TABLE OF CONTENTS

Acknowledge	ements			iii
Abstract (Eng	glish)			v
Abstract (Tha	ui)			vii
List of Tables	5			vii
List of Figure	es		x	viii
Abbreviation	s and Sy	mbols	xx	vii
Chapter 1	Introd	uction		
	1.1	Backgı	round	1
	1.2	TiO ₂ p	hotocatalysts	3
		1.2.1	Titanium dioxide	3
		1.2.2	Commercial TiO ₂	6
	1.3	Proper	ties of transition metal ions	6
		1.3.1	Vanadium	6
		1.3.2	Iron	8
		1.3.3	Copper	10
	1.4	Hetero	geneous photocatalysis	12
		1.4.1	Semiconductors as photocatalysts	12
		1.4.2	Principles of heterogeneous photocatalytic processes	14
		1.4.3	Photocatalytic oxidation S C V C	18
		1.4.4	Photocatalytic reduction	19

1.5 Modified photocatalysts: enhancement of

	photoc	eatalytic activity	19
	1.5.1	Doping with transition metal ions	19
	1.5.2	Metal deposition	20
	1.5.3	Coupled semiconductors	22
	1.5.4	Application of nano-sized particles	22
1.6	Factor	influencing photocatalytic activity	23
	1.6.1 E	Extrinsic parameters	23
		1.6.1.1 Light intensity	23
		1.6.1.2 Temperature	23
		1.6.1.3 Photocatalyst loading	24
		1.6.1.4 Influence of pH	24
	1.6.2	Intrinsic parameters	25
		1.6.2.1 Effect of surface area on photoactivity	25
		1.6.2.2 Effect of particle size on photoactivity	25
		1.6.2.3 The importance of the crystal structure	25
1.7	Applic	ation of TiO ₂	25
	1.7.1	Self-sterilizing photocatalytic	25
	1.7.2	Self-cleaning photocatalytic of building materials	
		for indoor and outdoor application	26
	1.7.3	Anti-fogging glass e e e e	26
	1.7.4	Photocatalytic water purification	26
1.8	Prepar	ation of photocatalysts	27
	1.8.1	Sol-gel method	28

X

1.8.2 Precipitation method	30
1.8.3 Solvothermal method	30
1.8.4 Microemulsion method	30
1.8.5 Combusion synthesis	31
1.8.6 Impregnation method	31
1.8.7 Hydrothermal method	31
1.9 Characterization techniques	32
1.9.1 X-ray diffraction method	32
1.9.1.1 Identification of phases by XRD	33
1.9.1.2 Particle size measurement by XRD	33
1.9.2 Surface area and porosity determination	35
1.9.2.1 Surface area determination	35
1.9.2.2 Pore size distribution	37
1.9.3 Transmission electron microscopy and diffraction	40
1.9.4 Chemical composition analysis	44
1.9.4.1 X-ray spectroscopy in the electron	
ansi kan microscope a sul 8 su al 1	44
1.9.4.2 Selected-area diffraction	46
1.9.4.3 Measurement of electron diffraction pattern	ns 48
1.9.5 Scanning Electron Microscope (SEM)	48
1.9.5.1 Instrumentation	49
1.9.5.2 Interaction of electron beams with solids	51
1.9.6 X-ray photoelectron spectroscopy (XPS)	53

