CHAPTER IV

RESULTS AND DISCUSSION

4.1 Isolated compounds from *Diospyros* spp.

A crude CH₂Cl₂ extract of dried fruits of *Diospyros ehretioides* (15.12 g) was purified by Sephadex LH-20 and HPLC, yielding four different kinds of solids: white crystals [CPD1, CPD1-I] (37.3 mg), light-brown solids [CPD2, CPD2-I to CPD2-V] (102.8 mg), orange-brown solids [CPD3, CPD3-I] (47.3 mg) and orange-red solids [CPD4, CPD4-I to CPD4-III] (79.5 mg). Due to the fact that CPD1 and CPD1-I were identified by ¹H-NMR analyses in the same manner as other CPDs, therefore, only CPD1, CPD2, CPD3 and CPD4 could be presented. They are shown in the latter.

4.1.1 Structure elucidation of the isolated compounds from *Diospyros ehretioides* fruits

White crystals [CPD1]

A crude CH_2Cl_2 extract of dried fruits of *Diospyros ehretioides* was chromatographed on Sephadex LH-20 and re-crystallized from acetone/CH₂Cl₂ to afford white crystals [CPD1]. It was identified by spectroscopic techniques.

White crystals **[CPD1]** were analysed by HR-ESI-TOF mass spectrum which indicated a molecular formula as $C_{20}H_{14}O_5$ (observed *m/z* 357.0739 (M+Na)⁺). The IR spectrum (Fig.24) showed absorption bands at 3506 and 3271 cm⁻¹ (OH stretching of two hydroxyl groups), 2860-3030 cm⁻¹ (CH stretching of aromatic), 1580 (C=C stretching of aromatic) and 1268-957 (C-O stretching and aromatic C-H stretching). The ¹H NMR spectrum (DMSO- d_6 , Fig.18) of white crystals [**CPD1**] showed signals corresponding to three oxymethine protons at δ_H 3.51 (1H, dd, J= 4.1, 4.1 Hz), 3.61 (1H, d, J= 4.1 Hz) and 5.34 (1H, dd, J= 2.1, 5.4 Hz); nine methine protons at δ_H 6.97 (H-2), 6.97 (H-7'), 7.12 (H-5'), 7.15 (H-7), 7.25 (H-6'), 7.48 (H-5), 7.53 (H-3), 7.61 (H-4) and 7.61 (H-6); singlet signal of a hydroxyl proton at δ_H 9.91 (8'-OH); and doublet signal of a hydroxyl proton at δ_H 5.56 (1'-OH).

The ¹³C NMR spectrum (DMSO- d_6 , Fig. 19) of white crystals [CPD1] showed the signals for twenty carbons, including three oxymethine carbons, sixteen sp²-hybridized carbons and a spiroketal carbon. Analyses of DEPT 135 (Fig. 19) and HMQC (Fig. 20) spectral data revealed that white crystals [CPD1] possessed twelve methine and eight quaternary carbons.

The ¹H- ¹H COSY spectral data (Fig. 21) demonstrated the correlations from H-3 (at δ_H 7.53) to H-2; H-4 (at δ_H 7.61) to H-3 and H-5; H-5 (at δ_H 7.48) to H-4 and H-6; H-6 (at δ_H 7.61) to H-7; H-6' (at δ_H 7.25) to H-5' and H-7'; H-1' (at δ_H 5.34) to H-2'. Assignments of white crystals **[CPD1]** by analysis of ¹H-¹H COSY spectral data was difficult due to signal overlapping. Therefore, the assignment of this compound was established by HMBC correlations. The HMBC spectral data (Fig.22) showed the correlations from H-6' (at δ_H 7.25) to C-4'a; H-5' (at δ_H 7.12) to C-7' and C-5'; H-2 (at δ_H 6.97) to C-1; H-6 (at δ_H 7.61) to C-5 and C-7; H-5 (at δ_H 7.48) to C-4a; H-3 (at δ_H 7.53) to C-1 and C-4.

The NOESY spectrum (Fig. 23) showed cross peaks from H-3' to H-1', and 1'-OH to H-7'. Moreover, its structure and relative configuration of white crystal **[CPD1]** was also confirmed by x-ray crystallography (Figure 3).

X-Ray crystal structure analysis of white crystal [CPD1]. Crystal data of white crystal [CPD1]: monoclinic, PZ₁, a = 9.0276(2) °A, b = 8.2443(1) °A, c =10.0741(2) °A, $\beta = 92.92(1)$ °, $\nu = 748.80(2)$ °A³, Dx = 1.483 g/cm³, Z =2. A total of 5.320 reflections were obtained by recrystallization from acetone/CH₂Cl₂. Diffraction data were acquired on a Bruker-Nonius kappa CCD diffractometer with graphitemonochromated MoK_a radiation (λ = 0.71073 °A), over the θ range of 0.998-22.465°. The crystal structure was solved by direct methods using Semi-Invariants representation (SIR-97), and then all atoms except H-atoms were refined anisotropically by a full-matrix least-squares methods on F^2 using SHELXL-97 to give a final R factor of 0.0364 ($R_w = 0.0982$ for all data) with a data to parameter ratio of 10.81:1. Crystallographic data of white crystal [CPD1] have been deposited at the Cambridge Crystallographic Data Centre under the reference No. CCDC-261640. Copies of the data can be obtained, free of charge, on application to the Director, UK CCDC, 12 Union Road, Cambridge, CB2 1EZ, (e-mail: deposit@ccdc.cam.ac.uk).

