
CHAPTER II

PRELIMINARIES

In this chapter, we provide some background on the mobility model in a two-

dimensional grid, the three related decision problem definitions, breadth-first search,

growth of functions, plus relevant complexity theory and graph theory. All of these items

will be used in later chapters.

2.1 Preliminaries

• Let ,...}.3,2,1{=N

• Let S be the set. The set kS , for Nk ∈ , is the k-fold Cartesian product of the set

S.

2.2 Definition of the Mobility Model

The following definition of the mobility model is taken from [1] with permission

from the authors, as is part of the ensuing discussion. We define the model here to

operate on a 2-dimensional grid. A mobility model is an 8-tuple (S, D, U, L, R, V, C, O),

where

1. The set },...,,{ 21 msssS = is a finite collection of sources, where .Nm∈ The value m

is the number of sources. Corresponding to each source is , for ,1 mi ≤≤ an

initial location),(ii yx is specified, where ., Nyx ii ∈

2. The set }110,101,010,001,000{=D is called the directions, and these values

correspond to no movement, east, west, south, and north, respectively.

3. The set },...,,{ 21 puuuU = is a finite collection of mobile devices, where .Np∈ The

set U is called the set of users. The value p is called the number of users.

Corresponding to each user iu , for ,1 pi ≤≤ an initial location),(ii yx is

specified, where ., Nyx ii ∈

4. The set },...,,{ 21 tlllL = is a finite collection of “bit strings,” where Nt ∈ and t
i Dl ∈

for ti ≤≤1 . Each group of three bits in il beginning with the first three defines a

step in a given direction for the user iu ’s movement or no movement at all if the

string is 000. The value t is called the duration of the model.

5. Let Nit ∈)(for .1 mi ≤≤ The set },...,,{ 21 mrrrR = is a finite collection of “bit

strings,” where)(it
i Dr ∈ for .1 mi ≤≤ Each group of three bits in ir beginning

with the first three defines a step in a given direction for the source is ’s

movement or no movement at all if the string is 000. The set R is called the

random walks of the mobility model.

6. The set },...,,{ 21 mvvvV = is a finite collection of numbers, where .Nvi ∈ The value iv

is the corresponding number of steps from ir per unit time that is will take. This

set is called the velocities.

7. The set },...,,{ 21 mcccC = is a finite collection of lengths, where .Nci ∈ The value ic

is the corresponding diameter of the circular coverage of source is . This set is

called the coverages.

8. The set },,,,|),,,({ 121222112211 yyandxxNyxyxyxyxO >>∈= is a finite collection

of rectangles in the plane. This set is called the obstacles.

Several remarks are in order about the definition. We have based the model on a

2-dimensional grid for simplicity, but it would certainly be interesting to extend the

model to the 3-dimensional case. The sources in S correspond to wireless access points.

They are broadcasting and receiving signals. Although real mobile sources do not move

in discrete steps, by using a fine enough grid, we lose little information by assuming that

the sources are always at grid point locations.

6

7

The set D represents the usual four possible directions for movement in the grid,

plus no movement at all. The set U represents users with mobile devices. We have

modeled the movement of the users by random walks contained in the set L. Although we

have assumed that all the walks have the same length, this convention is not really a

restriction since we can simply pad out shorter walks using the no movement bit string

000 from D. For the sake of simplicity, we have assumed that all users travel at the same

velocity. The users move to their new locations in unit steps instantaneously.

We have modeled the movement of the sources by random walks contained in the

set R. To accommodate for different velocities, the walks in R have different lengths. In

real-life situations mobile-access points move around at different speeds, for example, a

hummer may be traveling at speeds in excess of 100 kilometers per hour, whereas an

elephant working his way through dense brush may be moving at 1 kilometer per hour.

We represent the relative speeds of the sources by natural numbers contained in the set V.

Of course, a given source may not always travel at a constant velocity. It would be worth

examining an extension of the model where any source’s speed can change over time.

Different sources will broadcast at different signal strengths depending on a

variety of factors, the main one being the amount of power available. We have

represented the various signal strengths by specifying the diameter of a circle ic for each

source indicating where its signal can be received. This region is called the coverage

area. Since buildings and other obstacles may interfere with signal transmission, the

model incorporates a set of obstacles O. To simplify matters, we only permit rectangular

obstacles.

