
CHAPTER II 
 

PRELIMINARIES 
 
 

In this chapter, we provide some background on the mobility model in a two-

dimensional grid, the three related decision problem definitions, breadth-first search, 

growth of  functions, plus relevant complexity theory and graph theory. All of these items 

will be used in later chapters.  

   
2.1 Preliminaries  

• Let ,...}.3,2,1{=N  

• Let S be the set. The set kS , for Nk ∈ , is the k-fold Cartesian product of the set 

S. 

 

2.2 Definition of the Mobility Model  

The following definition of the mobility model is taken from [1] with permission 

from the authors, as is part of the ensuing discussion. We define the model here to 

operate on a 2-dimensional grid. A mobility model is an 8-tuple (S, D, U, L, R, V, C, O), 

where 

1.  The set },...,,{ 21 msssS =  is a finite collection of sources, where .Nm∈  The value m 

is the number of sources. Corresponding to each source is , for ,1 mi ≤≤  an 

initial location ),( ii yx  is specified, where ., Nyx ii ∈  

2. The set }110,101,010,001,000{=D  is called the directions, and these values 

correspond to no movement, east, west, south, and north, respectively. 

3.  The set },...,,{ 21 puuuU =  is a finite collection of mobile devices, where .Np∈  The 

set U is called the set of users. The value p is called the number of users. 



Corresponding to each user iu , for ,1 pi ≤≤  an initial location ),( ii yx  is 

specified, where ., Nyx ii ∈  

4. The set },...,,{ 21 tlllL = is a finite collection of “bit strings,” where Nt ∈  and t
i Dl ∈  

for ti ≤≤1 . Each group of three bits in il  beginning with the first three defines a 

step in a given direction for the user iu ’s movement or no movement at all if the 

string is 000. The value t is called the duration of the model. 

5. Let Nit ∈)(  for .1 mi ≤≤  The set },...,,{ 21 mrrrR =  is a finite collection of “bit   

strings,”  where )(it
i Dr ∈  for .1 mi ≤≤  Each group of three bits in ir  beginning 

with the first three defines a step in a given direction for the source is ’s 

movement or no movement at all if the string is 000. The set R is called the 

random walks of the mobility model. 

6. The set },...,,{ 21 mvvvV = is a finite collection of numbers, where .Nvi ∈  The value iv  

is the corresponding number of steps from ir  per unit time that is  will take. This 

set is called the velocities. 

7. The set },...,,{ 21 mcccC =  is a finite collection of lengths, where .Nci ∈  The value ic  

is the corresponding diameter of the circular coverage of source is . This set is 

called the coverages. 

8. The set },,,,|),,,({ 121222112211 yyandxxNyxyxyxyxO >>∈= is a finite collection 

of rectangles in the plane. This set is called the obstacles. 

 

Several remarks are in order about the definition. We have based the model on a 

2-dimensional grid for simplicity, but it would certainly be interesting to extend the 

model to the 3-dimensional case. The sources in S correspond to wireless access points. 

They are broadcasting and receiving signals. Although real mobile sources do not move 

in discrete steps, by using a fine enough grid, we lose little information by assuming that 

the sources are always at grid point locations. 
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The set D represents the usual four possible directions for movement in the grid, 

plus no movement at all. The set U represents users with mobile devices. We have 

modeled the movement of the users by random walks contained in the set L. Although we 

have assumed that all the walks have the same length, this convention is not really a 

restriction since we can simply pad out shorter walks using the no movement bit string 

000 from D. For the sake of simplicity, we have assumed that all users travel at the same 

velocity. The users move to their new locations in unit steps instantaneously. 

We have modeled the movement of the sources by random walks contained in the 

set R. To accommodate for different velocities, the walks in R have different lengths. In 

real-life situations mobile-access points move around at different speeds, for example, a 

hummer may be traveling at speeds in excess of 100 kilometers per hour, whereas an 

elephant working his way through dense brush may be moving at 1 kilometer per hour. 

We represent the relative speeds of the sources by natural numbers contained in the set V. 

Of course, a given source may not always travel at a constant velocity. It would be worth 

examining an extension of the model where any source’s speed can change over time. 

Different sources will broadcast at different signal strengths depending on a 

variety of factors, the main one being the amount of power available. We have 

represented the various signal strengths by specifying the diameter of a circle ic  for each 

source indicating where its signal can be received. This region is called the coverage 

area. Since buildings and other obstacles may interfere with signal transmission, the 

model incorporates a set of obstacles O. To simplify matters, we only permit rectangular 

obstacles. 

