TABLE OF CONTENTS

2.3.2 Food fermentation				
2.3.3 Functional foods	10			
2.3.3.1 Prebiotic	10			
2.3.3.2 Probiotic	11			
2.4 Beneficial effects of probiotics bacteria	11			
2.4.1 Managing Lactose Intolerance	11			
2.4.2 Prevention of Colon Cancer	11			
2.4.3 Cholesterol Lowering	12			
2.4.4 Lowering Blood Pressure	12			
2.4.5 Improving Immune Function and	12			
Preventing Infections				
2.4.6 Reducing Inflammation	13			
2.5 Charecteristics of a good probiotic	13			
2.6 Microencapsulation	14			
2.6.1 Extrusion technique	15			
2.6.2 Emulsion technique	16			
2.7 Groups of encapsulation materials	18			
2.7.1 Alginate	18			
2.7.2 Agar/ Agarose	19			
2.7.3 к-carrageenan	21			
2.7.4 Chitosan	21			
2.7.5 Gellan 3 13 13 10 30 1	22			
2.8 Structural details of microbeads	25			
2.9 Factors affecting microencapsulation	26			
effectiveness of probiotics	b c			
2.9.1 Coating of the capsules	26			
2.9.2 Bead diameter	26			
2.9.3 Effect of bacteria on the capsule materials	26			

2.9.4 Modification of capsule materials	26
2.9.5 Initial concentration of microbial cells	27
2.9.6 Conditions of processing factors	27
2.10 Application of Microencapsulation	27
2.10.1 Agriculture and veterinary applications	27
2.10.2 Food applications	28
2.10.3 Commercial/consumer applications	28
2.10.4 Industrial applications	28
2.10.5 Pharmaceutical applications	28
Chapter 3 Materials and Methods	29
3.1 Materials	29
3.1.1 Media	29
3.1.2 Chemical reagents	29
3.1.3 Equipments	30
3.1.4 Microorganisms	31
3.2 Methods	31
3.2.1 Optimization of alginate beads size	31
3.2.2 Microencapsulation of Lactobacillus fermentum	31
2311M with alginate	
3.2.3 Survival of alginate beads and free cells at pH 6.5, 1.5	32
3.2.4 Survival of cell in alginate beads and	32
free cells at 0%, 0.15%, 0.3% of bile salt solution	
3.2.5 Storage of cell in alginate beads at temperature 4 °C,	33
8 °C, 20 °C as compared to free cells for 3 month	a d
3.2.6 Optimization of κ -carrageenan beads size	33
3.2.7 Microencapsulation of Lactobacillus fermentum	33
2311M with κ -carrageenan	

3.2.8 Survival of cell in k-carrageenan beads and	34
free cells at pH 6.5, 1.5	
3.2.9 Survival of cell in κ -carrageenan beads and free cells	34
at 0%, 0.15%, 0.3% of bile salt solution	
3.2.10 Storage of cell in κ -carrageenan beads at temperature	35
4 °C, 8 °C, 20 °C as compared to free cells for 3 month	
3.2.11 Analysis of Data	35
Chapter 4 Results and Discussion	
4.1 Optimization of microbead sizes and microencapsulation	36
of <i>L. fermentum</i> 2311M with alginate	
4.2 Microencapsulated of L. fermentum 2311M	39
in alginate beads	
4.3 Survival of cell in alginate beads and free cells at pH 6.5, 1.5	41
4.4 Survival of cell in alginate beads and free cells	45
at 0%, 0.15%, 0.3% of bile salt solution	
4.5 Storage of cell in alginate beads at temperature	49
4 °C, 8 °C, 20 °C as compared to free cells for 3 months	
4.6 Optimization of microbead sizes and microencapsulation	52
of L. fermentum 2311M with κ-carrageenan	
4.7 Microencapsulated of <i>L. fermentum</i> 2311M	55
in κ-carrageenan beads	
4.8 Survival of cell in κ-carrageenan beads and free cells	57
at pH 6.5, 1.5	i cy
4.9 Survival of cell in κ-carrageenan beads and free cells	59
at 0%, 0.15%, 0.3% of bile salt solution	
4.10 Storage of cell in κ -carrageenan beads at temperature	62
4 °C, 8 °C, 20 °C as compared to free cells for 3 months	

ลิขสิทธิ์มหาวิทยาลัยเชียงใหม่ Copyright[©] by Chiang Mai University All rights reserved

