TABLE OF CONTENTS

			Page
AC	KNOW	LEDGEMENTS	iii
ABS	STRAC	CT (ENGLISH)	iv
ABS	STRAC	CT (THAI)	vii
TAI	BLE O	F CONTENTS	X
LIS	T OF T	TABLES	xvii
LIS	T OF I	FIGURES	xxi
ABI	BREVI	ATIONS AND SYMBOLS	xxv
СН	АРТЕБ	R I: INTRODUCTION	
1.1	Flow	Injection Analysis (FIA)	1
	1.1.1	Principle of FIA	2
	1.1.2	Dispersion	3
	1.1.3	FIA Instrumentation	7
1.2	Rever	se Flow Injection Analysis (rFIA)	10
1.3	Seque	ential Injection Analysis (SIA)	10
	1.3.1	Programmable Flow of SIA	11
	1.3.2	Sequential Injection Analyzer	13
	133	SIA Dispersion Zones	16

				Page
	1.3.4	Mixing a	nd Zone Overlap of SIA	19
1.4	Alumi	num		20
	1.4.1	Occurren	ace and Significance	20
	1.4.2	Applicati	ion of Aluminum	20
	1.4.3	Hazard E	Evaluation and Limiting Concentration	21
	1.4.4	Determin	nation of Aluminum	21
1.5	Bromo	opyrogallo	l Red	25
1.6	Resear	rch Aims		28
CH	APTER	RII: EXF	PERIMENTAL	
2.1	Instru	ments and	d Apparatus	29
2.2	Chemi	icals		29
2.3	Prepar	ration of St	tandard Solutions and Reagents	30
	2.3.1	Preparati	on of Standard Solutions and Reagents of rFI system	30
		2.3.1.1	Aluminum stock solution 1000 mg.L ⁻¹	30
		2.3.1.2	Bromopyrogalol red stock solution 5x10 ⁻⁴ mol.l ⁻¹	31
		2.3.1.3	Cetyltrimethylammonium bromide stock solution	31
			0.25 mol L ⁻¹	
		2.3.1.4	0.02 mol L ⁻¹ of Acetate buffer pH 5.0	31

				Page
	2.3.2	Preparati	on of standard solutions and reagents of SI system	31
		2.3.2.1	Aluminum stock solution 1000 mg L ⁻¹	31
		2.3.2.2	Bromopyrogalol red stock solution 5x10 ⁻⁴ mol L ⁻¹	32
		2.3.2.3	Cetyltrimethylammonium bromide stock solution	32
			0.25 mol L ⁻¹	
		2.3.2.4	0.25 mol L ⁻¹ of Acetate buffer pH 5.5	32
2.4	Prelim	inary Stud	lies of Spectrophotometric Determination of Aluminum	33
	by Usi	ng Bromo	pyrogallol Red as Complexing Agent	
	2.4.1	Absorption	on spectra	33
	2.4.2	Study of	the composition of the Al-BPR-CTAB complex by Mole-	33
		ratio met	hod	
2.5	Proced	lure		34
	2.5.1	Procedur	re for collection and treating tap water samples for	34
		aluminur	m determination	
	2.5.2	rFIA spe	ectrophotometric determination of aluminum using BPR	34
		and CTA	AB as complexing agent	
		2.5.2.1	Optimization of the reverse flow system	36
		2.5.2.2	Linearity of calibration graph	37
		2.5.2.3	Precision	38

			Page
	2.5.2.4	Detection limit	38
	2.5.2.5	Accuracy of the proposed method	39
	2.5.2.6	Interference studies	39
	2.5.2.7	Validation method	40
2.5.3	SIA spec	etrophotometric determination of aluminum using BPR	41
	and CTA	AB as complexing agent	
	2.5.3.1	Sequential injection method	42
	2.5.3.2	Optimization of the sequential injection system	47
	2.5.3.3	Linearity of calibration graph	48
	2.5.3.4	Precision	49
	2.5.3.5	Detection limit	49
	2.5.3.6	Accuracy of the proposed method	49
	2.5.3.7	Interference studies	49
	2.5.3.8	Validation method	50
СНАРТЕК	RIII: R	ESULTS AND DISCUSSION	
3.1 Prelim	ninary Stud	lies of Spectrophotometric Determination of Aluminum	51
by Usi	ing Bromo	pyrogallol Red as Complexing Agent	
3 1 1	Absornti	on spectra	51

