CHAPTER II

PRELIMINARIES

In this chapter, we provide some background on the mobility model in a two-
dimensional grid, the three related decision problem definitions, breadth-first search,
growth of functions, plus relevant complexity theory and graph theory. All of these items

will be used in later chapters.

2.1 Preliminaries
o Let N={1,23,...}.
e Let S be the set. The set S*, for k € N, is the k-fold Cartesian product of the set
S.

2.2 Definition of the Mobility Model
The following definition of the mobility model is taken from [1] with permission
from the authors, as is part of the ensuing discussion. We define the model here to
operate on a 2-dimensional grid. A mobility model is an 8-tuple (S, D, U, L, R, V, C, O),
where
1. The set S = {s,,5,,...,5,,} 1s a finite collection of sources, where m € N. The value m
is the number of sources. Corresponding to each source s,, for 1<i<m, an
initial location (x,,y,) is specified, where x,,y, € N.
2. The set D ={000,001,010,101,110} is called the directions, and these values
correspond to no movement, east, west, south, and north, respectively.

3. The set U ={u,,u,,...,u,} is a finite collection of mobile devices, where p € N. The

set U is called the set of users. The value p is called the number of users.



Corresponding to each user u,, for 1<i< p, an initial location (x,,y,) is

specified, where x,,y, € N.

4. The set L ={/,,l,,...,1,} is a finite collection of “bit strings,” where € N and I, € D'

5. Let

for 1 <i<¢. Each group of three bits in /, beginning with the first three defines a
step in a given direction for the user u,’s movement or no movement at all if the
string is 000. The value ¢ is called the duration of the model.

t(i)e N for 1<i<m. The set R={n,r,,..,r,} is a finite collection of “bit
strings,” where 7, € D' for 1<i<m. Each group of three bits in », beginning
with the first three defines a step in a given direction for the source s,’s

movement or no movement at all if the string is 000. The set R is called the

random walks of the mobility model.

6. The set V ={v,,v,,...,v, } is a finite collection of numbers, where v, € N. The value v,

1s the corresponding number of steps from r, per unit time that s, will take. This

set is called the velocities.

7. The set C = {c,,c,,...,c,,} is a finite collection of lengths, where ¢, € N. The value c,

is the corresponding diameter of the circular coverage of source s;. This set is

called the coverages.

8. The set O ={(x,,y,,X,,¥,) | X,;,¥,,%,,¥, € N,x, > x,and y, > y, }is a finite collection

of rectangles in the plane. This set is called the obstacles.

Several remarks are in order about the definition. We have based the model on a

2-dimensional grid for simplicity, but it would certainly be interesting to extend the

model to the 3-dimensional case. The sources in S correspond to wireless access points.

They are broadcasting and receiving signals. Although real mobile sources do not move

in discrete steps, by using a fine enough grid, we lose little information by assuming that

the sources are always at grid point locations.



The set D represents the usual four possible directions for movement in the grid,
plus no movement at all. The set U represents users with mobile devices. We have
modeled the movement of the users by random walks contained in the set L. Although we
have assumed that all the walks have the same length, this convention is not really a
restriction since we can simply pad out shorter walks using the no movement bit string
000 from D. For the sake of simplicity, we have assumed that all users travel at the same
velocity. The users move to their new locations in unit steps instantaneously.

We have modeled the movement of the sources by random walks contained in the
set R. To accommodate for different velocities, the walks in R have different lengths. In
real-life situations mobile-access points move around at different speeds, for example, a
hummer may be traveling at speeds in excess of 100 kilometers per hour, whereas an
elephant working his way through dense brush may be moving at 1 kilometer per hour.
We represent the relative speeds of the sources by natural numbers contained in the set V.
Of course, a given source may not always travel at a constant velocity. It would be worth
examining an extension of the model where any source’s speed can change over time.

Different sources will broadcast at different signal strengths depending on a
variety of factors, the main one being the amount of power available. We have

represented the various signal strengths by specifying the diameter of a circle ¢; for each

source indicating where its signal can be received. This region is called the coverage
area. Since buildings and other obstacles may interfere with signal transmission, the
model incorporates a set of obstacles O. To simplify matters, we only permit rectangular
obstacles.