ลิขสิทธิมหาวิทยาลัยเชียงไหม Copyright[©] by Chiang Mai University AII rights reserved

Figure 3. X-ray crystal structure of [CPD1] isolated from fraction B6

The ¹H, ¹³C NMR data and the ¹H-¹H COSY, HMQC and HMBC spectral data (allowed the assignments of protons attached to an individual carbon) indicated that white crystals **[CPD1]** might be deoxypreussomerin JC1 **[70]**. Moreover, the ¹H, ¹³C NMR together with x-ray crystallography of white crystals **[CPD1]** were compared with those reported in the literature²⁵, it could assure that the white crystals **[CPD1]** is palmarumycin JC1 **[70]**.

All right eserved

Palmarumycin JC1 [70]

Orange-brown solid [CPD3]

A crude CH₂Cl₂ extract of dried fruits of *Diospyros ehretioides* was chromatographed on Sephadex LH-20 and further purified by semi-preparative HPLC, eluted with MeCN/H₂O, 65:35 to provide orange-brown solid **[CPD3]**. It was identified by spectroscopic techniques.

Orange-brown solid **[CPD3]** has been identified by direct comparison of its spectra (IR, ¹H and ¹³C NMR and MS). It was analyzed to be $C_{20}H_{14}O_5$ from mass spectrum (M \div ; *m/z* 334). The molecular formula of the compound was similar to that of palmarumycin JC1 **[70].** The IR spectrum of orange-brown solid **[CPD3]** showed characteristics of a natural keto-hydroxy deoxypreussomerin²⁵. The IR spectrum (Fig. 30) showed absorption bands at 3277 cm⁻¹ (OH stretching of hydroxyl group), 2922 cm⁻¹ (C-H stretching of aromatic), 1644-1607 cm⁻¹ (C=C stretching of aromatic), and 1269-975 (C-O stretching and aromatic C-H stretching).

The ¹H and ¹³C NMR spectra (Table 1) indicated that three aromatic rings were present in compounds **70** and orange-brown solid **[CPD3]** were similar but the substitution pattern at C-1, C-2 and C-3 was only different. The hydroxyl group at C-1 in **70** has been oxidized to a keto group in orange-brown solid **[CPD3]**. This has also been supported by the presence of a chelated hydroxyl group (δ 12.37, 1H, brs) in the latter.

The ¹H NMR spectrum (CDCl₃, Fig. 25) of orange-brown solid [**CPD3**] also revealed that C-2 was not oxygenated in orange-brown solid [**CPD3**] but C-3 was oxygenated, suggesting the placement of a hydroxyl group at C-3. The ¹H NMR spectrum of orange-brown solid [**CPD3**] showed signals corresponding to methylene proton at $\delta_{\rm H}$ 2.97 (1H, dd, J= 17.7, 3.9 Hz) and 3.26 (1H, dd, J= 17.8, 3.4 Hz), ten methine protons at $\delta_{\rm H}$ 4.62 (H-3'), 6.93 (H-2), 7.11 (H-7), 7.11 (H-5'), 7.36 (H-7'), 7.46 (H-3), 7.51 (H-6), 7.57 (H-4), 7.57 (H-5), and 7.58 (H-6'). Singlet signal of a hydroxyl proton was observed at $\delta_{\rm H}$ 12.37 (8'-OH).

The ¹³C NMR spectrum (CDCl₃, Fig. 26) of orange-brown solid [CPD3] showed the signals of 20 lines. Analysis of DEPT 135 (Fig. 26) and HMQC (Fig. 27) spectral data revealed that orange-brown solid [CPD3] possessed ten methine, one methylene and nine quaternary carbons. The ¹H and ¹³C NMR data readily indicated that orange-brown solid [CPD3] is a deoxypreussomerin derivative. The ¹H-¹H COSY (Fig. 28), HMQC (Fig. 27) and HMBC (Fig.29) spectral data allowed the assignments of protons attached to an individual carbon (Table 1).

The ¹H-¹H COSY spectral data (Fig. 28) clearly showed the correlations from H-2' (at $\delta_H 2.97$, 3.26) to H-3'; H-2 (at $\delta_H 6.93$) to H-3; H-4 (at $\delta_H 7.57$) to H-3; H-6 (at $\delta_H 7.51$) to H-7; H-5' (at $\delta_H 7.11$) to H-6' and H-6' (at $\delta_H 7.58$) to H-7'. The structure of orange-brown solid **[CPD3]** was also supported from the HMBC experiment. Assignment of orange-brown solid **[CPD3]** by analysis of ¹H-¹H COSY spectral data was difficult due to signal overlapping. Therefore, the assignment of this compound was established by HMBC correlations. The HMBC spectral data (Fig. 29) showed the correlations from H-2' (at $\delta_H 2.97$) to C-1', C-8'a; H-2' (at $\delta_H 3.26$) to C-3' and C-4'; H-3' (at $\delta_H 4.62$) to C-4'; H-7' (at $\delta_H 7.56$) to C-5'; H-6' (at $\delta_H 7.58$) to C-4'a and C-5'; H-5' (at $\delta_H 7.57$) to C-5 and C-4a; H-7 (at $\delta_H 7.11$) to C-7 and C-5.

The ¹H, ¹³C NMR data and the ¹H-¹H COSY, HMQC and HMBC spectral data (allowed the assignments of protons attached to an individual carbon) indicated that

orange-brown solid **[CPD3]** might be palmarumycin JC2 **[71]**. In addition, the ¹H and ¹³C NMR data of orange-brown solid **[CPD3]** were compared with those reported in the literature²⁵, it could assure that the orange-brown solid **[CPD3]** is palmarumycin JC2 **[71]**.

