TABLE OF CONTENTS

	Page
Acknowledgements	iii
Abstract (English)	iv
Abstract (Thai)	vi
List of Tables	xi
List of Figures	xiv
List of Pictures	xix
Abbreviations and Symbols	xxi

CHAPTER 1 Introduction and Literature Reviews

1.1 Definition and History of Electroco	agulation	2 1.
1.2 Instrumental Set-up and Reactions		8801K
1.3 Applications		l Iniversity
1.4 Research Objectives		11

2.1 Electr	rocoagulation of Anthraquinones and a Nathoquinone	
2.1.1	Introduction	12
2.1.2	Experimental	14
2.1.3	Results and Discussion	20
2.1.4	Conclusions	30
2.2 Electr	rocoagulation of Flavonoids	
2.2.1	Introduction	31
2.2.2	Experimental	33
2.2.3	Results and Discussion	37
2.2.4	Conclusions	43
2.3 Electr	rocoagulation of Tannin and Morin; The Solvent Effects	
2.3.1	Introduction	43
2.3.2	Experimental	44
2.3.3	Results and Discussion	45
2.3.4	Conclusions 1999999999999999999999999999999999999	52

CHAPTER 2 Electrocoagulation of Polyphenolic Compounds

CHAPTER 3 Electrocoagulation of Natural Dyes	
3.1 Electrocoagulation of natural pigments from black glutinous rice	53
3.2 Electrocoagulation of seed lac	70
3.3 Electrocoagulation of curcumin form turmeric	85
3.4 Isolation of morin from jack fruit hard wood by electrocoagulation	95
3.5 Electrocoagulation of rosselle	103
3.6 Electrocoagulation of beet root	111
3.7 Isolation of crocin from gardenia by electrocoagulation	118
3.8 Electrocoagulation of betel nut	128
CHAPTER 4 Electrocoagulation of Black Bean and a Small Scale	
Electrocoagulation	
4.1 Introduction	133
4.2 Experimental	136
4.3 Results and Discussion	140
4.4 Conclusions	147
Overall Concluding Remarks Overall Concluding Remarks	148
REFERENCES T I S H T S T E S E T V G	150
APPENDIX	155
CURICULUM VITAE	159

LIST OF TABLES

LIST OF TABLES	
Table	Page
2.1 The appropriate wavelength of naphtho- and anthraquinones	16
standard solutions (in 85% aqueous ethanol).	
2.2 The absorbance of quinone solutions during electrolysis.	18
2.3 Residual weight percentage of quinone solutions during electrolysis.	18
2.4 Percentage recovery of quinone compounds.	23
2.5 Melting point of authentic sample, recovered compounds and	24
mixture of recovered-authentic substances.	
2.6 TLC test of studied quinones.	25
2.7 Appropriate wavelength of standard flavonoids (in 85% aqueous ethanol)	34
2.8 Absorbance of flavonoids solution during electrolysis (120 minutes).	36
2.9 Percentage recovery of flavonoid compounds	38
2.10 Melting point of authentic morin, recovered morin and mixture of	39
recovered-authentic substances.	
2.11 TLC test of studied flavonoids.	39
2.12 The absorbance of tannin (at 275 nm) and morin (at 360 nm) solutions	45
(0.01% w/v) during electrolysis.	

х

Table

2.13 The absorbance of tannin (at 275 nm) and morin (at 415-420 nm)	46
solutions (0.1% w/v) during electrolysis.	
2.14 The absorbance of tannin (1% w/v, at 275 nm) during electrolysis.	47
2.15 Residual weight percentage of tannin and morin solutions	47
(0.01% w/v) during electrolysis.	
2.16 Residual weight percentage of tannin and morin solutions	48
(0.1% w/v) during electrolysis.	
2.17 Residual weight percentage of tannin solutions (1% w/v)	48
during electrolysis.	
3.1 Solvent systems and extraction conditions used.	57
3.2 Percentage yield and color of crude extract from black glutinous rice.	62
3.3 Chromosome dyeing test and maximum absorption wavelength of	64
the crude extracts from black glutinous rice.	
3.4 Composition of sticklac, seedlac and shellac.	71
3.5 Weight and percentage yield of compounds obtained from filtrate	78
and precipitate after EC process of seedlac sample solutions.	
3.6 Residual weight percentage of curcumin during elctrocoagulation process.	90
3.7 Absorbance of roselle solution during elctrocoagulation process (0.5 A).	e ₁₀₆
3.8 Absorbance of roselle solution during elctrocoagulation process (2.5 A).	107

Table	Page
3.9 Absorbance of beet root aqueous alcoholic solution during	114
elctrocoagulation process.	
3.10 Absorbance of beet root aqueous alcoholic solution during	116
elctrocoagulation process.	
3.11 Weight and percentage yield of products obtained from three	131
extraction conditions of betel nut.	
4.1 Solubility test of black bean samples.	143