1.9.7 UV-Vis diffuse reflectance spectroscopy 56 1.9.8 Fourier transform infrared spectrophotometry (FT-IR) 61 1.9.8.1 1.9.8.1 Quantitative Analysis 62 1.9.8.2 Quantitative analysis 62 1.9.8.3 Physical principles 62 1.9.8.4 Sample Preparation 63 1.10 Literature review of TiO2 64 1.11 Research objectives 72 Chapter 2 Experimental 73 2.1 Materials 73 2.2 Instruments 74 2.3 Sample preparations 75 2.3.1 The modified sol-gel method 75 2.3.1.1 Preparation of pure TiO2 76 2.3.2 The impregnation method 76 2.3.2 The impregnation method 76 2.3.1 Preparation of Fe-doped TiO2 76 2.4 Sample characterization 77 2.4.1 UV-Vis diffuse reflectance spectroscopy 77 2.4.2 X-ray diffraction (XRD) 77				
1.9.8 Fourier transform infrared spectrophotometry (FT-IR) 61 1.9.8.1 Qualitative Analysis 62 1.9.8.2 Quantitative analysis 62 1.9.8.3 Physical principles 63 1.9.8.4 Sample Preparation 63 1.10 Literature review of TiO2 64 1.11 Research objectives 72 Chapter 2 Experimental 73 2.1 Materials 73 2.2 Instruments 74 2.3 Sample preparation of pure TiO2 75 2.3.1 The modified sol-gel method 75 2.3.1.1 Preparation of pure TiO2 76 2.3.2 The impregnation method 76 2.3.2 The impregnation of Fe-doped TiO2 76 2.4 Sample characterization 77 2.4.1 UV-Vis diffuse reflectance spectroscopy 77 2.4.2 X-ray diffraction (XRD) 77			1.9.7 UV-Vis diffuse reflectance spectroscopy	56
1.9.8.1 Qualitative Analysis 62 1.9.8.2 Quantitative analysis 62 1.9.8.3 Physical principles 63 1.9.8.4 Sample Preparation 63 1.9.8.4 Sample Preparation 63 1.10 Literature review of TiO2 64 1.11 Research objectives 72 Chapter 2 Experimental 73 2.1 Materials 73 2.2 Instruments 74 2.3 Sample preparations 75 2.3.1 The modified sol-gel method 75 2.3.1.1 Preparation of pure TiO2 76 2.3.2 The impregnation method 76 2.3.2 The impregnation of Fe-doped TiO2 76 2.4 Sample characterization 77 2.4.1 UV-Vis diffuse reflectance spectroscopy 77 2.4.2 X-ray diffraction (XRD) 77			1.9.8 Fourier transform infrared spectrophotometry (FT-I	R) 61
1.9.8.2 Quantitative analysis 62 1.9.8.3 Physical principles 63 1.9.8.4 Sample Preparation 63 1.10 Literature review of TiO2 64 1.11 Research objectives 72 Chapter 2 Experimental 73 2.1 Materials 73 2.2 Instruments 74 2.3 Sample preparations 75 2.3.1 The modified sol-gel method 75 2.3.1.1 Preparation of pure TiO2 76 2.3.2 The impregnation method 76 2.3.2 The impregnation of Fe-doped TiO2 76 2.4 Sample characterization 77 2.4.1 UV-Vis diffuse reflectance spectroscopy 77 2.4.2 X-ray diffraction (XRD) 77			1.9.8.1 Qualitative Analysis	62
1.9.8.3 Physical principles 63 1.9.8.4 Sample Preparation 63 1.10 Literature review of TiO2 64 1.11 Research objectives 72 Chapter 2 Experimental 73 2.1 Materials 73 2.2 Instruments 74 2.3 Sample preparations 75 2.3.1 The modified sol-gel method 75 2.3.1.1 Preparation of pure TiO2 75 2.3.1.2 Preparation of pure TiO2 76 2.3.2 The impregnation method 76 2.3.2 The impregnation of Fe-doped TiO2 76 2.4 Sample characterization 77 2.4.1 UV-Vis diffuse reflectance spectroscopy 77 2.4.2 X-ray diffraction (XRD) 77			1.9.8.2 Quantitative analysis	62
1.9.8.4 Sample Preparation 63 1.10 Literature review of TiO2 64 1.11 Research objectives 72 Chapter 2 Experimental 73 2.1 Materials 73 2.2 Instruments 74 2.3 Sample preparations 75 2.3.1 The modified sol-gel method 75 2.3.1.1 Preparation of pure TiO2 75 2.3.1.1 Preparation of pure TiO2 76 2.3.2 The impregnation method 76 2.3.2 The impregnation of Fe-doped TiO2 76 2.4 Sample characterization 77 2.4.1 UV-Vis diffuse reflectance spectroscopy 77 2.4.2 X-ray diffraction (XRD) 77			1.9.8.3 Physical principles	63
1.10 Literature review of TiO2 64 1.11 Research objectives 72 Chapter 2 Experimental 73 2.1 Materials 73 2.2 Instruments 74 2.3 Sample preparations 75 2.3.1 The modified sol-gel method 75 2.3.1.1 Preparation of pure TiO2 75 2.3.1.2 Preparation of transition metal ions 76 2.3.2 The impregnation method 76 2.3.2 The impregnation of Fe-doped TiO2 76 2.4 Sample characterization 77 2.4.1 UV-Vis diffuse reflectance spectroscopy 77 2.4.2 X-ray diffraction (XRD) 77			1.9.8.4 Sample Preparation	63
