CHAPTER I

ALGORITHMS TO SOLVE UCP AND SRP

In this chapter we present algorithms to solve UCP and SRP problems in the two-
dimensional grid [16, 18]. Both algorithms are interesting in their own right and are
similar to each other. Algorithmic definitions are given and their time complexities are

analyzed.

3.1 The Algorithms

We begin with a high-level description of the algorithms. Since, the algorithms
for solving UCP and SRP are quite the same, so we present them together. The
algorithms can be divided into three phases as follows:

Phase 1. We find locations of all sources in SRP and additionally locations of the
two users in UCP at time k. We appropriately add and subtract locations of each step of
the movement along each axis to find subsequent locations until we arrive at time k.
Since each source can move with different velocities, we add and subtract positions with

velocities in consideration. This takes @((m+ 2)-k) for UCP and take (mxKk) for SRP,
where m is the number of sources and K is the given time.
Phase 2. In both UCP and SRP two sources i and j are currently in range if the

distance between their center points is less than ¢; +c; /2, where ¢; and c; are the

diameters of the circles of the sources i and j, respectively and their overlapping
coverage area is not completely contained inside an obstacle. If any circle is completely
contained in one outer circle, it suffices to consider the outer circle and ignore the inner
circles. Computing an integer boundary (i.e., set of integer coordinates) of the intersected

area of the two circles i and j can be done in O(min(c;,c;)) time, respectively. Observe

that, given the value of X(y) on the axis X(y), we can compute its corresponding value of

20

Y(X) of the intersected area of the two circles. Therefore, this computation can be done in

constant time O(min(C;,C;)) .

Figure 3.1 Integer boundaries of the intersected area of any two circles.

Let e be the number of intersections and p; =min(c;,C;). The total time

complexity for checking all pairs of intersecting circles i and j is O(e x max(min(c;,C;))) .

For each pair of intersecting circles, we maintain integer coordinates along its
circumference of the intersected area and every integer coordinate exclusively inside it in
the set |. We create a matrix A, of size just enough to cover the coordinates of all
intersected areas of circles. We assume that all matrix elements in matrix A, are initially
0’s. We assign 2 to every matrix element corresponding to coordinates in |. This step

takes O(exmax({pﬁ})). Next, we create another matrix A,, in which all elements are

initially 0’s, of the same size as that of A, representing coordinates of the obstacles. We
assign 1 to every matrix element corresponding to the coordinates of all obstacles. This

step takes O(a,,, x|O

), where a_,_ is the area covered by the largest obstacle. For

max max

example, we show the given instance of a mobility model, matrix A, and matrix A, in

Figures 3.2, 3.3 and 3.4, accordingly.

21

7~ N\

/ Sy \——N

(T N\
\[/1/ A
\\IZ_ //

\
\
| S, |
A /
N RSN

~__

Figure 3.2 The given mobility model in two-dimensional grid.

0 000O0OOOOSOF® O
0 00O0OOOOOT® O
0002200000
0022200000
0022200000
0 000OOOOSOF® O
0 00O0OOOOOT® O
0 0200O0O0O0TO0CSFO
0 0200O0O0O0OCOCTO
0 000OOOOSOF® O
Figure 3.3 Matrix A represents all intersected areas of circles in Figure 3.2.

0 00O0OOOOOT® O
000O0OOOOO©OTP O
0 00OO0OOOOOTO O
001 1 00O0O0OGO0TQ O
001 10O0O0O0O0TO0
0011000000
001 100O0O0GO0TD O
001 100O0O0O0OTPO
0011 000O0O0OO0TO

0 00O0OOOOOT® O
Figure 3.4 Matrix A, representing coordinates of the obstacles in Figure 3.2.

22

For each intersected area of two circles represented by a portion [A] of matrix
A, let A = [Al]—[AZ], where [A,] is the corresponding portion of matrix A,. If the
resulting matrix A, contains at least one 2, it means that the communication is not

blocked by an obstacle. For example, if we now check the intersection between sources

s, and s, in Figure 3.2, we will have matrix portions [A], [A,], and the resulting matrix
A, like in Figure 3.5. It means that the communication is not blocked by an obstacle. If
we now check the intersection between sources s, and s, in Figure 3.2, we will have
matrix portions [A], [A,], and the resulting matrix A, will be as shown in Figure 3.6. It

shows that the communication is blocked by an obstacle.

>

Figure 3.5 Matrix portions [A1 1, [A, 1, and the resulting matrix A, for the corresponding sources S, and

S, in Figure 3.2.

HRARH

Figure 3.6 Matrix portions [A], [A,], and the resulting matrix A, the corresponding sources S, and S,
in Figure 3.2.

Repeat the subtraction of matrix portions [A,] from [A] for every intersected
area. The time complexity of this step is O(exmax({pﬁ })). We model this

communication based on a graph theory [11]. We build a graph representing
communication. Let sources and users be vertices (points) of the graph and edges (lines)
between each pair of vertices be communication.

