
CHAPTER  III 
 

ALGORITHMS TO SOLVE UCP AND SRP 
 
 
In this chapter we present algorithms to solve UCP and SRP problems in the two-

dimensional grid [16, 18]. Both algorithms are interesting in their own right and are 

similar to each other. Algorithmic definitions are given and their time complexities are 

analyzed. 

 

3.1 The Algorithms 

We begin with a high-level description of the algorithms. Since, the algorithms 

for solving UCP and SRP are quite the same, so we present them together. The 

algorithms can be divided into three phases as follows: 

Phase 1. We find locations of all sources in SRP and additionally locations of the 

two users in UCP at time k. We appropriately add and subtract locations of each step of 

the movement along each axis to find subsequent locations until we arrive at time k. 

Since each source can move with different velocities, we add and subtract positions with 

velocities in consideration. This takes ))2(( km ⋅+θ  for UCP and take )( km×θ  for SRP, 

where m is the number of sources and k is the given time. 

Phase 2. In both UCP and SRP two sources i  and j  are currently in range if the 

distance between their center points is less than 2ji cc + , where ic  and jc  are the 

diameters of the circles of the sources i  and j , respectively and their overlapping 

coverage area is not completely contained inside an obstacle. If any circle is completely 

contained in one outer circle, it suffices to consider the outer circle and ignore the inner 

circles. Computing an integer boundary (i.e., set of integer coordinates) of the intersected 

area of the two circles i  and j  can be done in )),(min( ji ccO  time, respectively. Observe 

that, given the value of x(y) on the axis x(y), we can compute its corresponding value of



y(x) of the intersected area of the two circles. Therefore, this computation can be done in 

constant time )),(min( ji ccO . 

 

 
 
 
 
 
 
 
 
 
 
 

 
Figure  3.1  Integer boundaries of the intersected area of any two circles.  

 
 

Let e be the number of intersections and ),min( jiij ccp = . The total time 

complexity for checking all pairs of intersecting circles i and j is ))),max(min(( ji cceO × . 

For each pair of intersecting circles, we maintain integer coordinates along its 

circumference of the intersected area and every integer coordinate exclusively inside it in 

the set I. We create a matrix 1A  of size just enough to cover the coordinates of all 

intersected areas of circles. We assume that all matrix elements in matrix 1A  are initially 

0’s. We assign 2 to every matrix element corresponding to coordinates in I. This step 

takes }))max({( 2
ijpeO × . Next, we create another matrix 2A , in which all elements are 

initially 0’s, of the same size as that of 1A  representing coordinates of the obstacles. We 

assign 1 to every matrix element corresponding to the coordinates of all obstacles. This 

step takes )( max OaO × , where maxa  is the area covered by the largest obstacle. For 

example, we show the given instance of a mobility model, matrix 1A , and  matrix 2A  in 

Figures 3.2, 3.3 and 3.4, accordingly. 
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Figure 3.2  The given mobility model in two-dimensional grid.  
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Figure 3.3  Matrix 1A  represents all intersected areas of circles in Figure 3.2. 
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Figure 3.4  Matrix 2A   representing coordinates of the obstacles in Figure 3.2. 
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For each intersected area of two circles represented by a portion [ 1A ] of matrix 

1A , let [ ] [ ]213 AAA −= , where [ 2A ] is the corresponding portion of matrix 2A . If the 

resulting matrix 3A  contains at least one 2, it means that the communication is not 

blocked by an obstacle. For example, if we now check the intersection between sources 

1s  and 2s  in Figure 3.2, we will have matrix portions [ 1A ], [ 2A ], and the resulting matrix 

3A  like in Figure 3.5. It means that the communication is not blocked by an obstacle. If 

we now check the intersection between sources 2s  and 3s  in Figure 3.2, we will have 

matrix portions [ 1A ], [ 2A ], and the resulting matrix 3A  will be as shown in Figure 3.6. It 

shows that the communication is blocked by an obstacle.  
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Figure 3.5  Matrix portions [ 1A ], [ 2A ], and the resulting matrix 3A  for the corresponding sources 1s  and  

2s  in Figure 3.2. 
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Figure 3.6  Matrix portions [ 1A ], [ 2A ], and the resulting matrix 3A  the corresponding sources 2s  and 3s  
in Figure 3.2. 

 
 

Repeat the subtraction of matrix portions [ 2A ] from [ 1A ] for every intersected 

area. The time complexity of this step is }))max({( 2
ijpeO × . We model this 

communication based on a graph theory [11]. We build a graph representing 

communication. Let sources and users be vertices (points) of the graph and edges (lines) 

between each pair of vertices be communication. 

In UCP a line also exists between a source and a user if and only if the distance of 

the line between them is less than half of the coverage and is not in any obstacle. 