1.11 Research objectives 72 Chapter 2 Experimental 73 2.1 Materials 73 2.2 Instruments 74 2.3 Sample preparations 75 2.3.1 The modified sol-gel method 75 2.3.1.1 Preparation of pure TiO2 75 2.3.1.2 Preparation of transition metal ions 76 2.3.2 The impregnation method 76 2.3.2 The impregnation of Fe-doped TiO2 76 2.4 Sample characterization 77 2.4.1 UV-Vis diffuse reflectance spectroscopy 77 2.4.2 X-ray diffraction (XRD) 77		1.10	Literature review of TiO ₂	64
Chapter 2 Experimental 2.1 Materials 2.2 Instruments 2.3 Sample preparations 2.3 Sample preparations 2.3.1 The modified sol-gel method 2.3.1.1 Preparation of pure TiO2 2.3.1.2 Preparation of transition metal ions (V, Cu, and Fe) doped TiO2 76 2.3.2 The impregnation method 2.3.2.1 Preparation of Fe-doped TiO2 2.4 Sample characterization 2.4.1 UV-Vis diffuse reflectance spectroscopy 2.4.2 X-ray diffraction (XRD)		1.11	Research objectives	72
Chapter 2 Experimental 2.1 Materials 73 2.2 Instruments 74 2.3 Sample preparations 75 2.3.1 The modified sol-gel method 75 2.3.1.1 Preparation of pure TiO2 75 2.3.1.2 Preparation of transition metal ions (V, Cu, and Fe) doped TiO2 76 2.3.2 The impregnation method 76 2.3.2.1 76 2.4 Sample characterization 77 76 2.4 Sample characterization 77 76 2.4.1 UV-Vis diffuse reflectance spectroscopy 77 2.4.2 X-ray diffraction (XRD) 77				
2.1Materials732.2Instruments742.3Sample preparations752.3.1The modified sol-gel method752.3.1.1Preparation of pure TiO2752.3.1.2Preparation of transition metal ions762.3.2The impregnation method762.3.2The impregnation of Fe-doped TiO2762.4Sample characterization772.4.1UV-Vis diffuse reflectance spectroscopy772.4.2X-ray diffraction (XRD)77	Chapter 2	Exper	rimental	
2.2Instruments742.3Sample preparations752.31The modified sol-gel method752.3.1The modified sol-gel method752.3.1.1Preparation of pure TiO2752.3.1.2Preparation of transition metal ions762.3.2The impregnation method762.3.2The impregnation of Fe-doped TiO2762.4Sample characterization772.4.1UV-Vis diffuse reflectance spectroscopy772.4.2X-ray diffraction (XRD)77		2.1	Materials	73
2.3 Sample preparations 75 2.3.1 The modified sol-gel method 75 2.3.1.1 Preparation of pure TiO2 75 2.3.1.2 Preparation of transition metal ions (V, Cu, and Fe) doped TiO2 76 2.3.2 The impregnation method 76 2.3.2.1 Preparation of Fe-doped TiO2 76 2.4 Sample characterization 77 2.4.1 UV-Vis diffuse reflectance spectroscopy 77 2.4.2 X-ray diffraction (XRD) 77		2.2	Instruments	74
2.3.1The modified sol-gel method752.3.1.1Preparation of pure TiO2752.3.1.2Preparation of transition metal ions76(V, Cu, and Fe) doped TiO2762.3.2The impregnation method762.3.2.1Preparation of Fe-doped TiO2762.4Sample characterization772.4.1UV-Vis diffuse reflectance spectroscopy772.4.2X-ray diffraction (XRD)77		2.3	Sample preparations	75
2.3.1.1 Preparation of pure TiO ₂ 2.3.1.2 Preparation of transition metal ions (V, Cu, and Fe) doped TiO ₂ 2.3.2 The impregnation method 2.3.2.1 Preparation of Fe-doped TiO ₂ 2.4 Sample characterization 2.4 UV-Vis diffuse reflectance spectroscopy 2.4.2 X-ray diffraction (XRD) 75			2.3.1 The modified sol-gel method	75
2.3.1.2 Preparation of transition metal ions (V, Cu, and Fe) doped TiO ₂ 2.3.2 The impregnation method 2.3.2.1 Preparation of Fe-doped TiO ₂ 76 2.4 Sample characterization 2.4.1 UV-Vis diffuse reflectance spectroscopy 2.4.2 X-ray diffraction (XRD)			2.3.1.1 Preparation of pure TiO_2	75
(V, Cu, and Fe) doped TiO2762.3.2The impregnation method762.3.2.1Preparation of Fe-doped TiO2762.4Sample characterization772.4.1UV-Vis diffuse reflectance spectroscopy772.4.2X-ray diffraction (XRD)77			2.3.1.2 Preparation of transition metal ions	
2.3.2 The impregnation method 2.3.2 The impregnation of Fe-doped TiO ₂ 76 2.3.2.1 Preparation of Fe-doped TiO ₂ 76 2.4 Sample characterization 77 2.4.1 UV-Vis diffuse reflectance spectroscopy 77 2.4.2 X-ray diffraction (XRD) 77			(V, Cu, and Fe) doped TiO_2	76
2.3.2.1 Preparation of Fe-doped TiO ₂ 76 2.4 Sample characterization 77 2.4.1 UV-Vis diffuse reflectance spectroscopy 77 2.4.2 X-ray diffraction (XRD) 77			2.3.2 The impregnation method	76
2.4Sample characterization772.4.1UV-Vis diffuse reflectance spectroscopy772.4.2X-ray diffraction (XRD)77			2.3.2.1 Preparation of Fe-doped TiO ₂	76
 2.4.1 UV-Vis diffuse reflectance spectroscopy 2.4.2 X-ray diffraction (XRD) 77 		2.4	Sample characterization	77
2.4.2 X-ray diffraction (XRD) 77			2.4.1 UV-Vis diffuse reflectance spectroscopy	77
			2.4.2 X-ray diffraction (XRD)	77