ลิ<mark>ปสิทธิ์มหาวิทยาลัยเชียงใหม่</mark> Copyright[©] by Chiang Mai University All rights reserved

xii

LIST OF FIGURES

Figure	Page
1.1 Bench-scale electrocoagulation reactor with electrodes	3
2.1 Structures of the quinones studied	13
2.2 Plot of residual weight percentage $(\% w/v)$ and electrolysis time	20
of quinone substances in 85% aqueous ethanol	
2.3 Plot of absorbance and electrolysis time of quinone substances	21
in 85% aqueous ethanol	
2.4 IR spectrum of authentic alizarin	26
2.5 IR spectrum of recovered alizarin	26
2.6 IR spectrum of authentic purpurin	27
2.7 IR spectrum of recovered purpurin	27
2.8 IR spectrum of authentic chrysazin	28
2.9 IR spectrum of recovered chrysazin	28
2.10 IR spectrum of authentic emodin	29
2.11 IR spectrum of recovered emodin	e ₂₉
2.12 Structure of flavonoids studied	32
2.13 Plot of absorbance and electrolysis time of flavonoids in 85% aqueous ethan	ol 37

Figure	Page
2.14 IR spectrum of authentic morin	40
2.15 IR spectrum of recovered morin	40
2.16 IR spectrum of authentic quercetin dihydrate	41
2.17 IR spectrum of recovered quercetin dihydrate	41
2.18 IR spectrum of authentic baicalein	42
2.19 IR spectrum of recovered baicalein	42
2.20 Plot of the residual weight percentage and electrolysis time for	49
0.01% w/v tannin at 275 nm	
2.21 Plot of the residual weight percentage and electrolysis time for	50
0.1% w/v tannin at 275 nm	
2.22 Plot of the residual weight percentage and electrolysis time for	50
1% w/v tannin at 275 nm	
2.23 Plot of the residual weight percentage and electrolysis time for	51
0.01% w/v morin at 360 nm	
2.24 Plot of the residual weight percentage and electrolysis time for	51
0.1% w/v morin at 360, 415 nm	
3.1 TLC chromatogram of crude extract of black glutinous rice	68
3.2 Plot of absorbance and electrolysis time for seedlac solution	r v e ₇₆
4.6% w/v in 85% ethanol	
3.3 IR spectrum of crude seedlac	80

Figure

9181816	
3.4 IR spectrum of lac recover from filtrate of seedlac solution	80
(1% w/v in 85% ethanol), 1 hour electrolysis	
3.5 IR spectrum of dark-purple compound obtained form coagulum of	81
electrocoagulation of seed lac	
3.6 IR spectrum of compound isolated form seed lac by classical method	82
of erythrolaccin isolating	
3.7 Curcumin structure	85
3.8 Calibration curve of standard curcumin	89
3.9 Electrocoagulation curve of standard curcumin	90
3.10 IR spectrum of standard curcumin	91
3.11 IR spectrum of recovered curcumin obtained from precipitate part	92
after EC process	
3.12 IR spectrum of recovered curcumin from filtrate part after EC process	92
3.13 IR spectrum of recovered compound from EC filtrate of turmeric	93
3.14 TLC chromatogram of (from left to right) jackfruit wood crude extract,	98
authentic morin, EC filtrate and precipitate of the crude extract.	
(0.3 A direct current)	
3.15 IR spectrum of recovered compound from EC filtrate of turmeric (85% ethanol)	99

Figure	Page
3.16 IR spectrum of recovered compound from ec precipitate o (85% ethanol)	of turmeric 99
3.17 TLC chromatogram of (from left to right) jackfruit's woo crude extract, authentic morin, EC filtrate and precipitate	
the crude extract.(0.4 A direct current)3.18 IR spectrum of recovered compound from EC filtrate of t (75% ethanol).	urmeric 101
3.19 IR spectrum of recovered compound from EC precipitate (75% ethanol).	of turmeric 101
3.20 IR spectrum of standard morin.	102
3.21 Electrocoagulation curve of Roselle (aqueous, 0.5 A)	106
3.22 Electrocoagulation curve of roselle (aqueous, 2.5 A, 1.5 h	nours) 108
3.23 Electrocoagulation Curve of Beetroot solution (50% EtOl	H, 2 hours) 114
3.24 Electrocoagulation Curve of Beet root (aqueous, 2 hours)	116
3.25 Crocin structure	
3.26 TLC chromatogram of gardenia (from left to right) crude authentic crocin, EC precipitate and filtrate (aqueous solu	
3.27 TLC chromatogram of (from left to right) gardenia crude authentic crocin, EC precipitate and filtrate (ethanolic so	