				Page
	3.1.2	Mole-rati	io method	52
3.2	rFIA	Spectrop	photometric Determination of Aluminum Using	55
	Bromo	opyrogalol	Red and Cetyltrimethyl Ammonium Bromide as	
	A Con	nplexing A	agent	
	3.2.1	Optimiza	tion of The Reverse Flow System by Univariate Method	55
		3.2.1.1	Optimum wavelength	56
		3.2.1.2	Effect of pH	58
		3.2.1.3	Effect of BPR concentration	59
		3.2.1.4	Effect of % ethanol in BPR solution	61
		3.2.1.5	Effect of CTAB concentration	62
		3.2.1.6	Effect of flow rate	64
		3.2.1.7	Effect of reaction coil (I) length	65
		3.2.1.8	Effect of reaction coil (II) length	67
		3.2.1.9	Effect of reagent volume	68
	3.2.2	Analytica	al Characteristics of the method	70
		3.2.2.1	Linear range Man Univer	70
		3.2.2.2	Precision of the flow injection system	72
		3.2.2.3	Calibration curve	73
		3.2.2.4	Detection limit	76

				Page
		3.2.2.5	Interference Studies	78
		3.2.2.6	Effect of masking agents and interference	83
		3.2.2.7	Determination of aluminum in waters	85
3.3	SIA S	pectrophot	ometric Determination of Aluminum Using	87
	Bromo	opyrogalol	Red and Cetyltrimethyl Ammonium Bromide as	
	A Con	mplexing A	agent	
	3.3.1	Study ası	piration order	87
	3.3.2	Optimiza	tion of the sequential injection system by univariate	88
		method		
		3.3.2.1	Effect of pH	88
		3.3.2.2	Effect of pH concentration	90
		3.3.2.3	Effect of BPR concentration	91
		3.3.2.4	Effect of % ethanol in BPR solution	93
		3.3.2.5	Effect of CTAB concentration	94
		3.3.2.6	Effect of aspiration volumes of acetate buffer	95
		3.3.2.7	Effect of aspiration volumes of BPR	97
		3.3.2.8	Effect of aspiration volumes of CTAB	98
		3.3.2.9	Effect of aspiration volumes of sample	100
		3.3.2.10	Effect of flow rate	101

		Page
3.3.2.11	Effect of holding time	102
3.3.3 Analytica	l Characteristics of the method	104
3.3.3.1	Linear range	104
3.3.3.2	Precision of the flow injection system	106
3.3.3.3	Calibration curve	107
3.3.3.4	Detection limit	110
3.3.3.5	Interference Studies	112
3.3.3.6	Effect of masking agents and interference	117
3.3.3.7	Determination of aluminum in waters	119
CHAPTER IV: CON	ICLUSIONS	121
REFERENCES		124
APPENDIX A		128
APPENDIX B		132
CURRICULUM VIT	AE 13113 1G 3G L	138
THE RELEVANCY	OF THE RESEARCH WORK IN THAILAND	141

xvii

LIST OF TABLES

Table		Page
1.1	A brief review of the methods for the determination of aluminum	22
1.2	A brief review of FIA and SIA for the determination of aluminum	24
1.3	A brief review of BPR reagent for the determination of some metals	25
2.1	The studied range for the optimization of all parameters of rFIA	36
2.2	Preliminary experimental conditions of rFIA for studying optimum wavelength of Al-BPR-CTAB	37
2.3	Experimental protocol as shown in the FIAlab for windows software	44
2.4	The studied range for the optimization of all parameters of SIA	47
2.5	Preliminary experimental conditions of SIA for studying optimum pH of	48
	Al-BPR-CTAB	
3.1	Effect of BPR concentrations for mole-ratio of Al-BPR-CTAB complex	52
3.2	Effect of CTAB concentrations for mole-ratio of Al-BPR-CTAB complex	54
3.3	Peak height at various wavelengths	57
3.4	Effect of pH on the sensitivity	58
3.5	Effect of concentration of BPR on the sensitivity	60
3.6	Effect of concentration of ethanol on the sensitivity	61
3.7	Effect of concentration of CTAB on the sensitivity	63
3.8	Effect of flow rate on the sensitivity	64

