TABLE OF CONTENTS

	Page
ACKNOWLEDGEMENT	iii
ABSTRACT ENGLISH	iv
ABSTRACT THAI	viii
TABLE OF CONTENTS	xi
LIST OF TABLES	xvi
LIST OF FIGURES	xvii
ABBREVIATIONS	XX
CHAPTER I: INTRODUCTION	
A. INTRODUCTION	
I. Bilirubin Metabolism	1
II. Function of Bilirubin in Serum	3
III. Hyperbilirubinemia and Clinical Significance of Bilirubin in Human Serum	3
IV. Neonatal Hyperbilirubinemia	5
V. Toxic effects of bilirubin on cellular functions and fragmentation of DNA in brain tissue	8
BIJTERATURE REVIEW	
	10
I. Neonatal Jaundice and Bilirubin Encephalopathy	10
II. Unconjugated Bilirubin Toxicity in Neural Cells	11

III	Association of Albumin and Bilirubin in Serum Effect to Cytotoxicity	11
IV	. Mechanism of Unconjugated Bilirubin Toxicity in Neural Cells	13
V.	Mechanism of Unconjugated Bilirubin Toxicity in Neural Cells Neonates	14
VI	Effect of Concentrations and Times of Unconjugated Bilirubin Expose to the cells	15
VI	I. Role of Bilirubin Induced Cells Apoptosis	15
VI	II.Evidence Involved in Initiation of DNA Degradation	16
IX	Alternative Study on DNA Fragmentation in vitro	20
C. OF	BJECTIVES	22
CHAP A. M	PTER II: MATERIALS AND METHODS ATERIALS	
I.	Instruments	23
II.	Chemicals and Reagents	24
B. MI	ETHODS	
I.	Spectrophotometric Determination of Bilirubin Absorption Spectra	25
II.	Investigation of the Absorption Spectra of Bilirubin in the Presence of Effectors by Spectrophotometric Method	25
	1. The effect of transition metal ions on bilirubin absorption spectra	25
	1.1 Types of transition metal ions	25
	1.2 The effect of transition metal ion concentrations on the absorption spectra of bilirubin	26

2. The effect of albumin on the interaction of transition metal ion 26 with bilirubin observed by Spectrophotometric method

Page

	I age
3. Confirmation of bilirubin binding with interaction metal ion	27
III. Method for Investigation of the Effect of Bilirubin Interacted with Transition Metal Ions on DNA Degradation <i>in vitro</i>	28
1. Investigation of the effect of bilirubin with or without albumin and transition metal ions concentrations on DNA degradation <i>in vitro</i>	28
1.1 The effect of bilirubin concentrations on the degradation of DNA with fixed transition metal ion concentration.	28
1.2 The effect of transition metal ion concentrations on DNA degradation with fixed bilirubin concentrations	28
2. Time dependent kinetic of DNA degradation	29
3. Protocol of agarose gel electrophoresis	29
4. Quantitation of DNA degradation	30
4.1 S ₁ Nuclease digestion of DNA	30
4.2 The colorimetric diphenylamine reaction	31
4.2.1 DNA standard graph	31
4.2.2 Percentage of DNA hydrolysis	32
4.2.3 Determination of 100% DNA hydrolyzed	32
IV. Investigation of the Mechanism of Bilirubin Interacted with Metal Ion Influenced DNA Degradation <i>in vitro</i>	32
1. Standard graph of malondialdehyde (MDA)	33
2. Free radical generation resulted from the interaction of bilirubin with metal ions	SI 33
3. Investigation of free radical generated by bilirubin degradation <i>in vitro</i> by the MDA assay	34

xiii

Page

CHAPTER III: RESULTS

I.	Spectrophotometric Determination of Bilirubin Absorption Spectra	36
II.	Investigation of the Absorption Spectra of Bilirubin in the Presence of Effectors by Spectrophotometric Method	37
	1. The effect of transition metal ions on bilirubin absorption spectra	37
	1.1 Types of transition metal ions	37
	1.2 The effect of transition metal ion concentrations on the absorption spectra of bilirubin	39
	2. Confirmation of bilirubin binding with interaction metal ion	42
	3. The effect of albumin on bilirubin-transition metal ion complex on the absorption spectra of bilirubin	43
III.	Investigation of the Effect of Bilirubin interacted with Transition metal ions on DNA Degradation <i>in vitro</i>	48
	1. Investigation of the effect of bilirubin and transition metal ions concentrations on DNA degradation <i>in vitro</i>	48
	1.1 Quantitation of DNA degradation	48
	1.2 The effect of bilirubin concentrations on the degradation of DNA <i>in vitro</i> with fixed transition metal ion concentration	49
	1.3 The effect of transition metal ions concentrations on DNA degradation <i>in vitro</i> at fixed 500 μM bilirubin concentrations	52
	2. Time dependent kinetic of DNA degradation	56
IV.	Investigation of the Mechanism of Bilirubin Interacted with Metal Ion Influenced DNA Degradation <i>in vitro</i>	59
	1. Standard graph of malondialdehyde (MDA)	59
	2. Free radical generation resulted by the interaction of bilirubin with metal ions	61
	2.1 The inhibition effect of free radical scavengers on bilirubin–CuCl ₂ complex	61