We now turn our attention to the communication protocol which will allow us to
illustrate how the model is used. The following communication protocol is needed so that
the model works as intended. The sources are always on; they are always broadcasting
and listening. Users with mobile devices are moving in and out of the range of each other
and various sources. Mobile devices would like to communicate (send and receive
messages) with one another. We specify the manner in which they may communicate in

what follows. Let £ >2 and k e N.



e At a given instance in time any two sources with overlapping-coverage areas may
communicate with each other in full-duplex fashion as long as the intersection of
their overlapping-coverage area is not completely contained inside obstacles. We

say that these two sources are currently in range. A series s,,5,,...,s, of sources
are said to be currently in range if s, and s,,, are currently in range for
1<i<k-1.

e Two mobile devices cannot communicate directly with one another.

e A mobile device D, always communicates with another mobile device D,
through a source or series of sources as defined next. The mobile devices D, at
location (x,,y,) and D, at location (x,,y,) communicate through a single
source s located at (x,,y,) if at a given instance in time the lines between points
(x,,y,) and (x,,y;) and points (x,,y,) and (x;,y,) are within the area of

coverage of s, and do not intersect with any obstacle from O. The mobile devices

D, at location (x,,y,) and D, at location (x,,y,) communicate through a
series of sources s, at location (a,,b,), s, at location (a,,b,),..., and s, at
location (a, ,b,) that are currently in range if the line between points (x,,y,) and
(a,,b,) is inside s,’s coverage area and does not intersect any obstacle from O
and the line between points (x,,y,) and (a,,b,) is inside s, ’s coverage area and

does not intersect any obstacle from O.

2.3 A Sample Instance of the Model
To illustrate the mobility model, we provide a specific instance next; see Figure

2.1.Let M =(S,D,U,L,R,V,C,0) be defined as follows:
1. Let S={s,s,,5;,5,} with initial locations (2, 5), (5, 5), (6, 4), and (5, 2),

respectively.

2. Let D={000,001,010,101,110}.



3. Let U ={u,,u,,u,} with initial locations (3, 4), (2, 1), and (6, 2), respectively.

4. Lett=3and L={,l,,l,}, where /, = {000,000,000} for 1<i<3.

5. Let R={n,r,,r;,r,}. For clarity Figure 2.1 only illustrates , = {101,001,101} and
omits the other 7,’s, which we assume are all (000,000,000), except for », which

is twice as long.
6. Let V' ={1,2,1,1}.
7. Let C={2,2,2,4}.
8. Let O={(2,1,4,2)}.

Figure 2.1 Sample instance of the mobility model.

Figure 2.1 illustrates this instance of the model M graphically. In this case there

are three stationary users. There are four sources s,,s,,s;, and s, located at (2, 5), (5, 5),

(6, 4), and (5, 2), respectively. An obstacle in this figure is the rectangle defined by the

lower-left coordinate (3, 2) and the upper-right coordinate (5, 3). Sources s,, s,, and s,
each have a coverage with a diameter 2, and s, has a coverage with a diameter 4. The

steps of s, at initial location (2, 5) are defined by 7. In this case, s, moves south in the



10

first step, east in the second step, and south in the third step. The moves are made with a

velocity of v, =1, or one step per unit of time.

Note that initially, for example, sources s, and s, are currently in range, sources
s,, §;,and s, are a series of sources currently in range, and sources s, and s, are not
currently in range. Initially, users u, and u, cannot communicate either by a source or a
series of sources. After three steps, u, can communicate with u, through the series of

sources s, and s, .

2.4 Problem Definitions
In this section three interesting problems related to the mobility model are

defined. The definitions are from [1].

User Communication Problem (UCP)

INSTANCE: A mobility model (S, D, U, L, R, V, C, O), two designated users u,

and u, from U, atime k <J,, and |0| <0,, where 9,,0, € N.

QUESTION: Can users u, and u, communicate at time k?

Sources Reachability Problem (SRP)
INSTANCE: A mobility model (S, D, U, L, R, V, C, O), two designated sources

s, and s, from S, a time k <o, , and |O| <9,, where 0,,0, € N.

QUESTION: Are sources s, and s, in range at time k?