ลิขสิทธิ์มหาวิทยาลัยเชียงใหม่ Copyright[©] by Chiang Mai University All rights reserved

	Palma	arumycin JC1	Palmarum	Palmarumycin JC2		
C	$\delta_{\rm C}$, mult. ^a	$\delta_{\rm H}$, mult., J in Hz	$\delta_{\rm C}$, mult. ^a	$\delta_{\rm H}$, mult., <i>J</i> in Hz		
1	147.2, s	_	146.3, s	-		
2	108.9, d	6.97, t, 7.9	108.9, d	6.93, d, 7.6		
3	127.8, d	7.53, t, 7.9	127.7, d	7.46, t, 7.7		
4	120.6, d	7.61, t, 8.7	121.1, d	7.57, d, 7.6		
4a	133.8, s	<u> </u>	134.2, s			
5	120.7, d	7.48, t, 7.9	121.5, d	7.57, d, 7.6		
6	127.9, d	7.61, t, 8.7	127.7, d	7.51, t, 7.6		
7 50	5 109.3, d	7.15, d,7.8	109.6, d	7.11, d, 7.5		
8	147.3, s	-	147.1, s			
8a	112.4, s	- N K	113.2, s	-2		
1′	59.1, d	5.34, dd, 2.1,5.4	201.0, s	9		
2′	53.3, d	3.51, dd, 4.1,4.1	41.3, t	2.97, dd,17.7,3.9		
				3.26, dd,17.8, 3.4		
3'	49.8, d	3.61, d, 4.1	67.3, d	4.62, t, 3.6		
4′	97.6, s	AT IININ	98.7, s	-		
4′a	132.1, s		137.9, s	-		
5'	117.2 , d	7.12, d, 7.4	119.9, d	7.11, d, 7.5		
6'	129.1, d	7.25, t, 7.9	137.1, d	7.58, t, 7.6		
7'	116.4, d	6.97, t, 7.9	118.0, d	7.36, dd, 7.6, 7.6		
8'	155.7, s	by Chiang	162.2, s	Jn iversitv		
8'a	122.6 , s		115.3, s	-		
1'-OH	<u>r i g</u>	5.56, d, 5.6	<u>e</u> s e	e <u>r v e a</u>		
8′-OH	-	9.91, s	-	12.37, br s		

Table1. ¹H (500 MHz) and ¹³C (125 MHz) NMR spectral data (DMSO-*d*₆) of **Palmarumycin JC1**, and ¹H (500 MHz) and ¹³C (125 MHz) NMR spectral data (CDCl₃) of **Palmarumycin JC2**

^a Multiplicity was determined by analyses of DEPT 135 spectra

Light-brown solid [CPD2]

A crude CH_2Cl_2 extract of dried fruits of *Diospyros ehretioides* was chromatographed on Sephadex LH-20 and further purified by semi-preparative HPLC, eluted with MeCN/H₂O, 35:65 to provide light-brown solid **[CPD2]**. It was also identified by spectroscopic techniques.

The molecular formula of light-brown solid [CPD2], C₂₂H₁₈O₆, was established by the HR-ESI-TOF-MS. The IR spectrum (Fig. 36) of light-brown solid [CPD2] showed conjugated C=O absorptions at 1667 and 1644 cm⁻¹. The ¹H NMR spectral data (CDCl₃, Fig. 31) of light-brown solid [CPD2] demonstrated signals of two downfield chelated OH groups at $\delta_{\rm H}$ 12.52 and 12.63, four sp²-CH groups at $\delta_{\rm H}$ 6.72, 6.91, 7.04 and 7.29, an oxygenated sp³-CH group at $\delta_{\rm H}$ 5.02, two non-equivalent CH₂, and two CH₃ groups at $\delta_{\rm H}$ 1.96 and 2.05. The ¹³C NMR spectrum (Fig. 32) of lightbrown solid [CPD2] displayed 22 lines, while DEPT 135 and HMQC spectral data (Fig.33) revealed the presence of five CH, two CH₂, two CH₃, and 13 quaternary Catoms. Resonances in the ¹³C NMR spectrum at δ_{C} 203.8, 190.5 and 185.1, together with the IR absorptions at 1667 and 1644 cm⁻¹, revealed the presence of the C=O functionality in light-brown solid **[CPD2]**. The ¹H- ¹H COSY spectrum (Fig. 34) of light-brown solid [CPD2] revealed the connectivity from H-5' to H-7', and also showed couplings between 2-CH₃ and H-3; and H-6 and H-7. The HMBC spectrum (Fig. 35) of light-brown solid [CPD2] established the partial structure from C-1 to C-8: demonstrating correlations from 2-CH₃ to C-1, C-2, and C-3; H-3 to C-4; 4-OH to C-4a and C-3; and H-7 to C-5 and C-8a. The HMBC spectral data also assisted in partial structure assembling from C-1' to C-8' from which the following correlations were seen; 1'-OH to C-1', C-2' and C-8'a; 3'-CH₃ to C-3' and C-4'; H-4' to C-5' and 3'-CH₃;

