CHAPTER 3 ## CONCLUSIONS The aim of this project was to develop a new synthetic strategy for the preparation of castanospermine 1a. This was achieved by the successful diastereoselective synthesis via the Petasis reaction to condense the three components, L-xylose, allylamine and trans-2-phenyl boronic acid which afforded the optically pure β -amino alcohol diene 176 (90% yield). To protect both the amino group and the hydroxyl group at C-4 compound 176 was treated with triphosgene to yield 180 as the major product in a yield of 53%. The three hydroxyl groups of 180 were subsequently protected. The primary hydroxyl was protect by treatment with trityl chloride and the two seconadary hydroxy groups were O-benzylated to afforded the major oxazolidinone 183 (56% yield). The key step, the RCM reaction of 183 generated the pyrrolo[1,2-c]oxazol-3one 189 (68% yield). Syn-dihydroxylation of 189 with OsO₄/NMO gave a mixture of diols 191a and 191b in a 83:17 ratio. The mixture was separated employing 2% MeOH/DCM as an eluent on silica gel column. A one pot reaction to form the cyclic sulfate 193 was performed by treatment 191a with SOCl₂/ triethylamine in DCM solution followed by oxidation with NaIO₄/RuCl₃.3H₂O in a mixture of solvents CCl₄:MeCN:H₂O. The cyclic sulfate 193 was treated with NaBH₄ in DMAC to open the cyclic sulfate ring at the less hindered position C8a of 193 then acid hydrolysis with H₂SO₄ to give the diol 194 in 63 % yield. The diol 194 was base hydrolyzed with NaOH in MeOH under microwave conditions to give the pyrrolidine triol 195 (80%). Mitsunobu cyclization of 195 was performed by treatment with DIAD/PPh₃ in THF solution to obtain the indolizidine 199 (25%) and two unexpected cyclized products 196 and 200. Indolizidine diol 199 was debenzylated with PdCl₂ under an atmosphere of H₂ to give the final product, castanospermine 1a, in an excellent yield (95%) (Scheme 37). Thus castanospermine 1a was prepared in 11 synthetic steps in 2.0% overall yield from L-xylose. Scheme 37 Reagents and conditions: (a) EtOH, rt, 48 h, 90%; (b) triphosgene, Et₃N, THF,rt, 24 h, 53%; (c) TrCl, pyridine, rt, 18 h, 87%; (d) NaH, BnBr, *n*-Bu₄NI, THF, rt, 20 h, 56%; (e) Grubbs' II catalyst, DCM, reflux, 24 h, 84%. (f) K₂OsO₄.2H₂O, NMO, acetone/water, rt, 20 h, 84%, 83% dr; (g) i. SOCl₂, TEA, DCM, rt, 30 min., ii. RuCl₃.3H₂O, NaIO₄, CCl₄:MeCN:H₂O, rt., 3 h., 64%; (h) i. NaBH₄, DMAC, rt, 6 h, ii. H₂SO₄ (conc.), H₂O, rt, 48 h, (64%) (i). NaOH, MeOH, H₂O, microwave, 110 °C, 2 h, (80%), (j). DIAD, PPh₃, THF, 0 – 5 °C, 24 h, (25%), PdCl₂ (0.08 eq), MeOH, H₂, rt,1 h, (95%). ## ลิขสิทธิ์มหาวิทยาลัยเชียงใหม่ Copyright[©] by Chiang Mai University All rights reserved