Access Point Location Problem (APLP)
INSTANCE: A mobility model (S, D, U, L, R, V, C, O), two designated users u,

and u, from U, a source diameter d <¢,, and a natural number k <6,

where S is an empty set and J,,0, € N.



11

QUESTION: Can users u, and u, communicate throughout the duration of the

model if £ nonredundant sources of diameter d are placed appropriately in

the grid and each source is accessed exactly once?

2.5 Breadth-First Search

Breadth-first search (BFS) is one of the simplest algorithms for searching a graph
and the archetype for many important graph algorithms [14]. Prim’s minimum-spanning-
tree algorithm and Dijkstra’s single-source shortest-paths algorithm use ideas similar to
those used in standard breadth-first search.

Given a graph G = (¥, E) and a distinguished source vertex s, breadth-first search
systematically explores the edges of G to “discover” every vertex that is reachable from
s. BFS computes the distance (smallest number of edges) from s to each reachable vertex.
It also produces a “breadth-first tree” with root s that contains all vertices reachable from
s. For any vertex v reachable from s, the path in the breadth-first tree from s to v
corresponds to a “shortest path” from s to v in G, that is, a path containing the fewest
number of edges possible. The algorithm works on both directed and undirected graphs.

Breadth-first search is so named because it expands the frontier between
discovered and undiscovered vertices uniformly across the breadth of the frontier. That is,
the algorithm discovers all vertices at distance & from s before discovering any vertices at
distance £ + 1.

To keep track of progress, breadth-first search colors each vertex white, gray, or
black. All vertices start out white and may later become gray and then black. A vertex is
discovered the first time it is encountered during the search, at which time it becomes
nonwhite. Gray and black vertices, therefore, have been discovered, but breadth-first
search distinguishes between them to ensure that the search proceeds in a breadth-first
manner. If (u,v) € E and vertex u is black, then vertex v is either gray or black; that is,
all vertices adjacent to black vertices have been discovered. Gray vertices may have some
adjacent white vertices; they represent the frontier between discovered and undiscovered

vertices.



12

Breadth-first search constructs a breadth-first tree, initially containing only its
root, which is the source vertex s. Whenever a white vertex v is discovered in the course
of scanning the adjacency list of an already discovered vertex u, the vertex v and the edge
(u, v) are added to the tree. We say that u is the predecessor or parent of v in the
breadth-first tree. Since a vertex is discovered at most once, it has at most one parent.
Ancestor and descendant relationships in the breadth-first tree are defined relative to the
root s as usual: if # is on a path in the tree from the root s to vertex v, then u is an ancestor

of v and v is a descendant of u.

BFS(G,s)
1. for each vertex u e V[G] - {s}
2. do color[u] < WHITE
3. dlu] < ©
4, mlu] < NIL
5. color[s] < GRAY
6. d[s]« 0
7. m[s] <« NIL
8. O« ¢
9.  ENQUEUE(OQ,s)
10.  while Q#¢
11. do u <« DEQUEUE(Q)
12. for each v e Adju]
13. do if color[v] = WHITE
14. then color[v] < GRAY
15. dlv]<«d[u]+1
16. mlv]<«u
17. ENQUEUE(Q,v)
18. color[u] <~ BLACK

Figure 2.2 BFS algorithm.

The breadth-first-search procedure BFS presented in Figure 2.2 assumes that the
input graph G = (V, E) is represented using adjacency lists. The algorithm maintains

several additional data structures with each vertex in the graph. The color of each vertex



13

u € Vis stored in the variable color[u], and the predecessor of u is stored in the variable
w[u]. If u has no predecessor (for example, if # = s or u has not been discovered), then
r{u] = NIL. The distance from the source s to vertex u computed by the algorithm is
stored in d[u]. The algorithm also uses a first-in, first-out queue Q to manage the set of
gray vertices.

The procedure BFS works as follows. Lines 14 color every vertex white, set d[u]
to be infinity for each vertex u, and set the parent of every vertex to be NIL. Line 5 colors
the source vertex s gray, since it is considered to be discovered when the procedure
begins. Line 6 initializes d[s] to 0, and line 7 sets the predecessor of the source to be NIL.
Lines 8-9 initialize Q to the queue containing just the vertex s.