H-5' to C-4'a and C-8'a; H-7' to C-8'. ¹³C chemical shifts of quaternary C-1 at $\delta_{\rm C}$ 129.8 and C-2' at $\delta_{\rm C}$ 127.4, together with the ESI-TOF-MS data, suggested the linkage between sp² quaternary carbons, C-1 and C-2', leading to a structure of dimeric naphthoquinone derivative. Based on these spectral data, the structure of light-brown solid [CPD2] was assigned as 6', 7'-dihydro-1', 4, 5-trihydroxy-2,3'-dimethyl-[1,2'binaphthalene]-5,8,8'(5H)-trione, to which the trivial name isodiospy -rol A [72] has been assigned. The ¹H-and ¹³C-atoms of light-brown solid [CPD2] were completely assigned by analyses of 2D NMR data (Table 2). Moreover, light-brown solid [CPD2] possess the same basic skeleton and a reduced form of a known dimeric naphthoquinone, isodiospyrin [23] which was reported in the literature^{10, 27}. The ¹Hand ¹³C-NMR spectrum closely resemble that of isodiospyrin [23]. Compound 23 showed the 2-CH₃ and 3'-CH₃ proton at $\delta_{\rm H}$ 2.03 and 2.05, respectively, the 1'-OH and 4-OH protons at $\delta_{\rm H}$ 12.46 and 12.07, respectively. But the reduced form proton of light-brown solid [CPD2], at H-5' and the methylene protons, at H-6' and H-7' were different. Efforts to determine the absolute configuration at C-5' of light-brown solid [CPD2] by the use of Mosher ester have met with failure, since light-brown solid [CPD2] was degraded to many unidentified products when treated with α -methoxy- α -[(trifluoromethyl) phenyl]acetyl chloride. Half of the light-brown solid [CPD2] structure is 4,8-dihydroxy-6-methyl-1-tetralone unit, known as shinanolone²⁶. (R)shinanolone exhibited negative optical rotation²⁶, while (S)-shinanolone showed positive optical rotation⁴. Light-brown solid [CPD2] exhibited negative optical rotation, $\left[\alpha\right]^{24}_{D} = -34.5$, therefore, the configuration of C-5' in light-brown solid [CPD2] might be (R), it could assure that the light-brown solid [CPD2] is isodiospyrol A [72].

Isodiospyrol A [72]

Orange-red solid [CPD4]

A crude CH₂Cl₂ extract of dried fruits of *Diospyros ehretioides* was chromatographed on Sephadex LH-20 and further purified by semi-preparative HPLC, eluted with MeCN/H₂O, 45:55 to provide orange-red solid **[CPD4]**. It was identified by spectroscopic techniques.

The molecular formula of orange-red solid **[CPD4]**, $C_{22}H_{14}O_6$, was established by the HR-ESI-TOF-MS. The IR spectrum (Fig. 15) of orange-red solid **[CPD4]** showed conjugated C=O absorption at 1666 and 1641 cm⁻¹. The ¹H-NMR spectral data (CDCl₃, Fig. 10) of orange-red solid **[CPD4]** demonstrated signals of two downfield chelated OH groups at δ_H 12.07 and 12.46; six sp²-CH groups at δ_H 6.75, 6.97, 6.98, 6.98, 7.32, and 7.63; two CH₃ groups at δ_H 2.03 and 2.05. The ¹³C-NMR spectrum (Fig. 11) of orange-red solid **[CPD4]** displayed 22 lines, while DEPT 135 and HMQC spectral data (Fig. 12) revealed the presence of six CH, two CH₃, and 14 quaternary Catoms. Resonances in the ¹³C-NMR spectrum at δ_C 184.5, 185.0, 190.1, and 190.4 together with the IR absorptions at 1644 and 1666 cm⁻¹ revealed the presence of the C=O functionality in orange-red solid **[CPD4]**. The ¹H-¹H COSY spectrum (Fig. 13) of orange-red solid [**CPD4**] showed couplings between 2-CH₃ and H-3; H-6 and H-7; and H-6' and H-7'. The HMBC spectrum (Fig. 14) of orange-red solid [**CPD4**] established the partial structure from C-1 to C-8; demonstrating correlations from 2-CH₃ to C-1, C-2, and C-3; H-3 to C-4; 4-OH to C-4a, and C-3; H-7 to C-5 and C-8a. The HMBC spectral data also assisted in partial structure assembling from C-1' to C-8', from which the following correlations were seen; 1'-OH to C-1', C-2', and C-8'a; 3'-CH₃ to C-3' and C-4'; H-4' to C-5' and 3'-CH₃; H-6' and H-7' to C-8'. ¹³C NMR chemical shifts of quaternary C-1 at δ_C 135.1 and C-2' at δ_C 130.3, together with the ESI-TOF-MS data, suggested the linkage between sp² quaternary C-atoms, C-1 and C-2', leading to a structure of a dimeric naphthoquinone.

