

TABLE OF CONTENTS

	Page
ACKNOWLEDGEMENTS	iii
ABSTRACT (ENGLISH)	iv
ABSTRACT (THAI)	vi
LIST OF TABLES	xi
LIST OF FIGURES	xiii
ABBREVIATIONS AND SYMBOLS	xvi
CHAPTER 1: INTRODUCTION	
1.1 Overview	1
1.2 Dimethoate	2
1.3 Malathion	4
1.4 Single Drop Microextraction	7
1.5 Gas Chromatography	9
1.5.1 History of GC	9
1.5.2 Principle of GC	10
1.5.3 Component of a GC	11
1.6 Qualitative and Quantitative Analysis	21
1.7 The Scope and Aims of This Research	22

CHAPTER 2: EXPERIMENTAL

	Page
2.1 Apparatus and Chemicals	23
2.1.1 Apparatus	23
2.1.2 Chemicals	24
2.1.3 Standard pesticides	24
2.2 Preparation of the Solution	25
2.2.1 Preparation of the stock standard solutions	25
2.2.2 Preparation of the working standard solutions	25
2.3 Optimization of GC-FPD Conditions	25
2.4 Optimization of SDME Conditions	26
2.5 Validation of Method	28
2.6 Determination of Dimethoate and Malathion in Vegetable and Fruit Samples	30
2.7 Detail of Samples	31

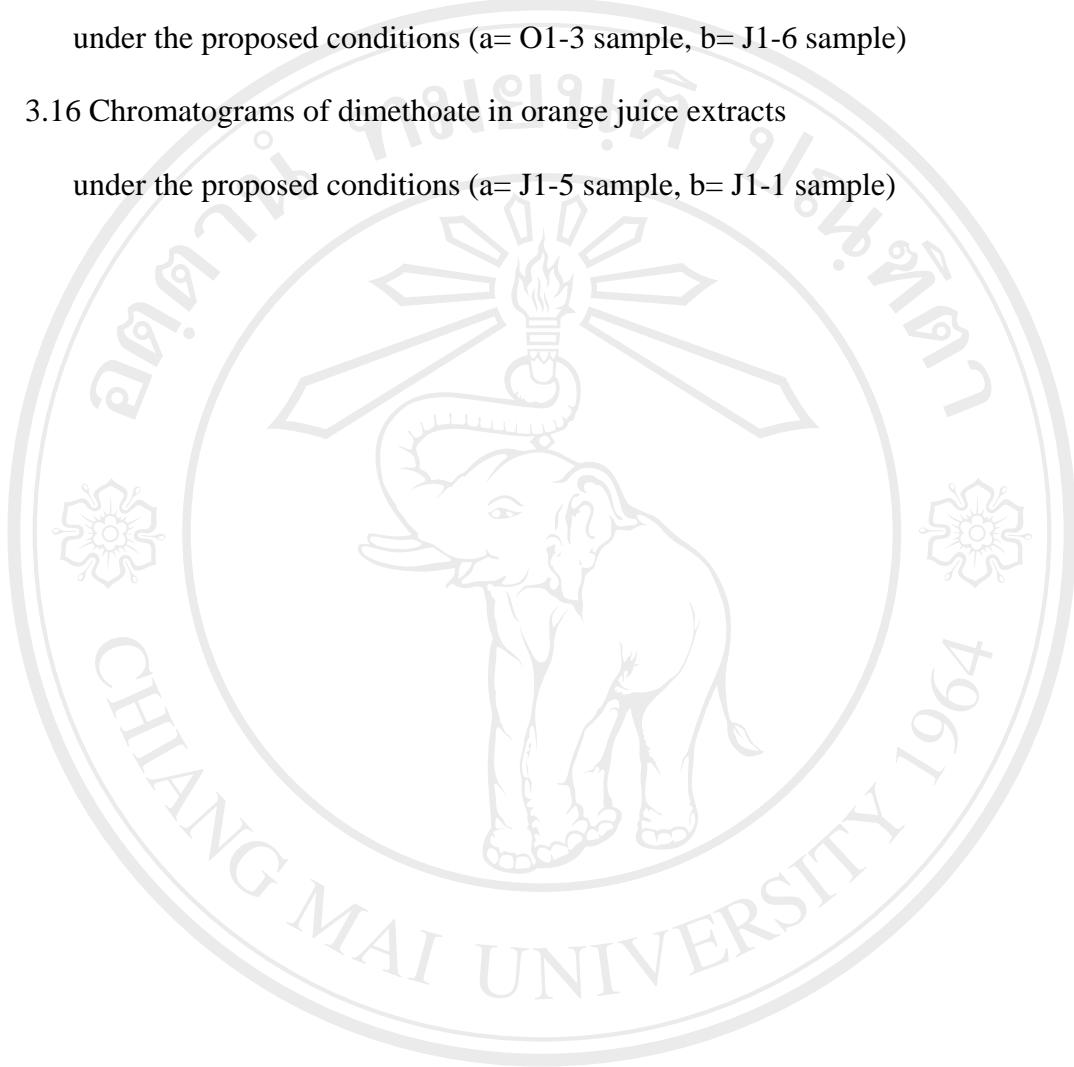
CHAPTER 3: RESULTS AND DISCUSSION

3.1 Results on Optimization of GC-FPD Conditions	33
3.2 Results on Optimization of SDME Conditions	35
3.2.1 Selection of the extraction solvent	35
3.2.2 Drop volume	38
3.2.3 Stirring rate	40
3.2.4 Salting-out effect	42
3.2.5 Sample pH	45