xviii

Table		Page
3.9	Effect of length of reaction coil (I) length on the sensitivity	66
3.10	Effect of length of reaction coil (II) length on the sensitivity	67
3.11	Effect of reagent volume on the sensitivity	69
3.12	Optimum conditions for aluminum determination	70
3.13	Linearity of aluminum determination	71
3.14	Precision verification using standard 0.1 mg L ⁻¹ aluminum	73
3.15	ΔPeak height for calibration curve	74
3.16	Calculation of detection limit of rFIA spectrophotometric determination	76
	of aluminum 0.05-0.11 mg L ⁻¹	
3.17	Calculation of detection limit of rFIA spectrophotometric determination	77
	of aluminum 0.15-0.40 mg L ⁻¹	
3.18	Interference studies for 0.20 mg L ⁻¹ standard aluminum by rFIA method	79
3.19	Summary of interference effects of some ions on the response obtained	82
	from aluminum 0.2 mg L ⁻¹	
3.20	Effect of masking agent for mask Fe ²⁺ , Fe ³⁺ and Cu ²⁺ the response	83
	obtained from aluminum 0.2 mg L ⁻¹	
3.21	Determination of aluminum in water sample by rFIA method	85
3.22	Comparative determination of aluminum in water sample by proposed	86
	rFIA method and ICP-OES	

Table		Page
3.23	Sensitivity at various aspiration orders	88
3.24	Effect of pH on the sensitivity	89
3.25	Effect of concentration of acetate buffer pH 5.0 on the sensitivity	90
3.26	Effect of various concentration of BPR on the sensitivity	92
3.27	Effect of various concentration of ethanol on the sensitivity	93
3.28	Effect of various concentration of CTAB on the sensitivity	94
3.29	Effect of various aspiration volume of 0.25 mol L ⁻¹ of acetate buffer	96
	pH 5.5 on the sensitivity	
3.30	Effect of various aspiration volumes of 1.40 x 10 ⁻⁴ L of BPR in ethanol	97
	10% on the sensitivity	
3.31	Effect of various aspiration volume of 5.0 x 10 ⁻³ mol L ⁻¹ of CTAB on	99
	the sensitivity	
3.32	Effect of various aspiration volume of sample on the sensitivity	100
3.33	Effect of various flow rate on the sensitivity	101
3.34	Effect of various holding time on the sensitivity	103
3.35	Optimum conditions for aluminum determination	104
3.36	Linearity of aluminum determination	105
3.37	Precision verification using various concentrations of aluminum standard	107
3.38	ΔPeak height for calibration curve	108

Table		Page
3.39	Calculation of detection limit of SIA spectrophotometric determination of	110
	aluminum 0.02-0.30 mg L ⁻¹	
3.40	Calculation of detection limit of SIA spectrophotometric determination of	111
	aluminum 0.30-1.00 mg L ⁻¹	
3.41	Interference studies for 0.20 mg L ⁻¹ standard aluminum by SIA method	113
3.42	Summary of interference effects of some ions on the response obtained	116
	from aluminum 0.2 mg L ⁻¹ by SIA method	
3.43	Effect of masking agent for mask Fe ²⁺ , Fe ³⁺ and Cu ²⁺ the response	117
	obtained from aluminum 0.2 mg L ⁻¹ by SIA method	
3.44	Determination of aluminum in water sample by SIA method	119
3.45	Comparative determination of aluminum in water sample by proposed	120
	SIA method and ICP-OES	

ลิขสิทธิ์มหาวิทยาลัยเชียงใหม่ Copyright[©] by Chiang Mai University All rights reserved

LIST OF FIGURES

Figure		Page
1.1	Stages of development and classification of automated solution analysis	1
1.2	The basic components of FIA system	3
1.3	General types of transport in closed tubes and the recorded profiles at	4
	the detector.	
1.4	Effect of convection and diffusion on concentration profile of analyses	5
	at the detector	
1.5	Dispersed sample zone in flow system	5
1.6	Relationship between the rollers of a peristaltic pump and	8
	the pump tubes	
1.7	Sequence zone of SIA systems	11
1.8	Structure of injected zones and concentration profiles as seen by	12
	the detector	
1.9	Schematic flow diagram of a sequential injection analyzer	14
1.10	Dispersed sample zones of SIA system	17
1.11	Forward and reversal flow of SIA system	19
1.12	The structure of bromopyrogallol red	25
2.1	reverse flow injection system for the determination of aluminum	35
2.2	SI manifold for the determination of aluminum in water samples	42