We now turn our attention to the communication protocol which will allow us to

illustrate how the model is used. The following communication protocol is needed so that

the model works as intended. The sources are always on; they are always broadcasting

and listening. Users with mobile devices are moving in and out of the range of each other

and various sources. Mobile devices would like to communicate (send and receive

messages) with one another. We specify the manner in which they may communicate in

what follows. Let 2>k and .Nk ∈

8

• At a given instance in time any two sources with overlapping-coverage areas may

communicate with each other in full-duplex fashion as long as the intersection of

their overlapping-coverage area is not completely contained inside obstacles. We

say that these two sources are currently in range. A series ksss ,...,, 21 of sources

are said to be currently in range if is and 1+is are currently in range for

11 −≤≤ ki .

• Two mobile devices cannot communicate directly with one another.

• A mobile device 1D always communicates with another mobile device 2D

through a source or series of sources as defined next. The mobile devices 1D at

location),(11 yx and 2D at location),(22 yx communicate through a single

source s located at),(33 yx if at a given instance in time the lines between points

),(11 yx and),(33 yx and points),(22 yx and),(33 yx are within the area of

coverage of s, and do not intersect with any obstacle from O. The mobile devices

1D at location),(11 yx and 2D at location),(22 yx communicate through a

series of sources 1s at location),(11 ba , 2s at location),(22 ba ,…, and ks at

location),(kk ba that are currently in range if the line between points),(11 yx and

),(11 ba is inside 1s ’s coverage area and does not intersect any obstacle from O

and the line between points),(22 yx and),(kk ba is inside ks ’s coverage area and

does not intersect any obstacle from O.

2.3 A Sample Instance of the Model

To illustrate the mobility model, we provide a specific instance next; see Figure

2.1. Let),,,,,,,(OCVRLUDSM = be defined as follows:

1. Let },,,{ 4321 ssssS = with initial locations (2, 5), (5, 5), (6, 4), and (5, 2),

respectively.

2. Let }.110,101,010,001,000{=D

9

3. Let },,{ 321 uuuU = with initial locations (3, 4), (2, 1), and (6, 2), respectively.

4. Let 3=t and },,,{ 321 lllL = where }000,000,000{=il for 31 ≤≤ i .

5. Let },,,{ 4321 rrrrR = . For clarity Figure 2.1 only illustrates }101,001,101{1 =r and

omits the other ir ’s, which we assume are all (000,000,000), except for 2r which

is twice as long.

6. Let }1,1,2,1{=V .

7. Let }4,2,2,2{=C .

8. Let)}2,4,1,2{(=O .

1

1

2

3

4

5

6

2 3 4 5 6 7

s4

s3

s2s1

u3

u1

u2

101

001
101

Figure 2.1 Sample instance of the mobility model.

Figure 2.1 illustrates this instance of the model M graphically. In this case there

are three stationary users. There are four sources ,,, 321 sss and 4s located at (2, 5), (5, 5),

(6, 4), and (5, 2), respectively. An obstacle in this figure is the rectangle defined by the

lower-left coordinate (3, 2) and the upper-right coordinate (5, 3). Sources 1s , 2s , and 3s

each have a coverage with a diameter 2, and 4s has a coverage with a diameter 4. The

steps of 1s at initial location (2, 5) are defined by 1r . In this case, 1s moves south in the

10

first step, east in the second step, and south in the third step. The moves are made with a

velocity of 11 =v , or one step per unit of time.

Note that initially, for example, sources 2s and 3s are currently in range, sources

2s , 3s , and 4s are a series of sources currently in range, and sources 1s and 2s are not

currently in range. Initially, users 1u and 3u cannot communicate either by a source or a

series of sources. After three steps, 1u can communicate with 3u through the series of

sources 1s and 4s .

2.4 Problem Definitions

In this section three interesting problems related to the mobility model are

defined. The definitions are from [1].

User Communication Problem (UCP)

INSTANCE: A mobility model (S, D, U, L, R, V, C, O), two designated users au

and bu from U, a time ,1δ≤k and ,2δ≤O where ., 11 N∈δδ

QUESTION: Can users au and bu communicate at time k?

Sources Reachability Problem (SRP)

INSTANCE: A mobility model (S, D, U, L, R, V, C, O), two designated sources

as and bs from S, a time 1δ≤k , and 2δ≤O , where ., 11 N∈δδ

QUESTION: Are sources as and bs in range at time k?

