
CHAPTER III

ALGORITHMS TO SOLVE UCP AND SRP

In this chapter we present algorithms to solve UCP and SRP problems in the two-

dimensional grid [16, 18]. Both algorithms are interesting in their own right and are

similar to each other. Algorithmic definitions are given and their time complexities are

analyzed.

3.1 The Algorithms

We begin with a high-level description of the algorithms. Since, the algorithms

for solving UCP and SRP are quite the same, so we present them together. The

algorithms can be divided into three phases as follows:

Phase 1. We find locations of all sources in SRP and additionally locations of the

two users in UCP at time k. We appropriately add and subtract locations of each step of

the movement along each axis to find subsequent locations until we arrive at time k.

Since each source can move with different velocities, we add and subtract positions with

velocities in consideration. This takes))2((km ⋅+θ for UCP and take)(km×θ for SRP,

where m is the number of sources and k is the given time.

Phase 2. In both UCP and SRP two sources i and j are currently in range if the

distance between their center points is less than 2ji cc + , where ic and jc are the

diameters of the circles of the sources i and j , respectively and their overlapping

coverage area is not completely contained inside an obstacle. If any circle is completely

contained in one outer circle, it suffices to consider the outer circle and ignore the inner

circles. Computing an integer boundary (i.e., set of integer coordinates) of the intersected

area of the two circles i and j can be done in)),(min(ji ccO time, respectively. Observe

that, given the value of x(y) on the axis x(y), we can compute its corresponding value of

y(x) of the intersected area of the two circles. Therefore, this computation can be done in

constant time)),(min(ji ccO .

Figure 3.1 Integer boundaries of the intersected area of any two circles.

Let e be the number of intersections and),min(jiij ccp = . The total time

complexity for checking all pairs of intersecting circles i and j is))),max(min((ji cceO × .

For each pair of intersecting circles, we maintain integer coordinates along its

circumference of the intersected area and every integer coordinate exclusively inside it in

the set I. We create a matrix 1A of size just enough to cover the coordinates of all

intersected areas of circles. We assume that all matrix elements in matrix 1A are initially

0’s. We assign 2 to every matrix element corresponding to coordinates in I. This step

takes }))max({(2
ijpeO × . Next, we create another matrix 2A , in which all elements are

initially 0’s, of the same size as that of 1A representing coordinates of the obstacles. We

assign 1 to every matrix element corresponding to the coordinates of all obstacles. This

step takes)(max OaO × , where maxa is the area covered by the largest obstacle. For

example, we show the given instance of a mobility model, matrix 1A , and matrix 2A in

Figures 3.2, 3.3 and 3.4, accordingly.

20

21

Figure 3.2 The given mobility model in two-dimensional grid.

0 000002220
0 000002220
0 000002200
0 000000000
0 000000000

0 000000000
0 000000020
0 000000020
0 000000000
0 000000000

Figure 3.3 Matrix 1A represents all intersected areas of circles in Figure 3.2.

0 000000110
0 000000110
0 000000000
0 000000000
0 000000000

0 000000000
0 000000110
0 000000110
0 000000110
0 000000110

Figure 3.4 Matrix 2A representing coordinates of the obstacles in Figure 3.2.

S1

S2

S3

22

For each intersected area of two circles represented by a portion [1A] of matrix

1A , let [] []213 AAA −= , where [2A] is the corresponding portion of matrix 2A . If the

resulting matrix 3A contains at least one 2, it means that the communication is not

blocked by an obstacle. For example, if we now check the intersection between sources

1s and 2s in Figure 3.2, we will have matrix portions [1A], [2A], and the resulting matrix

3A like in Figure 3.5. It means that the communication is not blocked by an obstacle. If

we now check the intersection between sources 2s and 3s in Figure 3.2, we will have

matrix portions [1A], [2A], and the resulting matrix 3A will be as shown in Figure 3.6. It

shows that the communication is blocked by an obstacle.

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

222
222
220

 -

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

011
011
000

 =

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

211
211
220

Figure 3.5 Matrix portions [1A], [2A], and the resulting matrix 3A for the corresponding sources 1s and

2s in Figure 3.2.

⎥
⎦

⎤
⎢
⎣

⎡
2
2

 - ⎥
⎦

⎤
⎢
⎣

⎡
1
1

 = ⎥
⎦

⎤
⎢
⎣

⎡
0
0

Figure 3.6 Matrix portions [1A], [2A], and the resulting matrix 3A the corresponding sources 2s and 3s
in Figure 3.2.

Repeat the subtraction of matrix portions [2A] from [1A] for every intersected

area. The time complexity of this step is }))max({(2
ijpeO × . We model this

communication based on a graph theory [11]. We build a graph representing

communication. Let sources and users be vertices (points) of the graph and edges (lines)

between each pair of vertices be communication.

In UCP a line also exists between a source and a user if and only if the distance of

the line between them is less than half of the coverage and is not in any obstacle.