We now turn our attention to the communication protocol which will allow us to 

illustrate how the model is used. The following communication protocol is needed so that 

the model works as intended. The sources are always on; they are always broadcasting 

and listening. Users with mobile devices are moving in and out of the range of each other 

and various sources. Mobile devices would like to communicate (send and receive 

messages) with one another. We specify the manner in which they may communicate in 

what follows. Let 2>k  and .Nk ∈  
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• At a given instance in time any two sources with overlapping-coverage areas may 

communicate with each other in full-duplex fashion as long as the intersection of 

their overlapping-coverage area is not completely contained inside obstacles. We 

say that these two sources are currently in range. A series ksss ,...,, 21  of sources 

are said to be currently in range if is  and 1+is  are currently in range for 

11 −≤≤ ki . 

• Two mobile devices cannot communicate directly with one another.  

• A mobile device 1D  always communicates with another mobile device 2D  

through a source or series of sources as defined next. The mobile devices 1D  at 

location ),( 11 yx  and 2D  at location ),( 22 yx  communicate through a single 

source s located at ),( 33 yx  if at a given instance in time the lines between points 

),( 11 yx  and ),( 33 yx  and points ),( 22 yx  and ),( 33 yx  are within the area of 

coverage of s, and do not intersect with any obstacle from O. The mobile devices 

1D  at location ),( 11 yx  and 2D  at location ),( 22 yx  communicate through a 

series of sources 1s  at location ),( 11 ba , 2s  at location ),( 22 ba ,…, and ks  at 

location ),( kk ba  that are currently in range if the line between points ),( 11 yx  and 

),( 11 ba  is inside 1s ’s coverage area and does not intersect any obstacle from O 

and the line between points ),( 22 yx  and ),( kk ba  is inside ks ’s coverage area and 

does not intersect any obstacle from O. 

 

2.3  A Sample Instance of the Model 

To illustrate the mobility model, we provide a specific instance next; see Figure 

2.1. Let ),,,,,,,( OCVRLUDSM =  be defined as follows:  

1. Let },,,{ 4321 ssssS =  with initial locations (2, 5), (5, 5), (6, 4), and (5, 2), 

respectively. 

2. Let }.110,101,010,001,000{=D  
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3. Let },,{ 321 uuuU =  with initial locations (3, 4), (2, 1), and (6, 2), respectively. 

4. Let 3=t  and },,,{ 321 lllL =  where }000,000,000{=il  for 31 ≤≤ i . 

5. Let },,,{ 4321 rrrrR = . For clarity Figure 2.1 only illustrates }101,001,101{1 =r  and 

omits the other ir ’s, which we assume are all (000,000,000), except for 2r  which 

is twice as long. 

6. Let }1,1,2,1{=V . 

7. Let }4,2,2,2{=C . 

8. Let )}2,4,1,2{(=O . 
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Figure 2.1  Sample instance of the mobility model. 

 

Figure 2.1 illustrates this instance of the model M graphically. In this case there 

are three stationary users. There are four sources ,,, 321 sss  and 4s  located at (2, 5), (5, 5), 

(6, 4), and (5, 2), respectively. An obstacle in this figure is the rectangle defined by the 

lower-left coordinate (3, 2) and the upper-right coordinate (5, 3). Sources 1s , 2s , and 3s  

each have a coverage with a diameter 2, and 4s  has a coverage with a diameter 4. The 

steps of 1s  at initial location (2, 5) are defined by 1r . In this case, 1s  moves south in the 
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first step, east in the second step, and south in the third step. The moves are made with a 

velocity of 11 =v , or one step per unit of time. 

Note that initially, for example, sources 2s  and 3s  are currently in range, sources 

2s , 3s , and 4s  are a series of sources currently in range, and sources 1s  and 2s  are not 

currently in range. Initially, users 1u  and 3u  cannot communicate either by a source or a 

series of sources. After three steps, 1u  can communicate with 3u  through the series of 

sources 1s  and 4s . 

 
2.4 Problem Definitions  

In this section three interesting problems related to the mobility model are 

defined. The definitions are from [1]. 

 

User Communication Problem (UCP) 

INSTANCE: A mobility model (S, D, U, L, R, V, C, O), two designated users au  

and bu  from U, a time ,1δ≤k  and ,2δ≤O  where ., 11 N∈δδ   

QUESTION: Can users au  and bu  communicate at time k? 