Figure	Page
3.28 TLC chromatogram of (from left to right) gardenia crude extract, authentic crocin, ec filtrate in ethanolic solution	127
4.1 Plot of the adsorbance versus electrocoagulation time during 2 hours of ec process of black bean (85% aqueous ethanol with 3% v/v trifluoroacetic acid).	141
4.2 HPLC analysis of black bean crude extract	144
4.3 HPLC chromatogram of black bean obtained from HPLC second condition.	145
4.4 HPLC chromatogram of black bean obtained from HPLC condition 3	146
5.1 Calibration curve for determination of anthraquinone.	153
5.2 Calibration curve for determination of alizarin.	153
5.3 Calibration curve for determination of chrysazin.	154
5.4 Calibration curve for determination of purpurin.	154
5,5 Calibration Curve for determination of emodin.	155
5.6 Calibration curve for determination of 2,6-diaminoanthraquinone.	155
5.7 Calibration curve for determination of plumbagin	157

Flowchart 1 Weight and percentage yield of compounds extracted from gardenia 123

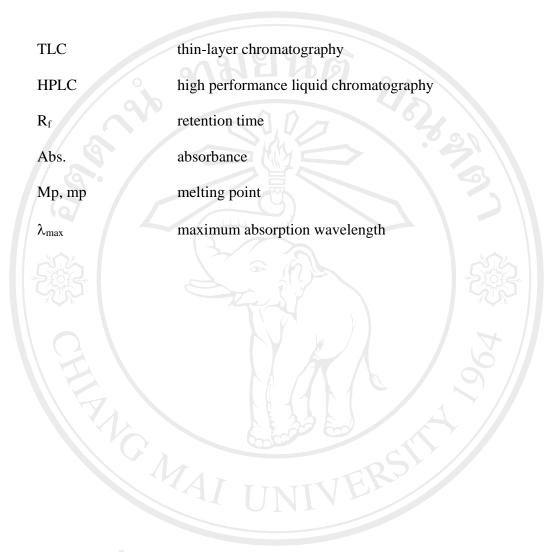
xvii

LIST OF PICTURES भाषा

ANERO	
Picture	Page
2.1 EC fractions of apigenin during 2 hours of electrolysis.	35
3.1 Black glutinous rice sample (blended).	54
3.2 Color of black glutinous rice sample in 95% aqueous ethanol solution	n. 63
3.3 Chromosome dyeing of some crude extracts from black glutinous rice	e. 65
3.4 Black glutinous rice solution before (left) and after (right)	66
electrocoagulation process.	
3.5 Solid compound obtained from the precipitate part of electrolysis	67
of black glutinous rice	
3.6 Recovered compounds from EC precipitate of black glutinous rice.	67
3.7 Seedlac sample solution (4.6% w/v in85% ethanol) taken every 15 mi	inutes 77
every 15 minutes during 2 hours electrolysis.	
3.8 Seedlac solution (4.6% w/v in 85% ethanol).	
3.9 Lac from filtrate of electrolysis.	79
3.10 Seedlac samples	e ₈₃ 1
3.11 EC fraction of standard curcumin.	90
3.12 EC fractions of roselle (aqueous, 0.5 A)	107

xviii

3.13 Electrocoagulation fractions of roselle (aqueous, 2.5 A, 1.5 hours)	108
Picture	Page
3.14 Precipitate (left) and filtrate (right) of roselle solution after electrolysis	109
3.15 EC fractions of beet root (50% EtOH, 2 hours)	115
3.16 EC fractions of beet root aqueous solution during 2 hours of EC process.	116
3.17 Gardenia samples and crude extract.	124
3.18 EC of gardenia in aqueous solution.	124
3.19 Compounds obtained from filtrate (left) and precipitate (right)	124
after EC process of gardenia in aqeous solution (1.0 A, 40 min).	
3.20 Compounds obtained from filtrate (left) and precipitate (right)	126
after EC process of gardenia in 25% ethanolic solution.	
3.21 Compounds obtained from filtrate after ec process of gardenia	127
in aqueous solution; at 0.6 A (left) and 0.4 A (right).	
3.22 Experimental setting for EC process of betel nut (a), filtrate (b)	131
and recovered compound from coagulum after EC process (c).	
3.23 Fractions taken from EC process of betel nut (from left to right)	132
before, 15, 30 and 45 minutes of electrolysis.	
4.1 Black bean Chiang Mai University	134
4.2 Black bean EC fractions taken every 15 minute during 2 hours of EC process	141
4.3 Solubility test of black bean crude extract	142
4.4 Small scale electrocoagulation	147


xix

ABBREVIATIONS AND SYMBOLS

EC	electrocoagulation
DC	direct current
A	ampare
V	volt(s)
min	minute
cm	centimeter
mL	mililiter
Fig	figure
TFA	trifluoro acetic acid
МеОН	methanol
EtOH	ethanol
w/v SUI	weight per volume
v/v	volume per volume
UV	ultraviolet
UV-Vis	ultraviolet-visible
IR	infrared
Nm	nanometer

std.

standard

ลิขสิทธิ์มหาวิทยาลัยเชียงใหม่ Copyright[©] by Chiang Mai University All rights reserved

xxi