TABLE OF CONTENTS

	Page
ACKNOWLEDGMENTS	iii
ABSTRACT (ENGLISH)	iv
ABSTRACT (THAI)	V
LIST OF TABLES	xi
LIST OF FIGURES	xii
LIST OF SCHEME	xiii
ABBREVIATIONS AND SYMBOLS	xiv
CHAPTER I: INTRODUCTION	
1.1 Multicomponent reactions	1
1.1.1 Multicomponent Reaction with Carbonyl Compounds	2
1.1.2 Isocyanide-Based Multicomponent Reactions	4
1.2 Dihydropyrimidine Synthesis	6
1.3 Microwave-assisted organic synthesis	8
1.3.1 Advantage of microwave synthesis	9
1.3.2 Scope of microwave-assisted organic synthesis	10
1.4 Literature review	14
1.4.1 Mechanistic Studies	15
1.4.2 Reaction conditions	17
1.5 Aims of this research	e ₂₅
CHAPTER II EXPERIMENTAL	
2.1 Chemicals	27
2.2. Catalyst preparation	28

2.3. Study of the optimal condition for 3,4-dihydropyrimidine- $2(1H)$ -one	es	
synthesis using conventional heating		
2.3.1 Study of the concentration of catalyst	29	
2.3.2 Study of the concentration of urea	30	
2.3. 3 Study of the temperature for heating	31	
2.3.4 Synthesis of substituted 3,4-dihydropyrimidine-2(1H)-ones		
Under conventional heating method	32	
2.3.4.1 Synthesis of ethyl 4-(4-methoxyphenyl)-6-methyl-3,4-		
dihydropyrimidine-2(1 <i>H</i>)-one-5-carboxylate (4b)	32	
2.3.4.2 Synthesis of ethyl 4-(4-chlorophenyl)-6-methyl-3,4-		
dihydropyrimidine-2(1 <i>H</i>)-one-5-carboxylate (4c)	33	
2.3.4.3 Synthesis of ethyl 4-(2-chlorophenyl)-6-methyl-3,4-		
dihydropyrimidine-2(1 <i>H</i>)-one-5-carboxylate (4d)	34	
2.3.4.4 Synthesis of ethyl 4-(4-nitrophenyl)-6-methyl-3,4-		
dihydropyrimidine-2(1 <i>H</i>)-one-5-carboxylate (4e)	35	
2.3.4.5 Synthesis of ethyl 4-(4-dimethylamono)-6-methyl-3,4-		
dihydropyrimidine-2(1 <i>H</i>)-one-5-carboxylate (4f)	36	
2.3.5 Study of reusing the catalyst	37	
2.4 Synthesis of substituted 3,4-dihydropyrimidine- $2(1H)$ -thiones under		
conventional heating synthesis	38	
2.4.1 Synthesis of ethyl 4-(phenyl)-6-methyl-3,4-		
dihydropyrimidine-2(1 <i>H</i>)-thione-5-carboxylate (5a)	38	
2.4.2 Synthesis of ethyl 4-(4-methoxyphenyl)-6-methyl-3,4-		
dihydropyrimidine-2(1 <i>H</i>)-thione-5-carboxylate (5b)	39	

2.4.3 Synthesis of ethyl 4-(4-chlorophenyl)-6-methyl-3,4-		
dihydropyrimidine-2(1 <i>H</i>)-thione-5-carboxylate (5c)	40	
2.4.4 Synthesis of ethyl 4-(2-chlorophenyl)-6-methyl-3,4-		
dihydropyrimidine-2(1 <i>H</i>)-thione-5-carboxylate (5d)	41	
2.4.5 Synthesis of ethyl 4-(4-nitrophenyl)-6-methyl-3,4-		
dihydropyrimidine-2(1 <i>H</i>)-thione-5-carboxylate (5e)	42	
2.4.6 Synthesis of ethyl 4-(4-dimethylaminophenyl)-6-methyl-		
3,4-dihydropyrimidine-2(1 <i>H</i>)-thione-5-carboxylate (5f)	43	
2.4.7 Synthesis of ethyl 4-(3-hydroxyphenyl)-6-methyl-3,4-		
dihydropyrimidine-2(1 <i>H</i>)-thione-5-carboxylate (5g)	44	
2.5 Synthesis of substituted 3,4-dihydropyrimidine-2(1H) under microwave		
heating method 45		
2.5.1 Synthesis of ethyl 4-(phenyl)-6-methyl-3,4-		
dihydropyrimidine-2(1 <i>H</i>)-one-5-carboxylate (4a)	45	
2.5.2 Synthesis of ethyl 4-(4-methoxyphenyl)-6-methyl-3,4-		
dihydropyrimidine-2(1 <i>H</i>)-one-5-carboxylate (4b)	46	
2.5.3 Synthesis of ethyl 4-(4-chlorophenyl)-6-methyl-3,4-		
dihydropyrimidine-2(1 <i>H</i>)-one-5-carboxylate (4c)	47	
2.5.4 Synthesis of ethyl 4-(2-chlorophenyl)-6-methyl-3,4-		
dihydropyrimidine-2(1 <i>H</i>)-one-5-carboxylate (4d)	48	
2.5.5 Synthesis of ethyl 4-(4-nitrophenyl)-6-methyl-3,4-		
dihydropyrimidine-2(1 <i>H</i>)-one-5-carboxylate (4e)	49	
2.5.6 Synthesis of ethyl 4-(3-hydroxyphenyl)-6-methyl-3,4-		
dihydropyrimidine-2(1H)-one-5-carboxylate (4f)	50	