page

	Page
2.2 The inhibition effect of free radical scavengers on bilirubin – FeCl ₂ complex	64
2.3 The inhibition effect of free radical scavengers on bilirubin – ZnCl ₂ complex	67
3. Investigation of free radical generation by the MDA assay by spectrophotometric scanning	73
CHAPTER IV: DISCUSSION AND CONCLUSION	
A. DISCUSSION	76
B. CONCLUSION	85
REFERENCES	86
APPENDICE	96
I. Appendix A. Reagent Preparation	97
II. Appendix B. Confirmation of Cu(I) Production by Bathocuproine	102
III. Appendix C. Absorption spectra of bilirubin-Cu(II) complex with	103
And without scavenger (thiourea)	
CURRICULUM VITAE	104

ลิขสิทธิ์มหาวิทยาลัยเชียงใหม่ Copyright[©] by Chiang Mai University All rights reserved

XV

LIST OF TABLES

Table

1. Inhibition of calf thymus DNA degradation after treatment with bilirubin and transition metal ions (200 μ M each) in the presence of free radical scavengers (50 mM in all case).

72

Page

ลิขสิทธิ์มหาวิทยาลัยเชียงใหม่ Copyright[©] by Chiang Mai University All rights reserved

LIST OF FIGURES

Fi	igu	re SAGIO	Page
	1	Enzymatic mechanism of bilirubin formation.	2
	2	Proposed physiologic role of bilirubin: Oxidation-reduction cycles for bilirubin and GSH.	4
	3	The absorption spectra of 50 μ M (2.9 mg %) bilirubin dissolved in 10 mM Tris-HCl buffer, pH 7.5 in a Shimadzu UV -2450 Spectrophotometer	36 r.
	4	Effect of 3 types of transition metal ions on bilirubin absorption spectra.	38
	5	The effect of CuCl ₂ [Cu(II)] on the absorption spectrum of bilirubin.	40
	6	The effect of transition metal ion concentrations on the absorption spectra of bilirubin (500 μ M).	41
	7	The absorbance peaks of bilirubin or quercetin interacted with Cu(II) were compared with reference bilirubin absorption spectrum.	42
	8	The effect of albumin on the absorption spectra of bilirubin-transition metal ion complex. Albumin as a molar ratio of bilirubin; 0.5:1.0, on the selected optimal bilirubin concentrations (500 μ M).	44
	9	The effect of albumin on the absorption spectra of bilirubin-transition metal ion complex. Albumin as a molar ratio of bilirubin; 1.0:1.0, on the selected optimal bilirubin concentrations (500 μ M).	46
	10	The effect of albumin on the absorption spectra of bilirubin-transition metal ion complex. Albumin as a molar ratio of bilirubin; 1.5:1.0, on the selected optimal bilirubin concentrations (500 μ M).	47 1 1 1
	11	Standard graph of DNA by Diphenylamine reaction.	48
	12	The effect of increasing bilirubin concentrations interacted with fixed concentration of transition metal ion on DNA degradation <i>in vitro</i> .	50

xvii

xviii

Figure		Page
13 Th (re of	he acid soluble DNA hydrolyzed (%) estimated by the DPA reaction esulted by the interactions of increasing with bilirubin fixed concentration f transition metal ion).	51
14 Th fiz	the effect of increasing interaction ion concentrations interacted with xed concentration of bilirubin caused DNA degradation <i>in vitro</i> .	53
15 Th (re fiz	he acid soluble DNA hydrolyzed (%) estimated by the DPA reaction esulted by the interactions of increasing transition metal ion with xed concentration of bilirubin).	54
16 Do de	egradation of calf thymus DNA by the bilirubin-Cu (II) complex etected by DPA reaction.	55
17 Ti of	ime dependent kinetic of DNA degradations caused by the interactions f bilirubin with transition metal ions.	57
18 Th co	he time dependent kinetic of DNA degradations by the bilirubin-Cu(II) omplex.	58
19 St	tandard graph of MDA assay.	60
20 Tł	he typical absorbance peak of MDA by TBA reaction.	60
21 Th ca	he inhibition effect of free radical scavengers on DNA degradation aused by bilirubin-CuCl ₂ interaction.	62
22 Th ef	he decrease in percentage of DNA hydrolysis by the inhibition free radical scavengers (200 μ M bilirubin-200 μ M CuCl ₂).	63
23. T ca	The inhibition effect of free radical scavengers on DNA degradation aused by bilirubin-FeCl ₂ interaction.	65
24. Thef	he decrease in percentage of DNA hydrolysis by the inhibition fect of free radical scavengers (200 μ M bilirubin-200 μ M FeCl ₂).	66
25 Th ca	he inhibition effect of free radical scavengers on DNA degradation aused by bilirubin- $ZnCl_2$ interaction.	68
26 Th ef	he decrease in percentage of DNA hydrolysis by the inhibition feet of free radical scavengers (200 μ M bilirubin-200 μ M FeCl ₂).	69