Access Point Location Problem (APLP)

INSTANCE: A mobility model (S, D, U, L, R, V, C, O), two designated users au

and bu from U, a source diameter 1δ≤d , and a natural number 2δ≤k

where S is an empty set and ., 11 N∈δδ

11

QUESTION: Can users au and bu communicate throughout the duration of the

model if k nonredundant sources of diameter d are placed appropriately in

the grid and each source is accessed exactly once?

2.5 Breadth-First Search

 Breadth-first search (BFS) is one of the simplest algorithms for searching a graph

and the archetype for many important graph algorithms [14]. Prim’s minimum-spanning-

tree algorithm and Dijkstra’s single-source shortest-paths algorithm use ideas similar to

those used in standard breadth-first search.

Given a graph G = (V, E) and a distinguished source vertex s, breadth-first search

systematically explores the edges of G to “discover” every vertex that is reachable from

s. BFS computes the distance (smallest number of edges) from s to each reachable vertex.

It also produces a “breadth-first tree” with root s that contains all vertices reachable from

s. For any vertex v reachable from s, the path in the breadth-first tree from s to v

corresponds to a “shortest path” from s to v in G, that is, a path containing the fewest

number of edges possible. The algorithm works on both directed and undirected graphs.

Breadth-first search is so named because it expands the frontier between

discovered and undiscovered vertices uniformly across the breadth of the frontier. That is,

the algorithm discovers all vertices at distance k from s before discovering any vertices at

distance k + 1.

To keep track of progress, breadth-first search colors each vertex white, gray, or

black. All vertices start out white and may later become gray and then black. A vertex is

discovered the first time it is encountered during the search, at which time it becomes

nonwhite. Gray and black vertices, therefore, have been discovered, but breadth-first

search distinguishes between them to ensure that the search proceeds in a breadth-first

manner. If Evu ∈),(and vertex u is black, then vertex v is either gray or black; that is,

all vertices adjacent to black vertices have been discovered. Gray vertices may have some

adjacent white vertices; they represent the frontier between discovered and undiscovered

vertices.

12

Breadth-first search constructs a breadth-first tree, initially containing only its

root, which is the source vertex s. Whenever a white vertex v is discovered in the course

of scanning the adjacency list of an already discovered vertex u, the vertex v and the edge

(u, v) are added to the tree. We say that u is the predecessor or parent of v in the

breadth-first tree. Since a vertex is discovered at most once, it has at most one parent.

Ancestor and descendant relationships in the breadth-first tree are defined relative to the

root s as usual: if u is on a path in the tree from the root s to vertex v, then u is an ancestor

of v and v is a descendant of u.

 BFS(sG,)
1. for each vertex }{][sGVu −∈
2. do][ucolor ← WHITE
3.][ud ← ∞
4. NILu ←][π
5.][scolor ← GRAY
6.][sd ← 0
7. NILs ←][π
8. φ←Q
9. ENQUEUE(sQ,)
10. while φ≠Q
11. do)(QDEQUEUEu ←
12. for each][uAdjv∈
13. do if][vcolor = WHITE
14. then][vcolor ← GRAY
15. 1][][+← udvd
16. uv ←][π
17. ENQUEUE(vQ,)
18.][ucolor ← BLACK

Figure 2.2 BFS algorithm.

The breadth-first-search procedure BFS presented in Figure 2.2 assumes that the

input graph G = (V, E) is represented using adjacency lists. The algorithm maintains

several additional data structures with each vertex in the graph. The color of each vertex

13

u ∈ V is stored in the variable color[u], and the predecessor of u is stored in the variable

π[u]. If u has no predecessor (for example, if u = s or u has not been discovered), then

π[u] = NIL. The distance from the source s to vertex u computed by the algorithm is

stored in d[u]. The algorithm also uses a first-in, first-out queue Q to manage the set of

gray vertices.

The procedure BFS works as follows. Lines 1–4 color every vertex white, set d[u]

to be infinity for each vertex u, and set the parent of every vertex to be NIL. Line 5 colors

the source vertex s gray, since it is considered to be discovered when the procedure

begins. Line 6 initializes d[s] to 0, and line 7 sets the predecessor of the source to be NIL.