Checking for an intersection of a communication line between a user and a source, and an

23

obstacle can be done by checking, for each axis },{ yxj∈ , the coordinates of the line and

the obstacle must not be in one of the following patterns: j
m

j
m

j
l

j
l popo <<< ,

j
m

j
m

j
l

j
l poop <<< , j

m
j

m
j

l
j

l oppo <<< , or j
m

j
m

j
l

j
l opop <<< , where j

lp and j
mp are

the two endpoints of the projection of the line between a source and a user on axis j and
j

lp < j
mp , and j

lo and j
mo are the two endpoints of the projected line of the obstacle on

axis j and j
lo < j

mo . To determine whether a line of communication exists between a

source and a user takes),2(OO × we have two axes and check the line with all

obstacles. Since there are m sources and 2 users, the number of checked lines is equal to

2×m. Therefore, the time we use for checking intersections of a communication line

between a user and a source, and an obstacle is equal to O(4×|O|×m) = O(m) because |O|

is constant.

In this phase, the total time complexity for SRP is }))max({(ijpeO × +

}))max({(2
ijpeO × +)(max OaO × + }))max({(2

ijpeO × + O(m). Since e equal to 2m in

the worst case, the time complexity is }))max({(2
ijpmO × + }))max({(22

ijpmO × +

)(max OaO × + }))max({(22
ijpmO × + O(m). We know that })max({ ijp , })max({ 2

ijp , maxa

and O are constant. Thus, the time complexity for this phase of the algorithm is

)(2mO and is the same for UCP.

Phase 3. Use breadth-first search [14] to find reachability. In UCP, let au be the

root and find bu . If bu is reachable from au , we answer “yes” and “no,” otherwise. In

SRP, let as be the root and find .bs If bs is reachable from as , we answer “yes” and

“no,” otherwise. The running time of the breath-first search is)(EVO + , where V is

the number of vertices equal to m + 2 in UCP and equal to m in SRP and E is the

number of edges. In the worst case, the maximum number of edges is the number of all

edges between all pairs of points but .bu The number of edges are

24

)(
2

)1()2(1)3()2(2gOgggg =
−×−

=++−+− L , g is the number of points. In UCP

and SRP, g is equal to m+2 and m, respectively. So, the time complexities for UCP is

))2((2+mO =)(2mO and)(2mO for SRP.

Note that these algorithms can also be slightly modified to use in the three-

dimensional case because the “essence” of the algorithms is identical in both two and

three dimensions.

3.2 Time Complexities of UCP and SRP

In this section we show that our two algorithms are time optimal. This implies

that our algorithms are as fast as they can be. We prove this fact by establishing an

asymptotically tight lower bound to match the worst-case complexities of our algorithms.

Theorem 3.1: The time complexity for the algorithm for User Communication

Problem in a two-dimensional grid is),(2mΟ where m is the number of sources.

Proof: From phases 1 to 3, the running time of the algorithm is))2((km ⋅+θ +

)(2mO +)(2mO =)(2mO since k and O are at most constant. Thus, the theorem holds.■

Theorem 3.2: The time complexity for the algorithm for Source Reachability

Problem in a two-dimensional grid is),(2mΟ where m is the number of sources.

Proof: From phases 1 to 3, the running time of the algorithm is)(km×θ +

)(2mO +)(2mO =)(2mO since k and O are at most constant. Thus, the theorem holds.■

Theorem 3.3: The lower bound for User Communication and Source

Reachability Problems in a two-dimensional grid is),(2mΩ where m is the number of

sources.

Proof: We model the communication in the mobility model with a graph. Let

),(EVG = be a graph, where V is a set of vertices and greenred EEE ∪= is a set of edges.

25

A vertex in a graph represents a source. A pair of sources that can communicate is

represented by an edge in greenE between the two corresponding vertices and an edge in

redE represents a pair of sources that cannot communicate. Hence, to find whether

sources as and bs can communicate is to find a path between as and bs whose

composite edges are all in .greenE We claim that all edges in E must be checked in order

to find such a path because an unchecked edge may be in greenE and is part of the

communicating path between as and .bs

For example, the given instances of the model are shown in Figure 3.7. Let gray

edges represent greenE and black edges represent .redE If we do not check esb, as

illustrated in Figure 3.8, the answer is as and bs cannot communicate, and it is a wrong

answer. Thus, all edges in E must be checked.

sa

sb

a

b

c

d

e

Figure 3.7 An instance of the problem.

sb

sa

a

b

c

d

e

 Figure 3.8 Checking all edges except esb.

26

Because 2)1(−= mmE , the lower bound is).(2mΩ Therefore, the theorem

holds.■

Note that we do not consider users au and bu of the UCP in Theorem 3.3 because

a user must be in the coverage of some source in order to communicate.

Theorem 3.4: The algorithms for User Communication and Source Reachability

Problems in a two-dimensional grid is time-optimal.

Proof: This result is true by the implication of Theorems 3.1, 3.2, and 3.3.■