The ¹H, ¹³C, ¹H-¹H COSY, HMQC and HMBC spectral data (allowed the assignments of protons attached to an individual carbon) indicated that orange-red solid **[CPD4]** might be isodiospyrin **[23].** Moreover, the ¹H and ¹³C NMR data of orange-red solid **[CPD4]** compared with those reported in the literature^{10, 27}. It could assure that the orange-red solid **[CPD4]** is isodiospyrin **[23].**

		Isodiospyrol A		ospyrin
С	δ_{C} , mult. ^a	$\delta_{\rm H}$, mult., <i>J</i> in Hz	$\delta_{\rm C}$, mult. ^a	$\delta_{ m H}$, mult., J in Hz
1	129.8, s	2918194	135.1, s	-
2	149.2, s	4101-1	145.5, s	
3	125.5, d	7.29, d, 0.6	121.4, d	7.63, s
4	161.7, s		158.6, s	0 31
4a	114.2, s		113.2, s	2
5	190.5, s	-	190.4, s	- 92
6 0	137.4, d	6.91, d, 10.1	138.8, d	6.98, dd, 10.3, 10
7	140.3, d	6.72, d, 10.1	140.2, d	6.98, dd, 10.3, 10
8	185.1, s		184.5, s	224
8a	5 128.8, s		128.8, s	- 285
2-CH ₃	20.8, q	2.05, d, 0.6	20.5, q	2.03, s
4-OH) - (12.52, s	y /-	12.07, s
1'	159.4, s	-	162.0, s	- 2
2'	127.4, s	-	130.3, s	-~
3'	145.8, s	- 132	148.2, s	4-11
4′	119.4, d	7.04, br s	125.8, d	7.32, s
4′a	144.3, s	1-1-	128.6, s	
5'	67.8, d	5.02, dd, 7.7, 3.8	185.0, d	-
6'	31.5, t	2.23, m; 2.43, m	139.6, d	6.75, d, 10.1
7'	34.7, t	2.69, m; 3.00, m	137.7, d	6.97, d, 10.2
8'	203.8, s	งาวิทยง	190.1, s	Reistr
8'a	113.5, s		114.2, s	<u>100111</u>
3'-CH3	20.5, q	1.96, br s	20.7, q	2.05, s
1'-OH	<u>8</u>	12.63 s	5 1100	12.46 s
. 011		12.05, 5		

¹H (500MHz) and ¹³C NMR (125MHz) spectral data (CDCl₃) of Isodiospyrol A Table 2. and Isodiospyrin

^b Isodiospyrin was compared with those reported in the literature^{10, 27}

4.1.2 Structure elucidation of the isolated compounds from *Diospyros rhodocalyx* woods

The CH₂Cl₂ wood extract of *Diospyros rhodocalyx* (5.43 g) was sequentially subjected to column chromatography on Sephadex LH-20 and silica gel to obtain: colorless solid [CPD5] (48 mg), opaque white solid [CPD6] (18.2 mg), orange-red solid [CPD7] (235 mg), clear white solid [CPD8] (15 mg) and white solid [CPD 9] (18 mg).

Colorless solid [CPD5]

The CH₂Cl₂ wood extract of *Diospyros rhodocalyx* was sequentially subjected to column chromatography on Sephadex LH-20 and silica gel, eluted with 4% acetone in hexane, obtained as colorless solid [CPD5]. It was identified by spectroscopic techniques.

Colorless solid [**CPD5**] was analysed by HR-ESI-TOF mass spectrum which indicated a molecular formula as $C_{30}H_{50}O$ (observed m/z 449.3861(M+Na)⁺).

The ¹H NMR spectrum (CDCl₃, Fig.4) of colorless solid [CPD5] showed signals corresponding to ten methylene protons at $\delta_{\rm H}$ 1.49; 1.24, 1.49; 1.24, 1.49; 1.24, 1.52; 1.27, 1.52; 1.27, 1.52; 1.27, 1.55; 1.3, 1.63; 1.38, 1.85; 1.6, 2.27; 2.17; five methine protons at $\delta_{\rm H}$ 1.39, 1.40, 1.43, 1.62 and 2.18; an ethylene proton at $\delta_{\rm H}$ 4.63 and 4.88 and seven methyl protons at $\delta_{\rm H}$ 1.16, 1.16, 1.16, 1.16, 1.21, 1.21 and 1.71.

The ¹³C NMR spectrum (CDCl₃, Fig. 5) of colorless solid [**CPD5**] showed the signals for thirty lines.

By comparison of the ¹H and ¹³C NMR data of colorless solid [CPD5] with those reported in the literature²⁸, it indicated that the colorless solid [CPD5] is lupeol [5].

Opaque white solid [CPD6]

The CH₂Cl₂ wood extract of *Diospyros rhodocalyx* was sequentially subjected to column chromatography on Sephadex LH-20 (eluted with MeOH) and silica gel, eluted with 5% acetone in hexane, obtained opaque white solid [CPD6]. It was identified by spectroscopic techniques

Opaque white solid **[CPD6]** was analysed by HR-ESI-TOF mass spectrum indicated a molecular formula as $C_{30}H_{48}O_2$ (observed *m/z* 463.3654 (M+Na)⁺).

The ¹H NMR spectrum (CDCl₃, Fig.16) of opaque white solid **[CPD6]** showed signals corresponding to six methyl protons at $\delta_{\rm H}$ 0.68, 0.75, 0.84, 0.90, 1.19 and 1.62; five methine protons at $\delta_{\rm H}$ 2.80, 3.2, 4.56, 4.69 and 9.6.

The ¹³C NMR spectrum (CDCl₃, Fig.17) of opaque white solid [CPD6] showed the signals for thirty lines.

By comparison of the ¹H and ¹³C NMR data of opaque white solid [**CPD6**] with those reported in the literature²⁸, it indicated that the opaque white solid [**CPD6**] is betulinaldehyde [67].

Orange-red solid [CPD7]

The CH₂Cl₂ wood extract of *Diospyros rhodocalyx* was sequentially subjected to column chromatography on Sephadex LH-20 (eluted with MeOH) to afford orangered solid [**CPD7**]. It was identified by spectroscopic techniques Orange-red solid [CPD7] was analysed by HR-ESI-TOF mass spectrum and indicated a molecular formula as $C_{22}H_{14}O_6$ (observed *m/z* 397.1216 (M+Na)⁺).

