TABLE OF CONTENTS

ે શિકાશ્ય છે.	
Store San	PAGE
Acknowledgements	iii
Abstract (in English)	iv
Abstract (in Thai)	v
Table of Contents	vi
List of Tables	х
List of Figures	xi
CHAPTER 1 INTRODUCTION	1
1.1 Overview	1
1.2 Hemoglobin	3
1.3 Thalassemia and hemoglobinopathies	6
adans 1.3.1 α-thalassemia 9 a 81880	h
Copyright ^{1.3.2} β-thalassemia 1.3.3 Hemoglobin E Mai Univer	Sity 8
A Hemoglobin E / β -thalassemia C S C V	e <u>و</u>
1.5 Screening method for hemoglobin E	11
1.5.1 Methodology for hemoglobin E screening	11
1.5.1.1 Red blood cell indices (RBC)	11

1.5.1.2 Microcolumn Chromatography	12
1.5.1.3 Dichlorophenolindophenol	13
(DCIP) precipitation	
1.6 Flow Injection System and Hydrodynamic Injection	18
1.7 Flow Injection Analysis for screening hemoglobin E	22
1.8 Research objective	23
CHAPTER 2 EXPERIMENTAL	24
2.1 Materials and apparatus	24
2.2 Reagents	25
2.3 Preparation of standard solutions and reagent	25
2.3.1 Diluent solution	25
2.3.2 DCIP solution	25
2.3.3 DCIP-Clearing solution	26
2.3.4 Blood sample	26
2.4 Method of the conventional DCIP precipitation	27
2.5 Manifold and operation step of FI-DCIP system	28
2.6 Optimization	34
A L L 2.6.1 Wavelength S L C S C L V C	34
2.6.2 Mixing coil length	35
2.6.3 Concentration of DCIP solution	35
2.6.4 Incubation temperature and incubation time	36

a

vii

2.7 Within-run precision	36
2.8 Between-run precision	36
2.9 Evaluation of FI-DCIP precipitation system and	37
estimation of cut-off level to predict for hemoglobin E	
CHAPTER 3 RESULTS AND DISCUSSION	38
3.1 Operational step and profiles of negative and	38
positive samples	
3.2 Optimization	40
3.2.1 Wavelength	40
3.2.2 Mixing coil length	42
3.2.3 Concentration of DCIP solution	44
3.2.4 Incubation temperature and incubation time	45
3.3 Within-run precision	47
3.4 Between-run precision	48
3.5 Operational conditions for the FI-DCIP system	49
3.6 Evaluation of the FI-DCIP system	50
A CHAPTER 4 CONCLUSION TS TESETVE	54
4.1 Conclusion	54
4.2 Further works	55

ลิขสิทธิ์มหาวิทยาลัยเชียงใหม่ Copyright[©] by Chiang Mai University All rights reserved

LIST OF TABLES

TABLE

PAGE

2/07/03/ 3.1 Within-run precision of the FI-DCIP precipitation system 47 for positive and negative sample 3.2 Between-run precision of the FI-DCIP precipitation system 48 3.3 The selected operations of the FI-DCIP precipitation system 49 for hemoglobin E screening 3.4 Summarization of the numbers of true and false responses and 53 the sensitivity and specificity of the system when 0.67 volt of peak height is chosen as a cut-off value

ลิขสิทธิ์มหาวิทยาลัยเชียงใหม่ Copyright[©] by Chiang Mai University AII rights reserved

MAI

LIST OF FIGURES

0918194.00	
FIGURE	PAGE
1.1 Structure of hemoglobin	3
1.2 Organization of human globin gene on chromosome 11 and 16	4
1.3 Developmental changes in hemoglobin production	5
1.4 Diagram showing the chance with each pregnancy that a child	9
will inherit from the parent.	~
1.5 The formula of cystine formed from cysteine	13
1.6 Naked eye DCIP precipitation showing slight difference between	15
positive and negative samples in the dark blue color of the DCIP	
solution: tube (A) is negative sample and tube (B) is positive sample	
1.7 (a) Reducing of the oxidized form DCIP to the reduced form and	16
(b) The color of the oxidized form of DCIP solution (tube A)	
and the reduced form of DCIP solution (tube B)	-
a damafter adding ascorbic acid nana a to	KIJ
1.8 Naked eye DCIP precipitation showing positive and negative sample in different tubes: tube (A) is negative sample and	rsity
tube (B) is positive sample	ed
1.9 Single-line FIA manifold (a) with a typical recorder output	19
(b) as obtained with a spectrophotometric flow-through cell.	

R carrier stream of a reagent; S, sample injection;

FC, flow-through cell; W, peak width; H, peak height; and A, peak area.

20

- 1.10 Three ways solenoid valve (a) solenoid valve from Cole-Parmer and (b) flow pattern (top view of valve shown)
- 1.11 The principle of hydrodynamic injection. A fixed volume of
 sample solution (A-B zone) is metered into a conduit, of
 length *L* and internal radius *R* ((a)-Sampling), and
 this volume is subsequently propelled downstream by the

carrier stream ((**b**)-Injection). During the sampling cycle, the carrier stream circuit is stopped. In the next injection cycle, the carrier stream circuit is flowed. When aspiration the next sample, the column of carrier stream solution is emptied to waste along with excess of solution.

- 2.1 (a)-(c) The FI-DCIP precipitation system for hemoglobin E
 screening, P is a peristaltic pump; V1-V7 are three-way solenoid valves; D is a spectronic 21; W is a water bath; R is a reagent
 (DCIP solution); S is sample and from A to D is the sample zone that was sent in to the detector. (b) Hydrodynamic load/injection step.
 2.2 Instrumental set up for screening hemoglobin E
 33
 3.1 The profile of negative and positive samples obtained from
 - the proposed FI-DCIP system (a) Negative sample(healthy sample) (b) Positive sample (hemoglobin E sample)

xii

	3.2 Sulfhydryl (-SH) group (from cysteine) of hemoglobin E	40
	is oxidized and precipitated (cystien form).	
	3.3 The absorbance spectra of a negative sample and a positive sample	41
	after mixing with DCIP solution and ascorbic acid solution	
	3.4 Effect of the mixing coil length on the analytical signal	43
/	3.5 Effect of the DCIP solution concentration on the analytical signal	44
	3.6 Effect of the incubation time and incubation temperature	46
0	on the analytical signal	
	3.7 Comparison the peak height obtained from negative and	51
	positive samples and estimation of the suitable cut-off value	
	for hemoglobin E screening using the proposed FI-DCIP	
	precipitation system(\triangle = negative samples, \Box = positive samples)	
	3.8 Distribution of peak heights in positive and negative samples	52
	obtained from the proposed FI-DCIP system	
	(\triangle = negative samples, \square = positive samples)	

ลิขสิทธิ์มหาวิทยาลัยเชียงใหม่ Copyright[©] by Chiang Mai University AII rights reserved