 

Sources Reachability Problem (SRP) 

INSTANCE: A mobility model (S, D, U, L, R, V, C, O), two designated sources 

as  and bs  from S, a time 1δ≤k , and 2δ≤O , where ., 11 N∈δδ  

QUESTION: Are sources as  and bs  in range at time k? 

 

Access Point Location Problem (APLP) 

INSTANCE: A mobility model (S, D, U, L, R, V, C, O), two designated users au  

and bu  from U, a source diameter 1δ≤d , and a natural number 2δ≤k  

where S is an empty set and ., 11 N∈δδ  
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QUESTION: Can users au  and bu  communicate throughout the duration of the 

model if k nonredundant sources of diameter d are placed appropriately in 

the grid and each source is accessed exactly once? 

 

2.5 Breadth-First Search  

 Breadth-first search (BFS) is one of the simplest algorithms for searching a graph 

and the archetype for many important graph algorithms [14]. Prim’s minimum-spanning-

tree algorithm and Dijkstra’s single-source shortest-paths algorithm use ideas similar to 

those used in standard breadth-first search. 

Given a graph G = (V, E) and a distinguished source vertex s, breadth-first search 

systematically explores the edges of G to “discover” every vertex that is reachable from 

s. BFS computes the distance (smallest number of edges) from s to each reachable vertex. 

It also produces a “breadth-first tree” with root s that contains all vertices reachable from 

s. For any vertex v reachable from s, the path in the breadth-first tree from s to v 

corresponds to a “shortest path” from s to v in G, that is, a path containing the fewest 

number of edges possible. The algorithm works on both directed and undirected graphs. 

Breadth-first search is so named because it expands the frontier between 

discovered and undiscovered vertices uniformly across the breadth of the frontier. That is, 

the algorithm discovers all vertices at distance k from s before discovering any vertices at 

distance k + 1.  

To keep track of progress, breadth-first search colors each vertex white, gray, or 

black. All vertices start out white and may later become gray and then black. A vertex is 

discovered the first time it is encountered during the search, at which time it becomes 

nonwhite. Gray and black vertices, therefore, have been discovered, but breadth-first 

search distinguishes between them to ensure that the search proceeds in a breadth-first 

manner. If Evu ∈),(  and vertex u is black, then vertex v is either gray or black; that is, 

all vertices adjacent to black vertices have been discovered. Gray vertices may have some 

adjacent white vertices; they represent the frontier between discovered and undiscovered 

vertices. 
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Breadth-first search constructs a breadth-first tree, initially containing only its 

root, which is the source vertex s. Whenever a white vertex v is discovered in the course 

of scanning the adjacency list of an already discovered vertex u, the vertex v and the edge 

(u, v) are added to the tree. We say that u is the predecessor or parent of v in the 

breadth-first tree. Since a vertex is discovered at most once, it has at most one parent. 

Ancestor and descendant relationships in the breadth-first tree are defined relative to the 

root s as usual: if u is on a path in the tree from the root s to vertex v, then u is an ancestor 

of v and v is a descendant of u. 

  
            BFS( sG, )  
1. for each vertex }{][ sGVu −∈  
2.  do ][ucolor ←  WHITE  
3.   ][ud ← ∞  
4.   NILu ←][π  
5. ][scolor ←  GRAY  
6. ][sd ← 0  
7. NILs ←][π  
8. φ←Q  
9. ENQUEUE( sQ, ) 
10. while φ≠Q  
11.  do )(QDEQUEUEu ←  
12.   for each ][uAdjv∈  
13.    do if  ][vcolor  = WHITE  
14.     then ][vcolor ←  GRAY  
15.      1][][ +← udvd  
16.      uv ←][π  
17.      ENQUEUE( vQ, ) 
18.   ][ucolor ←  BLACK  

 
Figure 2.2  BFS algorithm. 

 
 

The breadth-first-search procedure BFS presented in Figure 2.2 assumes that the 

input graph G = (V, E) is represented using adjacency lists. The algorithm maintains 

several additional data structures with each vertex in the graph. The color of each vertex 
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u ∈  V is stored in the variable color[u], and the predecessor of u is stored in the variable 

π[u]. If u has no predecessor (for example, if u = s or u has not been discovered), then 

π[u] = NIL. The distance from the source s to vertex u computed by the algorithm is 

stored in d[u]. The algorithm also uses a first-in, first-out queue Q to manage the set of 

gray vertices. 