The ¹H NMR spectrum (CDCl₃, Fig.8) of orange-red solid [**CPD7**] showed signals corresponding to two methyl protons at $\delta_{\rm H}$ 2.24 and 2.39; six methine protons at $\delta_{\rm H}$ 6.83, 6.89, 6.89, 7.06, 7.44, 7.49; two chelated hydroxyl protons at $\delta_{\rm H}$ 11.81 and 12.07.

The ¹³C NMR spectrum (CDCl₃, Fig.9) of orange-red solid [**CPD7**] showed the signals for twenty two lines.

By comparison of the ¹H and ¹³C NMR data of orange-red solid [**CPD7**] with those reported in the literature²⁹, compound orange-red solid [**CPD7**] could be assigned as a known naphthoquinone, diospyrin [**21**].

Clear white solid [CPD8]

The CH_2Cl_2 wood extract of *Diospyros rhodocalyx* was sequentially subjected to column chromatography on Sephadex LH-20 (eluted with MeOH) to afford clear white solid [**CPD8**]. It was identified by spectroscopic techniques.

Clear white solid **[CPD8]** was analysed by HR-ESI-TOF mass spectrum and indicated a molecular formula as $C_{29}H_{50}O$ (observed *m/z* 437.7239 (M+Na)⁺).

The ¹H NMR spectrum (CDCl₃, Fig.6) of clear white solid [**CPD8**] showed signals corresponding to eleven methylene protons at $\delta_{\rm H}$ 1.25, 1.25, 1.29, 1.38; 1.13, 1.49; 1.24, 1.49; 1.39, 1.52; 1.27, 1.52; 1.27, 1.57; 1.32, 2.04; 1.79, 2.23; 1.98; nine methine protons at $\delta_{\rm H}$ 1.40, 1.40, 1.44, 1.45, 1.46, 1.64, 1.82, 3.25 and 5.37; a hydroxyl proton at $\delta_{\rm H}$ 2.0 and six methyl protons at $\delta_{\rm H}$ 0.96, 1.01, 1.01, 1.06, 1.16 and 1.26.

By comparison of the ¹H NMR data of clear white solid [**CPD8**] with those reported in the literature³⁰, it indicated that the clear white solid [**CPD8**] is β -sitosterol [11].

White solid [CPD9]

The CH₂Cl₂ wood extract of *Diospyros rhodocalyx* was sequentially subjected to column chromatography on Sephadex LH-20 (eluted with MeOH) to afford white solid **[CPD9]**. It was identified by spectroscopic techniques

White solid **[CPD9]** was analysed by HR-ESI-TOF mass spectrum which indicated a molecular formula as $C_{29}H_{48}O$ (observed *m/z* 435.7050 (M+Na)⁺).

The ¹H NMR spectrum (CDCl₃, Fig.7) of white solid **[CPD9]** showed signals corresponding to nine methylene protons at $\delta_{\rm H}$ 1.33, 1.38; 1.13, 1.49; 1.24, 1.49; 1.39, 1.52; 1.27, 1.52; 1.27, 1.57; 1.32, 2.04; 1.79, 2.23; 1.98; eleven methine protons at $\delta_{\rm H}$ 1.40, 1.44, 1.44, 1.45, 1.86, 2.15, 2.33, 3.25, 5.37, 5.42 and 5.42; a hydroxyl proton at $\delta_{\rm H}$ 2.0 and six methyl protons at $\delta_{\rm H}$ 0.96, 1.01, 1.01, 1.16, 1.16 and 1.26.

By comparison of the ¹H NMR data of white solid [**CPD9**] with those reported in the literature³⁰, it indicated that the white solid [**CPD9**] is stigmasterol [12].

4.1.3 Structure elucidation of the isolated compounds from *Diospyros* glandulosa woods

A crude CH₂Cl₂ extract of wood of *Diospyros glandulosa* (55.5 g) was sequentially subjected to column chromatography on Sephadex LH-20 and silica gel to obtain colorless solid [CPD5-I] (1.3 mg), orange-red solid [CPD7-I] (159 mg), clear white solid [CPD8-I] (1.1 mg) and white solid [CPD9-I] (1.5 mg).

Colorless solid [CPD5-I]

The CH₂Cl₂ wood extract of *Diospyros rhodocalyx* was sequentially subjected to column chromatography on Sephadex LH-20 and silica gel, eluted with 4% acetone in hexane, obtained a colorless solid **[CPD5-I]**. It was elucidated by spectroscopic techniques.

Colorless solid **[CPD5-I]** was analysed by HR-ESI-TOF mass spectrum which indicated a molecular formula as $C_{30}H_{50}O$ (observed *m/z* 449.3861(M+Na)⁺).

The ¹H NMR spectrum (CDCl₃, Fig.4) of colorless solid [**CPD5-I**] showed signals corresponding to ten methylene protons at $\delta_{\rm H}$ 1.49; 1.24, 1.49; 1.24, 1.49; 1.24, 1.49; 1.24, 1.52; 1.27, 1.52; 1.27, 1.52; 1.27, 1.55; 1.3, 1.63; 1.38, 1.85; 1.6, 2.27; 2.17; five methine protons at $\delta_{\rm H}$ 1.39, 1.40, 1.43, 1.62 and 2.18; an ethylene proton at $\delta_{\rm H}$ 4.63 and 4.88 and seven methyl protons at $\delta_{\rm H}$ 1.16, 1.16, 1.16, 1.16, 1.21, 1.21 and 1.71.