xxii

Figure		Page
2.3	The SIA system for determination of aluminum	42
2.4	Senee SIA software for plot the SIA grams	43
2.5	FIAlab 5.0 for windows software	43
3.1	Absorption Spectra of BPR, BPR-CTAB and Al-BPR-CTAB complex	51
	against water at pH 5.0	
3.2	Mole-ratio study of Al-BPR-CTAB system; effect of BPR	53
	concentration.	
3.3	Mole-ratio study of Al-BPR-CTAB system; effect of CTAB	54
	concentration.	
3.4	ΔPeak height at various wavelengths	57
3.5	Relationship between pH and sensitivity of the calibration curve	59
3.6	Relationship between concentration of BPR and sensitivity of	60
	the calibration curve	
3.7	Relationship between concentration of ethanol in BPR solution	62
	and sensitivity of the calibration curve	
3.8	Relationship between concentration of CTAB and and sensitivity of	63
	the calibration curve	
3.9	Relationship between flow rate and and sensitivity of the calibration	65
	curve	

xxiii

Figure		Page
3.10	Relationship between reaction coil (I) length and sensitivity of	66
	the calibration curve	
3.11	Relationship between reaction coil (II) length and sensitivity of	68
	the calibration curve	
3.12	Relationship between reagent volume and sensitivity of the calibration	69
	curve	
3.13	Relationship between Δpeak height and concentration of aluminum	72
3.14	Calibration signal of rFIA spectrophotometric determination of	75
	aluminum 0.05-0.11 mg ^{L-1} and 0.15-0.40 mg L ⁻¹	
3.15	The Calibration curve of rFIA spectrophotometric determination of	75
	aluminum	
3.16	Relationship between various pH and sensitivity of the calibration curve	89
3.17	Relationship between various concentration of acetate buffer pH 5.5 and	91
	sensitivity of the calibration curve	
3.18	Relationship between various concentration of BPR in 50 % ethanol	92
	solution and sensitivity of the calibration curve	
3.19	Relationship between various concentration of ethanol on the sensitivity	93
	of the calibration curve	

Figure		Page
3.20	Relationship between concentration of CTAB on the sensitivity of	95
	the calibration curve	
3.21	Relationship between various aspiration volume of 0.25 mol L ⁻¹ of	96
	acetate buffer pH 5.5 on the sensitivity of the calibration curve	
3.22	Relationship between various aspiration volumes of $1.40 \times 10^{-4} L$ of	98
	BPR in ethanol 10% on the sensitivity of the calibration curve	
3.23	Relationship between various aspiration volumes of 5 x 10 ⁻³ mol L ⁻¹ of	99
	CTAB on the sensitivity of the calibration curve	
3.24	Relationship between various aspiration volumes of 5 x 10 ⁻³ mol L ⁻¹ of	100
	CTAB on the sensitivity of the calibration curve	
3.25	Relationship between various flow rate on the sensitivity of	102
	the calibration curve	
3.26	Relationship between various holding time on the sensitivity of	103
	the calibration curve	
3.27	Relationship between Δpeak height and concentration of aluminum	106
3.28	Calibration signal of SIA spectrophotometric determination of	109
	aluminum 0.02-0.30 and 0.30-1.00 mg L ⁻¹	
3.29	The Calibration curve of SIA spectrophotometric determination of	109
	aluminum: (a) aluminum 0.02-0.30 mg L ⁻¹ : (b) aluminum 0.15-0.40 mg L ⁻¹	

ABBREVIATIONS AND SYMBOLS

AU absorbance unit

rFIA reverse-flow injection analysis

h hour

i.d. inner diameter

in. inch

liter

LOD limit of detection

LOQ limit of quantitation

M molar

mg milligram

min minute

mL milliliter

mm millimeter

mV millivolt

PC personal computer

PTFE polytetrafluoroethylene

 $\overline{\mathbf{x}}$ mean

P.H. peak height

RSD relative standard deviation

SD standard deviation

s second

SIA sequential injection analysis

v/v volume by volume

μL microliter

mol L⁻¹ mole/litter

UV-VIS ultraviolet visible spectrophotometry

ICP-OES the inductively coupled plasma - optical emission spectrometer

ลิขสิทธิ์มหาวิทยาลัยเชียงใหม่ Copyright[©] by Chiang Mai University All rights reserved