The procedure BFS works as follows. Lines 1–4 color every vertex white, set d[u] 

to be infinity for each vertex u, and set the parent of every vertex to be NIL. Line 5 colors 

the source vertex s gray, since it is considered to be discovered when the procedure 

begins. Line 6 initializes d[s] to 0, and line 7 sets the predecessor of the source to be NIL. 

Lines 8–9 initialize Q to the queue containing just the vertex s. 

The while loop of lines 10–18 iterates as long as there remain gray vertices, 

which are discovered vertices that have not yet had their adjacency lists fully examined. 

This while loop maintains the following invariant: At the test in line 10, the queue Q 

consists of the set of gray vertices.  

Although we will not use this loop invariant to prove correctness, it is easy to see 

that it holds prior to the first iteration and that each iteration of the loop maintains the 

invariant. Prior to the first iteration, the only gray vertex, and the only vertex in Q, is the 

source vertex s. Line 11 determines the gray vertex u at the head of the queue Q and 

removes it from Q. The for loop of lines 12–17 considers each vertex v in the adjacency 

list of u. If v is white, then it has not yet been discovered, and the algorithm discovers it 

by executing lines 14–17. It is first grayed, and its distance d[v] is set to d[u]+1. Then, u 

is recorded as its parent. Finally, it is placed at the tail of the queue Q. When all the 

vertices on u’s adjacency list have been examined, u is blackened in lines 11–18. The 

loop invariant is maintained because whenever a vertex is colored gray (in line 14) it is 

also enqueued (in line 17), and whenever a vertex is dequeued (in line 11) it is also 

colored black (in line 18). 

 The results of breadth-first search may depend upon the order in which the 

neighbors of a given vertex are visited in line 12: the breadth-first tree may vary, but the 

distances d computed by the algorithm will not. 
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Analysis 

 Here we provide an analysis of the BFS algorithm as done in [14].  For analyzing 

the running time of the BFS algorithm on an input graph G = (V, E). We use aggregate 

analysis. After initialization, no vertex is ever whitened, and thus the test in line 13 

ensures that each vertex is enqueued at most once, and hence dequeued at most once. The 

operations of enqueuing and dequeuing take O(1) time, so the total time devoted to queue 

operations is O(V). Because the adjacency list of each vertex is scanned only when the 

vertex is dequeued, each adjacency list is scanned at most once. Since the sum of the 

lengths of all the adjacency lists is )(Eθ , the total time spent in scanning adjacency lists 

is O(E). The overhead for initialization is O(V), and thus the total running time of BFS is 

O(V + E). Thus, breadth-first search runs in time linear in the size of the adjacency-list 

representation of G.    

                           

2.6 Growth  of  Functions   

In this section we review some material on the growth of functions. Much of this 

review is taken from [14]. The order of growth of the running time of an algorithm gives 

a simple characterization of the algorithm’s efficiency and also allows us to compare the 

relative performance of alternative algorithms. Once the input size n becomes large 

enough, merge sort, with its )lg( nnθ  worst-case running time, beats insertion sort, 

whose worst-case running time is )( 2nθ . Although we can sometimes determine the 

exact running time of an algorithm the extra precision is not usually worth the effort of 

computing it. For large enough inputs, the multiplicative constants and lower-order terms 

of an exact running time are dominated by the effects of the input size itself. 

When we look at input sizes large enough to make only the order of growth of the 

running time relevant, we are studying the asymptotic efficiency of algorithms. That is, 

we are concerned with how the running time of an algorithm increases with the size of 

the input in the limit, as the size of the input increases without bound. Usually, an 

algorithm that is asymptotically more efficient will be the best choice for all but very 

small inputs. 
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Asymptotic Notation   

The notations we use to describe the asymptotic running time of an algorithm are 

defined in terms of functions whose domains are the set of natural 

numbers ,...}.2,1,0{=N  Such notations are convenient for describing the worst-case 

running-time function T (n), which is usually defined only on integer input sizes. It is 

sometimes convenient, however, to abuse asymptotic notation in a variety of ways. For 

example, the notation is easily extended to the domain of real numbers or, alternatively, 

restricted to a subset of the natural numbers. It is important, however, to understand the 

precise meaning of the notation so that when it is abused, it is not misused. This section 

defines the basic asymptotic notations and also introduces some common abuses. 