Lines 8–9 initialize Q to the queue containing just the vertex s.

The while loop of lines 10–18 iterates as long as there remain gray vertices,

which are discovered vertices that have not yet had their adjacency lists fully examined.

This while loop maintains the following invariant: At the test in line 10, the queue Q

consists of the set of gray vertices.

Although we will not use this loop invariant to prove correctness, it is easy to see

that it holds prior to the first iteration and that each iteration of the loop maintains the

invariant. Prior to the first iteration, the only gray vertex, and the only vertex in Q, is the

source vertex s. Line 11 determines the gray vertex u at the head of the queue Q and

removes it from Q. The for loop of lines 12–17 considers each vertex v in the adjacency

list of u. If v is white, then it has not yet been discovered, and the algorithm discovers it

by executing lines 14–17. It is first grayed, and its distance d[v] is set to d[u]+1. Then, u

is recorded as its parent. Finally, it is placed at the tail of the queue Q. When all the

vertices on u’s adjacency list have been examined, u is blackened in lines 11–18. The

loop invariant is maintained because whenever a vertex is colored gray (in line 14) it is

also enqueued (in line 17), and whenever a vertex is dequeued (in line 11) it is also

colored black (in line 18).

 The results of breadth-first search may depend upon the order in which the

neighbors of a given vertex are visited in line 12: the breadth-first tree may vary, but the

distances d computed by the algorithm will not.

14

Analysis

 Here we provide an analysis of the BFS algorithm as done in [14]. For analyzing

the running time of the BFS algorithm on an input graph G = (V, E). We use aggregate

analysis. After initialization, no vertex is ever whitened, and thus the test in line 13

ensures that each vertex is enqueued at most once, and hence dequeued at most once. The

operations of enqueuing and dequeuing take O(1) time, so the total time devoted to queue

operations is O(V). Because the adjacency list of each vertex is scanned only when the

vertex is dequeued, each adjacency list is scanned at most once. Since the sum of the

lengths of all the adjacency lists is)(Eθ , the total time spent in scanning adjacency lists

is O(E). The overhead for initialization is O(V), and thus the total running time of BFS is

O(V + E). Thus, breadth-first search runs in time linear in the size of the adjacency-list

representation of G.

2.6 Growth of Functions

In this section we review some material on the growth of functions. Much of this

review is taken from [14]. The order of growth of the running time of an algorithm gives

a simple characterization of the algorithm’s efficiency and also allows us to compare the

relative performance of alternative algorithms. Once the input size n becomes large

enough, merge sort, with its)lg(nnθ worst-case running time, beats insertion sort,

whose worst-case running time is)(2nθ . Although we can sometimes determine the

exact running time of an algorithm the extra precision is not usually worth the effort of

computing it. For large enough inputs, the multiplicative constants and lower-order terms

of an exact running time are dominated by the effects of the input size itself.

When we look at input sizes large enough to make only the order of growth of the

running time relevant, we are studying the asymptotic efficiency of algorithms. That is,

we are concerned with how the running time of an algorithm increases with the size of

the input in the limit, as the size of the input increases without bound. Usually, an

algorithm that is asymptotically more efficient will be the best choice for all but very

small inputs.

15

Asymptotic Notation

The notations we use to describe the asymptotic running time of an algorithm are

defined in terms of functions whose domains are the set of natural

numbers ,...}.2,1,0{=N Such notations are convenient for describing the worst-case

running-time function T (n), which is usually defined only on integer input sizes. It is

sometimes convenient, however, to abuse asymptotic notation in a variety of ways. For

example, the notation is easily extended to the domain of real numbers or, alternatively,

restricted to a subset of the natural numbers. It is important, however, to understand the

precise meaning of the notation so that when it is abused, it is not misused. This section

defines the basic asymptotic notations and also introduces some common abuses.

1. notation−θ

The notation−θ asymptotically bounds a function from above and below. Let us

define what this notation means. For a given function)(ng , we denote by))((ngθ the set

of functions

⎭
⎬
⎫

⎩
⎨
⎧

≥≤≤≤
∃

=
o

o

nnforngcnfngcthatsuch
nandccconstantspositivenf

ng
)()()(0

,:)(
))((

21

21θ

A function f(n) belongs to the set))((ngθ if there exist positive constants 1c and

2c such that it can be “sandwiched” between)(1 ngc and)(2 ngc , for sufficiently large n.