The while loop of lines 10-18 iterates as long as there remain gray vertices,
which are discovered vertices that have not yet had their adjacency lists fully examined.
This while loop maintains the following invariant: At the test in line 10, the queue Q
consists of the set of gray vertices.

Although we will not use this loop invariant to prove correctness, it is easy to see
that it holds prior to the first iteration and that each iteration of the loop maintains the
invariant. Prior to the first iteration, the only gray vertex, and the only vertex in Q, is the
source vertex s. Line 11 determines the gray vertex u at the head of the queue Q and
removes it from Q. The for loop of lines 12—17 considers each vertex v in the adjacency
list of u. If v is white, then it has not yet been discovered, and the algorithm discovers it
by executing lines 14—17. It is first grayed, and its distance d[v] is set to d[u]+1. Then, u
is recorded as its parent. Finally, it is placed at the tail of the queue Q. When all the
vertices on u’s adjacency list have been examined, u is blackened in lines 11-18. The
loop invariant is maintained because whenever a vertex is colored gray (in line 14) it is
also enqueued (in line 17), and whenever a vertex is dequeued (in line 11) it is also
colored black (in line 18).

The results of breadth-first search may depend upon the order in which the
neighbors of a given vertex are visited in line 12: the breadth-first tree may vary, but the

distances d computed by the algorithm will not.



14

Analysis

Here we provide an analysis of the BFS algorithm as done in [14]. For analyzing
the running time of the BFS algorithm on an input graph G = (V, E). We use aggregate
analysis. After initialization, no vertex is ever whitened, and thus the test in line 13
ensures that each vertex is enqueued at most once, and hence dequeued at most once. The
operations of enqueuing and dequeuing take O(1) time, so the total time devoted to queue
operations is O(V). Because the adjacency list of each vertex is scanned only when the
vertex is dequeued, each adjacency list is scanned at most once. Since the sum of the

lengths of all the adjacency lists is &(E), the total time spent in scanning adjacency lists

is O(E). The overhead for initialization is O(¥), and thus the total running time of BFS is
O(V + E). Thus, breadth-first search runs in time linear in the size of the adjacency-list

representation of G.

2.6 Growth of Functions

In this section we review some material on the growth of functions. Much of this
review is taken from [14]. The order of growth of the running time of an algorithm gives
a simple characterization of the algorithm’s efficiency and also allows us to compare the
relative performance of alternative algorithms. Once the input size n becomes large

enough, merge sort, with its @(nlgn) worst-case running time, beats insertion sort,

whose worst-case running time is @(n”). Although we can sometimes determine the

exact running time of an algorithm the extra precision is not usually worth the effort of
computing it. For large enough inputs, the multiplicative constants and lower-order terms
of an exact running time are dominated by the effects of the input size itself.

When we look at input sizes large enough to make only the order of growth of the
running time relevant, we are studying the asymptotic efficiency of algorithms. That is,
we are concerned with how the running time of an algorithm increases with the size of
the input in the limit, as the size of the input increases without bound. Usually, an
algorithm that is asymptotically more efficient will be the best choice for all but very

small inputs.



15

Asymptotic Notation

The notations we use to describe the asymptotic running time of an algorithm are
defined in terms of functions whose domains are the set of natural
numbers N = {0,1,2,...}. Such notations are convenient for describing the worst-case
running-time function 7 (n), which is usually defined only on integer input sizes. It is
sometimes convenient, however, to abuse asymptotic notation in a variety of ways. For
example, the notation is easily extended to the domain of real numbers or, alternatively,
restricted to a subset of the natural numbers. It is important, however, to understand the
precise meaning of the notation so that when it is abused, it is not misused. This section
defines the basic asymptotic notations and also introduces some common abuses.

1. @ —notation

The 6 — notation asymptotically bounds a function from above and below. Let us

define what this notation means. For a given function g(n), we denote by 8(g(n))the set
of functions

0(g(n)) = {

f(n) :3 positive constants c,,c, and n,
such that 0<c,g(n)< f(n)<c,g(n) for nzn,

A function f{n) belongs to the set &(g(n))if there exist positive constants ¢, and
¢, such that it can be “sandwiched” between ¢, g(n) and c,g(n), for sufficiently large n.
Because 0(g(n)) is a set, we could write “f(n) € (g(n))” to indicate that f(n) is a
member of #(g(n)). Instead, we will usually write “ f(n) = 8(g(n))” to express the same
notion.