1. notation−θ  

The notation−θ  asymptotically bounds a function from above and below. Let us 

define what this notation means. For a given function )(ng , we denote by ))(( ngθ the set 

of functions 
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21θ  

A function f(n) belongs to the set ))(( ngθ if there exist positive constants 1c  and 

2c  such that it can be “sandwiched” between )(1 ngc  and )(2 ngc , for sufficiently large n. 

Because ))(( ngθ  is a set, we could write ”))(()(“ ngnf θ∈  to indicate that )(nf  is a 

member of ))(( ngθ . Instead, we will usually write ”))(()(“ ngnf θ=  to express the same 

notion. 

2.  notationO −   

The notationO −  used when we have only an asymptotic upper bound.  For a 

given function g(n), we denote by O(g(n)) (pronounced “big-Oh of g of n” or sometimes 

just “Oh of g of n”) the set of functions. 
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We use O-notation to give an upper bound on a function, to within a constant 

factor. For all values n to the right of 0n , the value of the function f(n) is on or below 

g(n). 

3. notation−Ω  

The notation−Ω  used when we have only an asymptotic lower bound. For a 

given function g(n), we denote by Ω(g(n)) (pronounced “big-omega of g of n” or 

sometimes just “omega of g of n”) the set of functions 

⎭
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⎫
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∃

=Ω
o

o
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))((  

For all values n to the right of 0n ,  the value of  f(n) is on or above cg(n). 

 
2.7 Complexity Theory  

The following relevant complexity theory is taken from [12–14] and will be used 

in classifying class and proofs of the problems we are interested. Almost all the 

algorithms we have studied thus far have been polynomial-time algorithms: on inputs of 

size n, their worst-case running time is )( knO for some constant k. It is natural to wonder 

whether all problems can be solved in polynomial time. The answer is no. For example, 

there are problems, such as Turing’s famous “Halting Problem,” that cannot be solved by 

any computer, no matter how much time is provided. There are also problems that can be 

solved, but not in time )( knO  for any constant k. Generally, we think of problems that 

are solvable by polynomial-time algorithms as being tractable, or easy, and problems that 

require superpolynomial time as being intractable, or hard.  

NP-complete problems is an interesting class of problems, whose status is unknown. 

No polynomial-time algorithm has yet been discovered for an NP-complete problem, nor 

has anyone yet been able to prove that no polynomial-time algorithm can exist for any 

one of them. This so-called P versus NP question has been one of the deepest, most 

perplexing open research problems in theoretical computer science since it was first 

posed in 1971. 
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2.8 Graph Theory  
 
 
 
  

 
 

Figure 2.3  Sample graph. 
 
 

In this section we discuss the basis concepts from graph theory needed in this 

thesis [11, 17]. Intuitively, a diagram that can be represented by means of points 

(vertices) and lines (edges) is called a graph. The degree of a vertex is the number of 

edges which have the vertex as an endpoint. The point we are trying to make is that a 

graph is a representative of a set of points and of the way they are join up, and that for 

our purposes any metrical properties are irrelevant. From this point of view, any two 

graphs which represent the same situation will be regarded as essential the same graph. 

More precisely, we shall say that two graphs are isomorphic if there is a one-one 

correspondence between their vertices which as the property that two vertices are joined 

by an edge in one graph if and only if the corresponding vertices are joined by an edge in 

the other. 

It is worth pointing out that the graph we have been discussing so far is a 

particular ‘simple’ graph. A simple graph is a graph that exactly one edge is allowed for a 

given pair of vertices. If there is more than one edge joining a point pair, the edges are 

called multiple edges. If we want to build a graph by drawing an edge from a point to 

itself, this is usually called a loop. Graphs containing no loops or multiple edges will be 

referred to as simple graphs. 

The study of directed graphs (or digraphs, as we shall usually abbreviate them) 

arises out of the question, ‘what happens if all of the roads have one-way streets?’ The 

directions of the one-way streets being indicated by arrows. Note if not all of the streets 

are one-way, then we can obtain a digraph by drawing for each two-way road two 

directed edges, one in each directions. 
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Much of graph theory involves the study of walks of various kinds, a walk being 

essentially a sequence of edges, one follow one another. A walk in which no vertex 

appears more than once is a path. A path that first and last points are the same is called a 

circuit. A graph in which any two vertices are connected by a path is called a connected 

graph. We shall also be interested in connected graph in which there is only one path 

connecting each pair of vertices; such graphs are called tree. Any graph which can be 

redrawn without crossing is called planar graph. 

   
  

 