The ¹³C NMR spectrum (CDCl₃, Fig. 5) of colorless solid [**CPD5-I**] showed the signals for thirty lines.

By comparison of the ¹H and ¹³C NMR data of colorless solid [**CPD5-I**] with those reported in the literature²⁸, it indicated that the colorless solid [**CPD5-I**] is lupeol [5].

Orange-red solid [CPD7-I]

The CH₂Cl₂ wood extract of *Diospyros glandulosa* was sequentially subjected to column chromatography on Sephadex LH-20 (eluted with MeOH) to afford orangered solid [**CPD7-I**]. It was elucidated by spectroscopic analyses. Orange-red solid **[CPD7-I]** was analysed by HR-ESI-TOF mass spectrum which indicated a molecular formula as $C_{22}H_{14}O_6$ (observed *m/z* 397.1216 (M+Na)⁺).

The ¹H NMR spectrum (CDCl₃, Fig.8) of orange-red solid [**CPD7-I**] showed signals corresponding to two methyl protons at $\delta_{\rm H}$ 2.24 and 2.39; six methine protons at $\delta_{\rm H}$ 6.83, 6.89, 6.89, 7.06, 7.44, 7.50; two chelated hydroxyl protons at $\delta_{\rm H}$ 11.82 and 12.08.

The ¹³C NMR spectrum (CDCl₃, Fig.9) of orange-red solid [**CPD7-I**] showed the signals for twenty two lines.

By comparison of the ¹H and ¹³C NMR data of orange-red solid [**CPD7-I**] with those reported in the literature²⁹, compound orange-red solid [**CPD7-I**] could be assigned as a known naphthoquinone, diospyrin [**21**].

Clear white solid [CPD8-I]

The CH₂Cl₂ wood extract of *Diospyros rhodocalyx* was sequentially subjected to column chromatography on Sephadex LH-20 (eluted with MeOH) to afford clear white solid [**CPD8-I**]. It was identified by spectroscopic techniques.

Clear white solid [**CPD8-I**] was analysed by HR-ESI-TOF mass spectrum which indicated a molecular formula as $C_{29}H_{50}O$ (observed *m/z* 437.7239 (M+Na)⁺).

The ¹H NMR spectrum (CDCl₃, Fig.6) of clear white solid **[CPD8-I]** showed signals corresponding to eleven methylene protons at $\delta_{\rm H}$ 1.25, 1.25, 1.29, 1.38; 1.13, 1.49; 1.24, 1.49; 1.39, 1.52; 1.27, 1.52; 1.27, 1.57; 1.32, 2.04; 1.79, 2.23; 1.98; nine methine protons at $\delta_{\rm H}$ 1.40, 1.40, 1.44, 1.45, 1.46, 1.64, 1.82, 3.25 and 5.37; a hydroxyl proton at $\delta_{\rm H}$ 2.0 and six methyl protons at $\delta_{\rm H}$ 0.96, 1.01, 1.01, 1.06, 1.16 and 1.26.

By comparison of the ¹H NMR data of clear white solid [**CPD8-I**] with those reported in the literature³⁰, it indicated that the clear white solid [**CPD8-I**] is β -sitosterol [11].

White solid [CPD9-I]

The CH₂Cl₂ wood extract of *Diospyros rhodocalyx* was sequentially subjected to column chromatography on Sephadex LH-20 (eluted with MeOH) to afford white solid **[CPD9-I]**. It was identified by spectroscopic techniques

White solid **[CPD9-I]** was analysed by HR-ESI-TOF mass spectrum which indicated a molecular formula as $C_{29}H_{48}O$ (observed *m/z* 435.7050 (M+Na)⁺).

The ¹H NMR spectrum (CDCl₃, Fig.7) of white solid **[CPD9-I]** showed signals corresponding to nine methylene protons at $\delta_{\rm H}$ 1.33, 1.38; 1.13, 1.49; 1.24, 1.49; 1.39, 1.52; 1.27, 1.52; 1.27, 1.57; 1.32, 2.04; 1.79, 2.23; 1.98; eleven methine protons at $\delta_{\rm H}$ 1.40, 1.44, 1.44, 1.45, 1.86, 2.15, 2.33, 3.25, 5.37, 5.42 and 5.42; a hydroxyl proton at $\delta_{\rm H}$ 2.0 and six methyl protons at $\delta_{\rm H}$ 0.96, 1.01, 1.01, 1.16, 1.16 and 1.26.

By comparison of the ¹H NMR data of white solid [**CPD9-I**] with those reported in the literature³⁰, it indicated that the white solid is stigmasterol [**12**].

Copyright[©] by Chiang Mai University All rights reserved

4.2 Biological activity of the isolated compounds

Four compounds which were isolated from *Diospyros ehretioides* were subjected to the afore-mentioned activity tests. Four compounds were isolated from *Diospyros rhodocalyx* and *Diospyros glandulosa* while betulinaldehyde [67] was obtained only from *Diospyros rhodocalyx*. Four compounds and five compounds, isolated from *Diospyros glandulosa* and *Diospyros rhodocalyx*, respectively, were subjected to antimalarial and antimycobacterial activity tests. Due to β-sitosterol [11] and stigmasterol [12], which were isolated from *Diospyros rhodocalyx* and *Diospyros glandulosa*, were not able to dissolve in DMSO, therefore, antimalarial and antimycobacterial activity tests were not evaluated. However, only lupeol [5], diospyrin [21] and betulinaldehyde [67] were subjected to antimalarial and antimycobacterial activity tests.