2.5.7 Synthesis of ethyl 4-(phenyl)-6-methyl-3,4-dihydropyrimidine-	
2(1 <i>H</i>)-thione-5-carboxylate (5a)	51
2.5.8 Synthesis of ethyl 4-(4-methoxyphenyl)-6-methyl-3,4-	
dihydropyrimidine-2(1 <i>H</i>)-thione-5-carboxylate (5b)	52
2.5.9 Synthesis of ethyl 4-(4-chlorophenyl)-6-methyl-3,4-	
dihydropyrimidine-2(1 <i>H</i>)-thione-5-carboxylate (5c)	53
2.5.10 Synthesis of ethyl 4-(2-chlorophenyl)-6-methyl-3,4-	
dihydropyrimidine-2(1 <i>H</i>)-thione-5-carboxylate (5d)	54
2.5.11 Synthesis of ethyl 4-(4-nitrophenyl)-6-methyl-3,4-	
dihydropyrimidine-2(1 <i>H</i>)-thione-5-carboxylate (5e)	55
2.5.12 Synthesis of ethyl 4-(4-dimethylaminophenyl)-6-methyl-3,4-	
dihydropyrimidine-2(1 <i>H</i>)-thione-5-carboxylate (5f)	56
2.5.13 Synthesis of ethyl 4-(3-hydroxyphenyl)-6-methyl-3,4-	
dihydropyrimidine-2(1 <i>H</i>)-thione-5-carboxylate (5g)	57

CHAPTER III RESULTS AND DISCUSSION

3.1 Study of the optimal condition for 3,4-dihydropyrimidine- $2(1H)$ -ones using	
conventional heating synthesis	59
3.1.1 Study of the concentration of catalyst	59
3.1.2 Study of the concentration of urea	60
3.1.3 Study of the temperature for heating	61
3.1.4 Synthesis of substituted 3,4-dihydropyrimidine- $2(1H)$ -ones under	
conventional heating method	61
3.1.5 Study of reusing the catalyst	64

LIST OF TABLES

Table	Page
3.1 Study of the concentration of catalyst	59
3.2 Study of the concentration of urea	60
3.3 synthesis of Substituted 3,4-dihydropyrimidine-2(1H)-ones through	
the Biginelli cyclocondensation (conventional heating method,	
80 °C and 110 °°C)	62
3.4 Synthesis of Substituted 3,4-dihydropyrimidine-2(1 <i>H</i>)-ones	
by conventional method using reused catalyst.	64
3.5 Synthesis of Substituted 3,4-dihydropyrimidine-2(1 <i>H</i>)-thiones	
through the Biginelli cyclocondensation (conventional heating method,	
80 °C and 110 °°C)	65
3.6 synthesis of Substituted 3,4-dihydropyrimidinones	
through the Biginelli cyclocondensation (microwave method)	67

LIST OF FIGURES

Figure	Page
1. A divergent 1-component reaction, and convergent 2- and	
6-component reactions.	1
2. The mechanism of Passerini reaction.	4
3. Examples of biologically active DHPMs	7
4. Example of solid-supported reagent in solution-phase microwave synthesis	13
5. Example of solvent-free microwave reaction	14

LIST OF SCHEME

Scheme	
1. The original Biginelli dihydropyrimidine condensation	14
2. The mechanism of the Biginelli reaction proposed by Sweet and Fissekis	16
3. The mechanism of the Biginelli reaction proposed by Kappe	17

ABBREVIATIONS AND SYMBOLS

br	Broad (NMR signal)
cat.	Catalyst
cm ⁻¹	Wavenumber
°C	Degrees Celcius
d	Doublet (NMR signal)
dd	Doublet of doublet (NMR signal)
DCM	Dichloromethane
Et S	Ethyl
EI	Electron ionization
eq.	Equivalents
Et ₂ O	Diethyl ether
FT-IR	Fourier transform infrared
GC	Gas chromatography
GC/MS	Gas chromatography / mass spectrometry
h.	Hours
Hz	Hertzngnaglögolny
J.C h	Coupling constant (NMR signal)
lit.	Literature
m 8	Multiplet (NMR signal)
min	minute(s)
Me	Methyl
ml	Millilite

mmol	Millimole
М.р.	Melting point
m/z	Mass to charge ratio
o/n	Overnight
Pho	Phenyl
р	Para
RT	Room temperature (^O C)
s	Singlet (spectral)
t	Triplet (spectral)
Т	Temperature (^o C)
TLC	Thin layer chromatography
α	Alpha
δ	Chemical shift (ppm)
λ	Wavelength
%	Percent
V	Wave number(cm ⁻¹)