In UCP a line also exists between a source and a user if and only if the distance of
the line between them is less than half of the coverage and is not in any obstacle.

Checking for an intersection of a communication line between a user and a source, and an

23

obstacle can be done by checking, for each axis | € {X, Yy}, the coordinates of the line and
the obstacle must not be in one of the following patterns: 0o/ < p) <o) <p},
p/ <o/ <ol <pl, ol <p}<pl<ol, or p} <o) <p! <ol where p/ and p/ are
the two endpoints of the projection of the line between a source and a user on axis j and
p) < p),and o/ and 0! are the two endpoints of the projected line of the obstacle on
axis j and 0] < o). To determine whether a line of communication exists between a

source and a user takes O(2><|O), we have two axes and check the line with all

obstacles. Since there are m sources and 2 users, the number of checked lines is equal to
2xm. Therefore, the time we use for checking intersections of a communication line
between a user and a source, and an obstacle is equal to O(4%|O|xm) = O(m) because |O|
is constant.

In this phase, the total time complexity for SRP is O(exmax({p;})) +

O(exmax({p;})) + O(a,, x|O]) + O(exmax({p;})) + O(m). Since e equal to m* in

max

the worst case, the time complexity is O(m’ xmax({p;}))+ O(m*xmax({p;}))+

O(8,5 x|O])+ O(M? x max({p;})) + O(m). We know that max({p;}), max({P;}), .

max

and |O| are constant. Thus, the time complexity for this phase of the algorithm is
O(m?) and is the same for UCP.

Phase 3. Use breadth-first search [14] to find reachability. In UCP, let u, be the
root and find u, . If u, is reachable from u,, we answer “yes” and “no,” otherwise. In
SRP, let s, be the root and find s,. If s, is reachable from s,, we answer “yes” and

“no,” otherwise. The running time of the breath-first search is O([\/|+ |E

), where [\/| is
the number of vertices equal to m + 2 in UCP and equal to m in SRP and |E| is the

number of edges. In the worst case, the maximum number of edges is the number of all

edges between all pairs of points but u,. The number of edges are

24

(@=2)+(g—3)+-+1="9 _2);‘(9_1) ~0(g?), g is the number of points. In UCP

and SRP, g is equal to m+2 and m, respectively. So, the time complexities for UCP is
O((m+2)*)= O(m*)and O(m*) for SRP.
Note that these algorithms can also be slightly modified to use in the three-

dimensional case because the “essence” of the algorithms is identical in both two and

three dimensions.

3.2 Time Complexities of UCP and SRP
In this section we show that our two algorithms are time optimal. This implies
that our algorithms are as fast as they can be. We prove this fact by establishing an

asymptotically tight lower bound to match the worst-case complexities of our algorithms.

Theorem 3.1: The time complexity for the algorithm for User Communication
Problem in a two-dimensional grid is O(m?), where m is the number of sources.

Proof: From phases 1 to 3, the running time of the algorithm is &((m+2)-k)+

O(m*)+0(m*) = O(m?)since k and |O| are at most constant. Thus, the theorem holds.m

Theorem 3.2: The time complexity for the algorithm for Source Reachability
Problem in a two-dimensional grid is O(m?*), where m is the number of sources.

Proof: From phases 1 to 3, the running time of the algorithm is @(mxk) +

O(m*)+0(m*) = O(m?)since k and |O| are at most constant. Thus, the theorem holds.m

Theorem 3.3: The lower bound for User Communication and Source
Reachability Problems in a two-dimensional grid is Q(m?), where m is the number of
sources.

Proof: We model the communication in the mobility model with a graph. Let

G =(V,E) be a graph, where V is a set of verticesand E=E_, UE is a set of edges.

red green

25

A vertex in a graph represents a source. A pair of sources that can communicate is

represented by an edge in E between the two corresponding vertices and an edge in

green

E,., represents a pair of sources that cannot communicate. Hence, to find whether

red

sources S, and S, can communicate is to find a path between S, and s, whose

composite edges are all in E We claim that all edges in E must be checked in order

green*

to find such a path because an unchecked edge may be in E and is part of the

green
communicating path between s, and s, .

For example, the given instances of the model are shown in Figure 3.7. Let gray

edges represent E and black edges representE . If we do not check es,, as

green

illustrated in Figure 3.8, the answer is s,and S, cannot communicate, and it is a wrong

answer. Thus, all edges in E must be checked.

Figure 3.8 Checking all edges except €sp.

26

Because |E| =m(m-1)/2, the lower bound is Q(m?). Therefore, the theorem

holds.m

Note that we do not consider users U, and U, of the UCP in Theorem 3.3 because

a user must be in the coverage of some source in order to communicate.

Theorem 3.4: The algorithms for User Communication and Source Reachability
Problems in a two-dimensional grid is time-optimal.

Proof: This result is true by the implication of Theorems 3.1, 3.2, and 3.3.m