LIST OF TABLES

Table ABERA	Page
1 Type of fermented food with a long history of use in	9
large geographical area of the world	
2 Step in encapsulation process on viable counts of	39
alginate beads	
3 The percentage of efficiency of microencapsulated in alginate	40
4 Effect of pH 1.5 on viable counts of free and	43
encapsulated cells in alginate of L. casei NCDC-298	5
(Mandal et al., 2006) and L. fermentum 2311M	
5 The survival of free and encapsulated cells	47
in alginate of <i>L. casei</i> (Krasaekoopt et al., 2004)	
and <i>L. fermentum</i> 2311M after incubation in bile salt solution	
6 Step in encapsulation process on viable counts of	55
κ-carrageenan beads	
7 The percentage of efficiency of microencapsulated	56
in κ-carrageenan	
8 Effect of encapsulation on population of <i>B. longum</i> B6	65
(Adhikari et al., 2000) in set yogurt and L. fermentum 2311M	? '
in 0.05 M KCl at 4 °C for 4 weeks	
9 Absorbance at 600 nm by <i>L. fermentum</i> 2311M	89
after incubated at 37 °C for 24 h ang Mai Unive	rsity
All rights reserv	e d

LIST OF FIGURES

Figur	• • • • • • • • • • • • • • • • • • •	Page
1	Flow diagram of encapsulation of bacteria by	17
	the extrusion and emulsion techniques	
2	Chemical structure of the repeating sequences of	23
6	the most used natural polysaccharides in	
	encapsulation techniques	
L SAD	Structural details of microbeads	25
504	Optimization of alginate beads production	37
5	Micrograph of the microbeads containing	37
Q	L. fermentum 2311M encapsulated in alginate	
6	Effect of pH 6.5 on viable counts of free and encapsulated	41
, i i i i i i i i i i i i i i i i i i i	L. fermentum 2311M in alginate beads	
7	Effect of pH 1.5 on viable counts of free and encapsulated	42
	L. fermentum 2311M in alginate beads	
8	Effect of 0% bile salt on viable counts of free and encapsulated	45
	L. fermentum 2311M in alginate beads	
9	Effect of 0.15% bile salt on viable counts of free and	46
ลิมสิท	encapsulated L. fermentum 2311M in alginate beads	141
	Effect of 0.3% bile salt on viable counts of free and	47
Convrig	encapsulated L. fermentum 2311M in alginate beads	sitv
11	Survival of encapsulated L. fermentum2311M	49
	in alginate beads at 4 °C for 3 months SC	e c
12	Survival of encapsulated L. fermentum 2311M	50
	in alginate beads at 8 °C for 3 months	

xiii

LIST OF FIGURES (CONTINUED)

	13	Survival of encapsulated L. fermentum 2311M	51
		in alginate beads at 20 °C for 3 months	
	14	Optimization of κ -carrageenan beads production	53
	15	Micrograph of the microbeads containing	53
		L. fermentum 2311M encapsulated in κ-carrageenan	
	16 9	Effect of pH 6.5 on viable counts of free and encapsulated	57
	9	L. fermentum 2311M in K-carrageenan beads	
	17	Effect of pH 1.5 on viable counts of free and encapsulated	58
		L. fermentum 2311M in ĸ-carrageenan beads	
C.	18	Effect of 0% bile salt on viable counts of free and encapsulated	59
3	55	L. fermentum 2311M in κ-carrageenan beads	
	19	Effect of 0.15% bile salt on viable counts of free and	60
	2	encapsulated <i>L. fermentum</i> 2311M in κ-carrageenan beads	
	20	Effect of 0.3% bile salt on viable counts of free and	61
	5	encapsulated L. fermentum 2311M in κ-carrageenan beads	
	21	Survival of encapsulated L. fermentum 2311M	62
		in κ -carrageenan beads at 4 °C for 3 months	
	22	Survival of encapsulated L. fermentum 2311M	63
		in κ-carrageenan beads at 8 °C for 3 months	
	23	Survival of encapsulated L. fermentum 2311M	64
ลิยสิ		in κ -carrageenan beads at 20 °C for 3 months	41 I
	24	The morphology of <i>L. fermentum</i> 2311M	88
Copy	righ	on MRS agar + Bromocresol purple	itv
	25	Standard curve of viable cells (L. fermentum 2311M)	89
		rignts reserve	

ABBREVIATIONS AND SYMBOLS

ลิขสิทธิ์มหาวิทยาลัยเชียงใหม่ Copyright[©] by Chiang Mai University All rights reserved