The calculations of growth curve of L. paracasei subsp.	
	paracasei B63/8 according to their OD600 and viable counts	160
C1	The effect of pH on the antimicrobial activity of the potent	
	antimicrobial producing lactobacilli B85/4 isolate and	163
	MRS broth against P. gingivalis W50	
C2	The effect of pH on the antimicrobial activity of the potent	
	antimicrobial producing lactobacilli B282 isolate and	
	MRS broth against P. gingivalis W50	165

Table	e	Page
C3	The effect of pH on the antimicrobial activity of the potent	
	antimicrobial producing lactobacilli B63/8 isolate and	
	MRS broth against P. gingivalis W50	167
C4	The effect of heat on the antimicrobial activity of the potent	
	antimicrobial producing lactobacilli B85/4 isolate and	
	MRS broth against P. gingivalis W50	169
C5	The effect of heat on the antimicrobial activity of the potent	
	antimicrobial producing lactobacilli B282 isolate and	
	MRS broth against P. gingivalis W50	170
C6	The effect of heat on the antimicrobial activity of the potent	
	antimicrobial producing lactobacilli B63/8 isolate and	
	MRS broth against P. gingivalis W50	171
C7	The effect of proteolytic enzyme on the antimicrobial activity	
	of the potent antimicrobial producing lactobacilli 85/4	
	isolate and MRS broth against P. gingivalis W50	172
C8	The effect of proteolytic enzyme on the antimicrobial activity	
	of the potent antimicrobial producing lactobacilli B282	
	isolate and MRS broth against P. gingivalis W50	173
C9	The effect of proteolytic enzyme on the antimicrobial activity	
	of the potent antimicrobial producing lactobacilli B63/8	
	isolate and MRS broth against P. gingivalis W50	174
C10	Total protein concentration and protein increasing folds of 3	
	isolates of the potent antimicrobial producing lactobacillus	175
C11	The absorbance at 590 nm of standard BSA at 590 nm	176
C12	The absorbance at 590 nm and total protein calculation of each	
	crude bacteriocin and MRS broth	177

Table		Page
D1	The elution profiles of B85/4's crude bacteriocin by using anion	
	exchange column chromatography	179
D2	The elution profiles of B282's crude bacteriocin by using anion	
	exchange column chromatography	181
D3	The elution profiles of B63/8's crude bacteriocin by using anion	
	exchange column chromatography	183
D4	The elution profiles of MRS's crude proteins by using anion	
	exchange column chromatography	185
D5	The inhibition zone of each purified fractions which obtained from an	
	anion exchange column chromatography	187
D6	Total protein concentration of each step of the purification of	
	bacteriocin	188
D7	The inhibition zone demonstrated by the partially purified bacteriocin	
	of B85/4 in each solvent	189
D8	The inhibition zone demonstrated by the partially purified bacteriocin	
	of B282 in each solvent	190
D9	The inhibition zone demonstrated by the partially purified bacteriocin	
	of 63/8 in each solvent	191
D10	Bacteriocin unit of each sample of B85/4 against P. gingivalis W50	192
D11	Bacteriocin unit of each sample of B282 against P. gingivalis W50	194
D12	Bacteriocin unit of each sample of B63/8 against P. gingivalis W50	196
D13	The P. gingivalis W50 growth curve	198
D14	The time killing assay against P. gingivalis W50 at the MIC of	
	ampicillin	199
D15	The time killing assay against P. gingivalis W50 at the MIC of	
	B85/4's supernatant	200

Table		Page
D16	The time killing assay against P. gingivalis W50 at the MIC of	
	B85/4's partially purified bacteriocin	201
D17	The time killing assay against P. gingivalis W50 at 2-folds MIC	
	of B85/4's partial purified bacteriocin	202

LIST OF FIGURES

Figu	ire	Page
1	Homolactic fermentation scheme of lactic acid bacteria	4
2	Heterolactic fermentation scheme of lactic acid bacteria	5
3	Hypothesized relationship between the addition of species	
	during microbial succession leading to the development of	
	gingival inflammation	33
4	The casein utilization of B85/4, B282, B63/8, L. plantarum TISTR	61
	541 and L. casei TISTR 390	
5	The MIC of clindamycin after tested towards B282 isolate	63
6	The growth curves of the potent antimicrobial lactobacilli,	
	B85/4, B282 and B63/8	64
7	The effect of pH toward the antimicrobial activity of the tested	
	lactobacilli, B85/4, B282 and B63/8	66
8	The effect of heat toward the antimicrobial activity of the tested	
	lactobacilli, B85/4, B282 and B63/8	67
9	The effect of enzyme toward the antimicrobial activity of the	
	tested lactobacilli, B85/4, B282 and B63/8	69
10	The affected proteins of B85/4 and B282 after characterized	70
11	The affected proteins of B63/8 and MRS broth after characterized	71
12	Crude bacteriocins of B85/4 extracted by ammonium sulfate	
	precipitation	72
13	Crude bacteriocins of B282 extracted by ammonium sulfate	
	precipitation	73
14	Crude bacteriocins of B63/8 extracted by ammonium sulfate	
	precipitation	74
15	Crude protein of MRS broth extracted by ammonium sulfate	
	precipitation	75
16	The protein patterns of each crude bacteriocins	76

xvii

LIST OF FIGURES (continued)