	Page
3.2.6 Extraction time	47
3.3 Results on Validation of the Method	51
3.3.1 Percentage recovery	51
3.3.2 Detection limits	52
3.3.3 Precision	52
3.3.4 Linearity	54
3.4 Results on Retention Times of Dimethoate and Malathion Standards	59
3.5 Results on Determination of Dimethoate and Malathion in Vegetable and Fruit Samples	60
CHAPTER 4: CONCLUSION	68
THE RELEVANCY OF THE RESEARCH WORK TO THAILAND	71
REFERENCES	72
APPENDIX A	75
APPENDIX B	77
VITA	82

LIST OF TABLES

Table	Page
1.1 Properties of dimethoate	2
1.2 Properties of malathion	5
2.1 Detail of samples	31
3.1 Conditions of GC-FPD employed	33
3.2 Data of dimethoate and malathion for the extraction efficiency of different organic solvents by SDME	36
3.3 Data of dimethoate and malathion for the extraction efficiency of drop volume by SDME	38
3.4 Data of dimethoate and malathion for the extraction efficiency of stirring rate by SDME	40
3.5 Data of dimethoate and malathion for the extraction efficiency of amount of NaCl addition by SDME	43
3.6 Data of dimethoate and malathion for the extraction efficiency of sample pH by SDME	45
3.7 Data of dimethoate and malathion for the extraction efficiency of extraction time by SDME	47
3.8 Suitable conditions of SDME method	49
3.9 Limits of detection and recoveries at two spiked levels	51
3.10 Intra-day repeatability of dimethoate and malathion at three Concentrations	53


Table	Page
3.11 Inter-day repeatability of dimethoate and malathion at three concentrations	54
3.12 The response (average area ratio) of dimethoate with variation concentrations	55
3.13 The response (average area ratio) of malathion with variation concentrations	57
3.14 Retention times of dimethoate and malathion standards (n=10)	59
3.15 Amounts of dimethoate and malathion in vegetable and fruit samples (n=3)	62

LIST OF FIGURES

Figure	Page
1.1 Example set for SDME	9
1.2 Components of gas chromatography	12
1.3 Packed column	16
1.4 Capillary column	16
1.5 Schematic of a gas chromatographic flame photometric detector	19
2.1 Summary of experimental procedures for the determination of dimethoate and malathion by SDME-GC-FPD	26
2.2 Summary of SDME procedures for the determination of dimethoate and malathion	27
2.3 Summary of procedure of vegetable samples for the determination of dimethoate and malathion	30
3.1 Extraction efficiency of dimethoate and malathion with different organic solvent	37
3.2 Effect of drop volume on the extraction efficiency of SDME for dimethoate and malathion	39
3.3 Effect of stirring rate on the extraction efficiency of SDME for dimethoate and malathion	41
3.4 Effect of salt addition on the extraction efficiency of SDME for dimethoate and malathion	44

Figure	Page
3.5 Effect of sample pH on the extraction efficiency of SDME for dimethoate and malathion	46
3.6 Effect of extraction time on the extraction efficiency of SDME for dimethoate and malathion	48
3.7 Optimum conditions of SDME-GC-FPD for the analysis of dimethoate and malathion	50
3.8 LOD value of dimethoate and malathion were obtained under the optimum conditions	52
3.9 Linearity plot of average area ratio against concentration of dimethoate under the optimized conditions (A= concentration range 10-100 $\mu\text{g/L}$, B= concentration range 100-1000 $\mu\text{g/L}$)	56
3.10 Linearity plot of average area ratio against concentration of malathion under the optimized conditions (A= concentration range 10-100 $\mu\text{g/L}$, B= concentration range 100-1000 $\mu\text{g/L}$)	58
3.11 Calibration curve of dimethoate used for calculating concentration in vegetable and fruit samples	61
3.12 Calibration curve of malathion used for calculating concentration in vegetable and fruit samples	61
3.13 Chromatograms of dimethoate and malathion standard extracts under the proposed conditions	64
3.14 Chromatograms of dimethoate in orange juice extracts under the proposed conditions (a= O1-2 sample, b= O2-2 sample)	65

Figure	Page
3.15 Chromatograms of dimethoate in orange juice extracts under the proposed conditions (a= O1-3 sample, b= J1-6 sample)	66
3.16 Chromatograms of dimethoate in orange juice extracts under the proposed conditions (a= J1-5 sample, b= J1-1 sample)	67

ลิขสิทธิ์มหาวิทยาลัยเชียงใหม่
Copyright[©] by Chiang Mai University
All rights reserved

ABBREVIATIONS AND SYMBOLS

%	percent
°C	degree celsius
>	more than
cm	centimeter
e.g.	for example
et.al.	and others
ECD	electron capture detector
FID	flame ionization detector
FPD	flame photometric detector
g	gram
GC	gas chromatography
GLC	gas-liquid chromatography
i.d.	internal diameter
i.e.	id est.; that is
IS	internal standard
L	liter
LLE	liquid-liquid extraction
LOD	limit of detection
µL	microliter
µm	micrometer
µg	microgram

MeOH	methanol
mg	milligram
min	minute
mL	milliliter
mm	millimeter
m	meter
MS	mass spectrometry
NPD	nitrogen-phosphorus detector
n.d.	not detected
NaCl	sodium chloride
pA	picoamp
PMT	photomultiplier tube
ppm	part per million
R ²	correlation coefficient
rpm	rotation per minute
R.S.D.	relative standard deviation
S.D.	standard deviation
SDME	single drop microextraction
SPE	solid phase extraction
SPME	solid phase microextraction
S/N	signal to noise
TCD	thermal conductivity detector
t _R	retention time
w/v	weight by volume