Figu	re	Page
27	Inhibition of calf thymus DNA degradation after treatment with bilirubin and transition metal ions in the presence of free radical scavengers (thiourea, sodium azide and mannitol).	71
28	The scanning of the reaction of bilirubin in the presence and absence of $CuCl_2$.	74
29	The scanning of the reaction containing bilirubin and DNA in the presence and absence of CuCl ₂ .	75
30	Detection of bilirubin induced Cu(I) production by bathocuproine.	102
31	The scanning of the reaction of bilirubin- $CuCl_2$ in the presence and absence of scavenger (thiourea).	103

ลิขสิทธิ์มหาวิทยาลัยเชียงใหม่ Copyright[©] by Chiang Mai University All rights reserved

ABBREVIATIONS

percentage % microgram μg μl microlitre micromolar μM Abs absorbance ATP adenosine tri-phosphate bovine serum albumin BSA cupric chloride CuCl₂ CO carbon monoxide carbon dioxide CO_2 Cu (II) cupric ion Cu copper deciliter dL deoxyribonucleic acid DNA diphenylamine DPA ethylene diamine tetra-acetic acid EDTA FeCl₂ ferrous chloride ferrous ion Fe(II) gram g HCl hydrochloric acid L litre

xxi		
LDH	lactate dehydogenase	
М	molar	
MDA	malondialdehyde	
mg	milligram	
mL	millitre	
mM	millimolar	
N	Normal	
N ₂	nitrogen	
NaOH	sodium hydroxide	
nm	nanometer	
NO	nitric oxide	
O ₂	oxygen	
°C	degree Celsius	
PARP	poly ADP ribose polymerase	
RNA	ribonucleic acid	
S	sodium azide	
Т	thiourea	
TAE	Tris Acetate EDTA	
ТВА	thiobarbituric acid	
rig	reaction contained DNA dissolved in Tris-HCl	
TD500BC	reaction in Tris-HCl contained 500 µg DNA, bilirubin and cupric chloride	
TDB	reaction in Tris-HCl contained DNA and bilirubin	

TDBC	reaction in Tris-HCl contained DNA, bilirubin and cupric chloride
TDBCM	reaction in Tris-HCl contained DNA, bilirubin, cupric chloride and mannitol
TDBCS	reaction in Tris-HCl contained DNA, bilirubin, cupric chloride and sodium azide
TDBCT	reaction in Tris-HCl contained DNA, bilirubin, cupric chloride and thiourea
TDBF	reaction in Tris-HCl contained DNA, bilirubin and ferrous chloride
TDBFM	reaction in Tris-HCl contained DNA, bilirubin, ferrous chloride and mannitol
TDBFS	reaction in Tris-HCl contained DNA, bilirubin, ferrous chloride and sodium azide
TDBFT	reaction in Tris-HCl contained DNA, bilirubin, ferrous chloride and thiourea
TDBM	reaction in Tris-HCl contained DNA, bilirubin and mannitol
TDBS AI UN	reaction in Tris-HCl contained DNA, bilirubin and sodium azide
TDBT	reaction in Tris-HCl contained DNA, bilirubin and thiourea
TDBZ	reaction in Tris-HCl contained DNA, bilirubin and zinc chloride
TDBZM Sht by Chia	reaction in Tris-HCl contained DNA, bilirubin, zinc chloride and mannitol
TDBZS	reaction in Tris-HCl contained DNA, bilirubin, zinc chloride and sodium azide
TDBZT	reaction in Tris-HCl contained DNA, bilirubin, zinc chloride and thiourea

xxii

xxiii			
TDC	reaction in Tris-HCl contained DNA and cupric chloride		
TDM	reaction in Tris-HCl contained DNA and mannitol		
TDS	reaction in Tris-HCl contained DNA and sodium azide		
TDT	reaction in Tris-HCl contained DNA and thiourea		
TDZ	reaction in Tris-HCl contained DNA and zinc chloride		
TDZM	reaction in Tris-HCl contained DNA, zinc chloride and mannitol		
TDZS	reaction in Tris-HCl contained DNA, zinc chloride and sodium azide		
TDZT	reaction in Tris-HCl contained DNA, zinc chloride and thiourea		
UCB	unconjugated bilirubin		
UGT1A1	UDP glucuronosyltransferase 1 family, polypeptide A1		
uv 41 III	ultraviolet		
ZnCl ₂	zinc chloride		
^z กลิกธิ์มหาวิทส			