TABLE OF CONTENTS

	Page
Acknowledgment	iii
Abstract in Thai	iv
Abstract in English	v
List of Figures	viii
Chapter I : Introduction	
1.1 Statement and Significance of the Problem	
1.2 Objectives	2
1.3 Outcomes of this Study from Theoretical Perspectives	3
1.4 Scope of Study	3
1.5 Research Design and Methods	3
1.6 Working Places and Equipment	4
Chapter II : Preliminaries	5
2.1 Preliminaries	5
2.2 Definition of the Mobility Model	5
2.3 A Sample Instance of the Model	8
2.4 Problem Definitions	10
2.5 Breadth-First Search	11 14
2.0 Glown of Functions	
2.7 Complexity Theory	16
2.8 Graph Theory	17

apter III : Algorithms to Solve UCP and SRP	
3.1 The Algorithms	19
3.2 Time Complexities of UCP and SRP	24
Chapter IV : Intractability	27
4.1 (u,v)-Hamiltonian Path on a Grid	27
4.2 Gadgets	27
4.3 Time Complexity for the Access Point Location Problem	30
4.4 Example of Reducing UVHAMG into APLP	31
Chapter V : Conclusions	
5.1 Summary	35
5.2 Open Problems	35
5.3 Suggestions	37
References	38
Vita	40

ลิขสิทธิ์มหาวิทยาลัยเชียงใหม่ Copyright[©] by Chiang Mai University All rights reserved

LIST OF FIGURES

Figu	re	Page
2.1	Sample instance of the mobility model	9
2.2	BFS algorithm	12
2.3	Sample graph	17
3.1	Integer boundaries of the intersected area of any two circles	20
3.2	The given mobility model in two-dimensional grid	21
3.3	Matrix A_1 represents all intersected areas of circles in Figure 3.2	21
3.4	Matrix A_2 representing coordinates of the obstacles in Figure 3.2	21
3.5	Matrix portions $[A_1]$, $[A_2]$, and the resulting matrix A_3	22
	for the corresponding sources s_1 and s_2 in Figure 3.2	
3.6	Matrix portions $[A_1]$, $[A_2]$, and the resulting matrix A_3	22
	the corresponding sources s_2 and s_3 in Figure 3.2	
3.7	An instance of the problem	25
3.8	Checking all edges except \overline{es}_b	25
4.1	Gadgets in group 1 represents group of points that has degree one	28
4.2	Gadgets in group 2 represents group of points that has degree two	28
	in pattern one	
4.3	Gadgets in group 3 represents group of points that has degree two	29
	in pattern two	
4.4	Gadgets group 4 represents group of points that has degree three	29
4.5	Gadgets group 5 represents group of points that has degree four	29
4.6	Gadgets group 6 represents pattern of sources and obstacles	30
	according to an edge in UVHAMG	

Example of an instance, graph $G = (V, E)$ on an integer grid,	3	1
for UVHAMG		
The result of laying gadget 6 and assigning u_a and u_b	3	2
corresponding to the graph G in Figure 4.7		
Example of an intermediate constructed instance	3	3
Example of a mobility instance	3	3
A YES instance of APLP	3	4
	for UVHAMG The result of laying gadget 6 and assigning u_a and u_b corresponding to the graph G in Figure 4.7 Example of an intermediate constructed instance Example of a mobility instance	for UVHAMG The result of laying gadget 6 and assigning u_a and u_b corresponding to the graph G in Figure 4.7 Example of an intermediate constructed instance Example of a mobility instance 3

ลิขสิทธิ์มหาวิทยาลัยเชียงใหม่ Copyright[©] by Chiang Mai University All rights reserved