2. O —notation

The O —notation used when we have only an asymptotic upper bound. For a

given function g(n), we denote by O(g(n)) (pronounced “big-Oh of g of n” or sometimes
just “Oh of g of n”’) the set of functions.

Olg(m) = {such that 0 < f(n) <cg(n) for nzn,

f(n) :3 positive constants cand n, }



16

We use O-notation to give an upper bound on a function, to within a constant
factor. For all values n to the right of n,, the value of the function f{n) is on or below
g(n).

3. Q — notation

The Q —notation used when we have only an asymptotic lower bound. For a
given function g(n), we denote by Q(g(n)) (pronounced “big-omega of g of n” or
sometimes just “omega of g of n”) the set of functions

f(n) :3 positive constants cand n, }

e(m) = {such that 0 < cg(n) < f(n) for n=n,

For all values 7 to the right of n,, the value of f{n) is on or above cg(n).

2.7 Complexity Theory

The following relevant complexity theory is taken from [12—14] and will be used
in classifying class and proofs of the problems we are interested. Almost all the
algorithms we have studied thus far have been polynomial-time algorithms: on inputs of

size n, their worst-case running time is O(n" ) for some constant k. It is natural to wonder

whether all problems can be solved in polynomial time. The answer is no. For example,
there are problems, such as Turing’s famous “Halting Problem,” that cannot be solved by

any computer, no matter how much time is provided. There are also problems that can be
solved, but not in time O(n") for any constant k. Generally, we think of problems that

are solvable by polynomial-time algorithms as being tractable, or easy, and problems that
require superpolynomial time as being intractable, or hard.

NP-complete problems is an interesting class of problems, whose status is unknown.
No polynomial-time algorithm has yet been discovered for an NP-complete problem, nor
has anyone yet been able to prove that no polynomial-time algorithm can exist for any
one of them. This so-called P versus NP question has been one of the deepest, most
perplexing open research problems in theoretical computer science since it was first

posed in 1971.



17

2.8 Graph Theory

Figure 2.3 Sample graph.

In this section we discuss the basis concepts from graph theory needed in this
thesis [11, 17]. Intuitively, a diagram that can be represented by means of points
(vertices) and lines (edges) is called a graph. The degree of a vertex is the number of
edges which have the vertex as an endpoint. The point we are trying to make is that a
graph is a representative of a set of points and of the way they are join up, and that for
our purposes any metrical properties are irrelevant. From this point of view, any two
graphs which represent the same situation will be regarded as essential the same graph.
More precisely, we shall say that two graphs are isomorphic if there is a one-one
correspondence between their vertices which as the property that two vertices are joined
by an edge in one graph if and only if the corresponding vertices are joined by an edge in
the other.

It is worth pointing out that the graph we have been discussing so far is a
particular ‘simple’ graph. A simple graph is a graph that exactly one edge is allowed for a
given pair of vertices. If there is more than one edge joining a point pair, the edges are
called multiple edges. If we want to build a graph by drawing an edge from a point to
itself, this is usually called a loop. Graphs containing no loops or multiple edges will be
referred to as simple graphs.

The study of directed graphs (or digraphs, as we shall usually abbreviate them)
arises out of the question, ‘what happens if all of the roads have one-way streets?’ The
directions of the one-way streets being indicated by arrows. Note if not all of the streets
are one-way, then we can obtain a digraph by drawing for each two-way road two

directed edges, one in each directions.



18

Much of graph theory involves the study of walks of various kinds, a walk being
essentially a sequence of edges, one follow one another. A walk in which no vertex
appears more than once is a path. A path that first and last points are the same is called a
circuit. A graph in which any two vertices are connected by a path is called a connected
graph. We shall also be interested in connected graph in which there is only one path
connecting each pair of vertices; such graphs are called tree. Any graph which can be

redrawn without crossing is called planar graph.