Checking for an intersection of a communication line between a user and a source, and an 



 

23

obstacle can be done by checking, for each axis },{ yxj∈ , the coordinates of the line and 

the obstacle must not be in one of the following patterns: j
m

j
m

j
l

j
l popo <<< , 

j
m

j
m

j
l

j
l poop <<< ,  j

m
j

m
j

l
j

l oppo <<< ,  or j
m

j
m

j
l

j
l opop <<< , where j

lp  and j
mp  are 

the two endpoints of the projection of the line between a source and a user on axis j and 
j

lp  < j
mp , and j

lo  and j
mo  are the two endpoints of the projected line of the obstacle on 

axis j and j
lo  < j

mo . To determine whether a line of communication exists between a 

source and a user takes ),2( OO ×  we have two axes and check the line with all 

obstacles. Since there are m sources and 2 users, the number of checked lines is equal to 

2×m. Therefore, the time we use for checking intersections of a communication line 

between a user and a source, and an obstacle is equal to O(4×|O|×m) = O(m) because |O| 

is constant. 

In this phase, the total time complexity for SRP is }))max({( ijpeO ×  + 

}))max({( 2
ijpeO ×  + )( max OaO ×  + }))max({( 2

ijpeO ×  + O(m). Since e equal to 2m  in 

the worst case, the time complexity is }))max({( 2
ijpmO × + }))max({( 22

ijpmO × + 

)( max OaO × + }))max({( 22
ijpmO × + O(m). We know that })max({ ijp , })max({ 2

ijp , maxa  

and O  are constant. Thus, the time complexity for this phase of the algorithm is 

)( 2mO and is the same for UCP. 

Phase 3. Use breadth-first search [14] to find reachability. In UCP, let au  be the 

root and find bu . If bu  is reachable from au , we answer “yes” and “no,” otherwise. In 

SRP, let as  be the root and find .bs  If bs  is reachable from as , we answer “yes” and 

“no,” otherwise. The running time of the breath-first search is )( EVO + , where V  is 

the number of vertices equal to m + 2 in UCP and equal to m in SRP and E  is the 

number of edges. In the worst case, the maximum number of edges is the number of all 

edges between all pairs of points but .bu  The number of edges are 
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)(
2

)1()2(1)3()2( 2gOgggg =
−×−

=++−+− L , g is the number of points. In UCP 

and SRP, g is equal to m+2 and m, respectively. So, the time complexities for UCP is 

))2(( 2+mO = )( 2mO and )( 2mO  for SRP.  

Note that these algorithms can also be slightly modified to use in the three-

dimensional case because the “essence” of the algorithms is identical in both two and 

three dimensions. 

 

3.2 Time Complexities of UCP and SRP  

In this section we show that our two algorithms are time optimal. This implies 

that our algorithms are as fast as they can be. We prove this fact by establishing an 

asymptotically tight lower bound to match the worst-case complexities of our algorithms. 

 

Theorem 3.1: The time complexity for the algorithm for User Communication 

Problem in a two-dimensional grid is ),( 2mΟ  where m is the number of sources. 

Proof: From phases 1 to 3, the running time of the algorithm is  ))2(( km ⋅+θ + 

)( 2mO + )( 2mO  = )( 2mO since k and O  are at most constant. Thus, the theorem holds.■ 

 

Theorem 3.2: The time complexity for the algorithm for Source Reachability 

Problem in a two-dimensional grid is ),( 2mΟ  where m is the number of sources. 

Proof: From phases 1 to 3, the running time of the algorithm is  )( km×θ  +  

)( 2mO + )( 2mO  = )( 2mO since k and O  are at most constant. Thus, the theorem holds.■ 

 

Theorem 3.3: The lower bound for User Communication and Source 

Reachability Problems in a two-dimensional grid is ),( 2mΩ  where m is the number of 

sources. 

Proof: We model the communication in the mobility model with a graph. Let 

),( EVG =  be a graph, where V is a set of vertices and greenred EEE ∪=  is a set of edges. 
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A vertex in a graph represents a source. A pair of sources that can communicate is 

represented by an edge in greenE  between the two corresponding vertices and an edge in 

redE  represents a pair of sources that cannot communicate. Hence, to find whether 

sources as  and bs  can communicate is to find a path between as  and bs  whose 

composite edges are all in .greenE  We claim that all edges in E must be checked in order 

to find such a path because an unchecked edge may be in greenE  and is part of the 

communicating path between as  and .bs  

For example, the given instances of the model are shown in Figure 3.7. Let gray 

edges represent greenE  and black edges represent .redE  If we do not check esb, as 

illustrated in Figure 3.8,  the answer is as and bs  cannot communicate, and it is a wrong 

answer. Thus, all edges in E must be checked. 

sa

sb

a

b

c

d

e

   
Figure 3.7  An instance of the problem. 
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 Figure 3.8  Checking all edges except esb. 
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Because 2)1( −= mmE , the lower bound is ).( 2mΩ  Therefore, the theorem 

holds.■ 

Note that we do not consider users au  and bu  of the UCP in Theorem 3.3 because 

a user must be in the coverage of some source in order to communicate. 

 

Theorem 3.4: The algorithms for User Communication and Source Reachability 

Problems in a two-dimensional grid is time-optimal. 

Proof: This result is true by the implication of Theorems 3.1, 3.2, and 3.3.■ 