4.2.1 Fruits of Diospyros ehretioides

Palmarumycins JC1 [**70**] and JC2 [**71**] were previously reported to possess significant antibacterial activity²⁵, however, they did not exhibit antibacterial activity in this study. As a part of the search for biologically-active substances from *Diospyros* spp, the author has further studied the constituents of *Diospyros ehretioides*, *Diospyros rhodocalyx* and *Diospyros glandulosa*. In this investigation, palmarumycin JC1 [**70**] did not exhibit antimalarial, antifungal, antimycobacterial and cytotoxic activities. Palmarumycin JC2 [**71**] exhibited antimalarial (IC₅₀ 4.5 µg/mL), antifungal (IC₅₀ 12.5 µg/mL), antimycobacterial (MIC 6.25 µg/mL) and cytotoxic (IC₅₀ 11.0 µg/mL for NCI-H187 cell line) activities (Table 3). It was surprising to note that palmarumycin JC2 [**71**] possessed biological activities while its reduced form, palmarumycin JC1 [**70**], was inactive (Table 3). The antimycobacterial activity of palmarumycin JC2 **[71]** was comparable to that of kanamycin sulfate and isoniazid (MIC 2.5 and 0.006 μ g/mL).

In our bioassay systems, isodiospyrin [23] did not exhibit antimycobacterial, antifungal, antimalarial activities or cytotoxicity against Vero, KB, NCI-H187, and BC cell lines. However, it was reported to exhibit cytotoxicity against HCT-8 colon tumor and P-388 lymphocytic leukemia, termicidal and topoisomerase I inhibitory activities³¹⁻³³. Isodiospyrol A [72] exhibited antimalarial (IC₅₀ 2.7 μ g/mL) and antimycobacterial (MIC 50 μ g/mL) activities but was inactive towards *Candida albicans*. Compound 72 also exhibited cytotoxicity against BC cells (IC₅₀ 12.3 μ g/mL) but not towards KB and Vero cell lines (Table 3).

ลิขสิทธิ์มหาวิทยาลัยเชียงไหม Copyright[©] by Chiang Mai University All rights reserved

Compound		Cytotoxic	city (IC ₅₀)		Antimycobac-	Antifungal	Antimalarial
		(µg/	nL)		terial activity	activity	activity (IC ₅₀)
					(MIC) ^a	(IC ₅₀)	(µg/mL)
	NCI-	BC	KB	Vero	(μg/mL)	(µg/mL)	
	H187						
		P	Ń.	Л	4		
23	>20	>20	>20	>50	>200	>20	>20
70	>20	>20	>20	>50	>200	>20	>20
71	11.0±2.5	>20	>20	>50	6.25	12.5±1.9	4.5±0.9
	(n=2)					(n=2)	(n=2)
72	Not	12.3±1.8	>20	>50	50	>20	2.7±0.5
	tested	(n=2)					(n=2)
ellipticin	0.4±0.1	1.4 ± 0.1	1.3±0.3	1.4±0.1			
isoniazid					0.06		
kanamycin sulfate					2.5		
amphotericin B						0.04±0.01	
dihydroartemisinin							0.004 ± 0.001

Table 3.Biological activities of compounds 23, 70-72; IC₅₀ and MIC values are
expressed in μ g/mL (mean ± standard deviation)

^a MIC values were obtained from the two-fold dilution technique, and triplicate experiments were performed, showing the same MIC value for each compound.

4.2.2 Woods of Diospyros rhodocalyx and Diospyros glandulosa

The CH₂Cl₂ wood extracts of *Diospyros rhodocalyx* and *Diospyros glandulosa* were sequentially subjected to column chromatography on Sephadex LH-20 and silica gel to obtain five compounds, lupeol [5], β -sitosterol [11], stigmasterol [12], diospyrin [21] and betulinaldehyde [67] which were isolated from *Diospyros rhodocalyx*. Four compounds, lupeol [5], β -sitosterol [11], stigmasterol [12] and diospyrin [21] were isolated from *Diospyros glandulosa*. Because β -sitosterol [11] and stigmasterol [12], were not able to dissolve in DMSO, therefore, antimalarial and

antimycobacterial activity tests were not evaluated. However, only lupeol [5], diospyrin [21] and betulinaldehyde [67] were subjected to antimalarial and antimycobacterial activity tests. Of all the isolated compounds, diospyrin [21] possessed the most potent antimalarial activity against *Plasmodium falciparum* K1 with the IC₅₀ value of 3.29 μ g/mL and antimycobacterial activity with the MIC value at 6.25 μ g/mL (Table 4).

Table 4.Biologic	al activities of compounds 5, 11-1	2, 21 and 67 ; IC ₅₀ and MIC
values ar	e expressed in μg/mL	SOL
Compound Antimal	arial activity (IC50, µg/mL) Antimy	cobacterial activity ^a (MIC, μg/mL)
5	>20	>20
11 Not a	dissolved in DMSO	Not dissolved in DMSO
12 Not a	dissolved in DMSO	Not dissolved in
DMSO		
21	3.29	6.25
67	6.25	25
isoniazid	MAT THE	0.06
kanamycin sulfate	UNIV D	2.5
dihydroartemisinine	0.004±0.001	-

^a) MIC values were obtained from the two-fold dilution technique, and triplicate experiments were performed showing the same MIC value for each compound.