Figu	re	Page
17	The proteins pattern of B85/4's crude bacteriocins observing by	
	2D-PAGE	77
18	The proteins pattern of B282's crude bacteriocins observing by	
	2D-PAGE	78
19	The proteins pattern of B63/8's crude bacteriocins observing by	
	2D-PAGE	79
20	The purification chromatograms of the B85/4's bacteriocins	
	according to an anion exchange column chromatography	81
21	The purification chromatograms of the B282's bacteriocins	
	according to an anion exchange column chromatography	82
22	The purification chromatograms of the B63/8's bacteriocins	
	according to an anion exchange column chromatography	83
23	The purification chromatograms of the MRS's crude proteins	
	according to an anion exchange column chromatography	84
24	The protein patterns of the partially purified bacteriocins	
	extracted from B85/4 and B282	86
25	The protein patterns of the partially purified bacteriocins	
	extracted from B63/8 and MRS	87
26	The percentage of residual activity of unbound fraction and pooled	
	fractions 23-27 of B85/4, B282 and B63/8 in each solvent	89
C1	The standard curve of BSA from the BCA protein assay	176
D1	Bacteriocin curve of each sample of B85/4 against P. gingivalis W50	193
D2	Bacteriocin curve of each sample of B282 against P. gingivalis W50	195
D3	Bacteriocin curve of each sample of B63/8 against P. gingivalis W50	197

ABBREVIATIONS AND SYMBOLS

% Percentage

%C Crosslinker, acrylamide monomer ratio of the monomer

solution

%T Acrylamide monomer concentration

α Alpha

β Beta

κ Kappa

°C Degree Celsius

2D-PAGE Two-dimensional polyacrylamide gel electrophoresis

μA Microampere

μg Microgram

 $\begin{array}{ccc} \mu l & & \text{Microlitre} \\ \mu m & & \text{Micrometre} \end{array}$

aa Amino acid

ADP Adenosine 5'-diphosphate

ANR Anaerobe

APF Aggregation-promoting factor

AR Analytical
Arg Arginine

Asn Asparagine

ATCC American Type Culture Collection

ATP Adenosine 5'-triphosphate

BCA Bicinchroninic acid

B_f Final number bacteria

B_i Initial number bacteria

BSA Bovine serum albumin

BU Bacteriocin unit

C Cytosine

CFU Colony forming unit

CHAPS 3-[(3-cholamidopropyl)-dimethyl-ammonia]-1-propane

sulfonate

cm Centimetre

CO₂ Carbon dioxide

Cys Cysteine
Da Dalton

DMSO Dimethyl sulfoxide

DNA Deoxyribonucleic acid

ESI-MS Electrospray ionization mass spectrometry

et ali (and colleagues)

[Fe³⁺PPIX]₂O Iron (III) porphyrin

fimA Fimbrillin A

FPLC Fast-Protein Liquid Chromatography

g Gram Guanine

Gly Glycine

GM-CSF Granulocyte macrophage colony-stimulating factor

GRAS Generally regarded as safe

hag Hemagglutinin gene

Hag Hemagglutinin protein

hem Hemin-regulated gene

HCl Hydrochloric acid

HmuR Hemoglobin-hemin receptor

HPLC High-Performance Liquid Chromatography

hrs. Hours

i.e. id est (that is)

IEC Ion exchange chromatography

IgA Immunoglobulin A
IgE Immunoglobulin E

IL. Illinois state

IL Interleukin

IPG Immobilized pH Gradients

K Potassium

KC Kuffer cells cytokine

kDa Kilodalton

kgp Lysine-specific cysteine proteinase gene

kVh Kilovolt

1 Litre

LAB Lactic acid bacteria
LPS Lipopolysaccharide

Lys Lysine Molar

MCP Macrophage chemoattractant protein

MD Maryland mg Milligram

MIC Minimal inhibitory concentration

MIRCEN Microbiological Resources Centre

ml Millilitre

MMP Matrix metalloprotease

mMRS Modified De Mann-Rogosa-Sharpe broth

mRNA Messenger ribonucleic Acid

MW Molecular weight

N Normality

NaCl Sodium Chloride

NAD Nicotinamide Adenine Dinucleotide

NADP Nicotinamide Adenine Dinucleotide Phosphate

NaOH Sodium hydroxide

NC. North Carolina state

NF-κB Nuclear factor kappa beta

NK Natural killer

mAu Milliabsorbance unit

nm Nanometre

No. Number

NY. New York state

ON. Ontario state

OH. Ohio state

p Probability

P Phosphate

PAGE Polyacrylamide gel electrophoresis

PBS Phosphate buffer saline

PEP-PTS Phosphoenolpyruvate phosphotransferase system

PG Packing group

pH power of Hydronium

pI Isoelectric point

PMF Proton motive force

PMN Polymorphonuclear leukocytes

prtC Protease collagenase gene

PS Polysaccharide

rgp Arginine-specific cysteine proteinase gene

Rgp Arginine-specific cysteine proteinase

RP Reverse phase

rpm Revolution per minute

rRNA Ribosomal ribonucleic acid

sec Second

SDS Sodium dodecyl sulfate

SOD Superoxide dismutase

spp. Species

TEMED N,N,N',N'-tetra-methyl-ethylenediamine

Th T-helper cell

TISTR Thailand Institute of Scientific and Technological

Research

tla TonB-linked adhesion gene

TNF Tumor necrosis factor

Tyr Tyrosine

USA The United States of America

UV Ultraviolet

Val Valine

w/v Weight by volume

Xaa Unspecified amino acid