Because))((ngθ is a set, we could write ”))(()(“ ngnf θ∈ to indicate that)(nf is a

member of))((ngθ . Instead, we will usually write ”))(()(“ ngnf θ= to express the same

notion.

2. notationO −

The notationO − used when we have only an asymptotic upper bound. For a

given function g(n), we denote by O(g(n)) (pronounced “big-Oh of g of n” or sometimes

just “Oh of g of n”) the set of functions.

⎭
⎬
⎫

⎩
⎨
⎧

≥≤≤
∃

=
o

o

nnforncgnfthatsuch
nandcconstantspositivenf

ngO
)()(0

:)(
))((

16

We use O-notation to give an upper bound on a function, to within a constant

factor. For all values n to the right of 0n , the value of the function f(n) is on or below

g(n).

3. notation−Ω

The notation−Ω used when we have only an asymptotic lower bound. For a

given function g(n), we denote by Ω(g(n)) (pronounced “big-omega of g of n” or

sometimes just “omega of g of n”) the set of functions

⎭
⎬
⎫

⎩
⎨
⎧

≥≤≤
∃

=Ω
o

o

nnfornfncgthatsuch
nandcconstantspositivenf

ng
)()(0

:)(
))((

For all values n to the right of 0n , the value of f(n) is on or above cg(n).

2.7 Complexity Theory

The following relevant complexity theory is taken from [12–14] and will be used

in classifying class and proofs of the problems we are interested. Almost all the

algorithms we have studied thus far have been polynomial-time algorithms: on inputs of

size n, their worst-case running time is)(knO for some constant k. It is natural to wonder

whether all problems can be solved in polynomial time. The answer is no. For example,

there are problems, such as Turing’s famous “Halting Problem,” that cannot be solved by

any computer, no matter how much time is provided. There are also problems that can be

solved, but not in time)(knO for any constant k. Generally, we think of problems that

are solvable by polynomial-time algorithms as being tractable, or easy, and problems that

require superpolynomial time as being intractable, or hard.

NP-complete problems is an interesting class of problems, whose status is unknown.

No polynomial-time algorithm has yet been discovered for an NP-complete problem, nor

has anyone yet been able to prove that no polynomial-time algorithm can exist for any

one of them. This so-called P versus NP question has been one of the deepest, most

perplexing open research problems in theoretical computer science since it was first

posed in 1971.

17

2.8 Graph Theory

Figure 2.3 Sample graph.

In this section we discuss the basis concepts from graph theory needed in this

thesis [11, 17]. Intuitively, a diagram that can be represented by means of points

(vertices) and lines (edges) is called a graph. The degree of a vertex is the number of

edges which have the vertex as an endpoint. The point we are trying to make is that a

graph is a representative of a set of points and of the way they are join up, and that for

our purposes any metrical properties are irrelevant. From this point of view, any two

graphs which represent the same situation will be regarded as essential the same graph.

More precisely, we shall say that two graphs are isomorphic if there is a one-one

correspondence between their vertices which as the property that two vertices are joined

by an edge in one graph if and only if the corresponding vertices are joined by an edge in

the other.

It is worth pointing out that the graph we have been discussing so far is a

particular ‘simple’ graph. A simple graph is a graph that exactly one edge is allowed for a

given pair of vertices. If there is more than one edge joining a point pair, the edges are

called multiple edges. If we want to build a graph by drawing an edge from a point to

itself, this is usually called a loop. Graphs containing no loops or multiple edges will be

referred to as simple graphs.

The study of directed graphs (or digraphs, as we shall usually abbreviate them)

arises out of the question, ‘what happens if all of the roads have one-way streets?’ The

directions of the one-way streets being indicated by arrows. Note if not all of the streets

are one-way, then we can obtain a digraph by drawing for each two-way road two

directed edges, one in each directions.

18

Much of graph theory involves the study of walks of various kinds, a walk being

essentially a sequence of edges, one follow one another. A walk in which no vertex

appears more than once is a path. A path that first and last points are the same is called a

circuit. A graph in which any two vertices are connected by a path is called a connected

graph. We shall also be interested in connected graph in which there is only one path

connecting each pair of vertices; such graphs are called tree. Any graph which can be

redrawn without crossing is called planar graph.