2.4.3	Transmission electron microscopy (TEM)	78
2.4.4	Scanning electron microscopy (SEM)	78
2.4.5	Specific surface area (BET)	78
2.4.6	X-ray photoelectron spectroscopy (XPS)	79
2.4.7	Fourier transform infrared spectrophotometry (FT-IR	.)79
2.4.8	Photocatalytic activity studies	79
	2.4.8.1 Apparatus	79
	2.4.8.2 Preparation of photocatalyst suspension	
	and operation	81
	2.4.8.3 Calibration curve measurement	82

Chapter 3 Results and Discussion

3.1	Prepar	ation of pure TiO ₂ and V, Cu, Fe-doped			
	TiO ₂ p	oowders	84		
3.2	Sampl	Samples characterization			
	3.2.1	UV-Vis diffuse reflectance spectroscopy studies	85		
	3.2.2	BET-Specific surface area studies	94		
	3.2.3	X-ray diffraction studies	99		
	3.2.4	Transmission electron microscopy studies	108		
		3.2.4.1 TEM of pure TiO_2 prepared by			
		the modified sol-gel method	108		
		3.2.4.2 TEM of V-doped TiO ₂ prepared by			
		the modified sol-gel method	110		

xiii

3.2.4.3 TEM of Cu-doped TiO_2 prepared by

	the modified sol-gel method	112
	3.2.4.4 TEM of Fe-doped TiO ₂ prepared by	
	the modified sol-gel method	114
	3.2.4.5 TEM of Fe-doped TiO_2 prepared by the	
	impregnation method	118
3.2.5	Scanning electron microscopy studies	121
3.2.6	X-ray photoelectron spectroscopy (XPS) studies	124
	3.2.6.1 XPS of pure TiO ₂ prepared by	
	the modified sol-gel method	124
	3.2.6.2 XPS of Cu-doped TiO ₂ prepared by	
	the modified sol-gel method	126
	3.2.6.3 XPS of Fe-doped TiO ₂ prepared by	
	the modified sol-gel method	128
	3.2.6.4 XPS of Fe-doped TiO_2 prepared by the	
	impregnation method	130
3.3 Phot	ocatalytic activity studies using UNSW's spiral	
phot	oreactor	132
3.3.1	Calibration curve	132
3.3.2	Photocatalytic activity of pure TiO ₂ prepared by	
	the modified sol-gel method	133
3.3.3	Photocatalytic activity of V, Cu, Fe-doped TiO ₂	
	with oxalic acid	135

		3.3.4	Photocatalytic activity of V, Cu, Fe-doped TiO_2	
			with various organic compounds under UVA,	
			solar light, and visible light irradiation	139
	3.4	Photo	catalytic activity studies using CMU's spiral	
		photor	reactor	146
		3.4.1	Calibration curve	147
		3.4.2	Photocatalytic activity of Fe-doped TiO ₂	
			prepared by the impregnation method	148
			3.4.2.1 Photocatalytic activity of Fe-doped TiO_2	
			with oxalic acid under UVA, solar light,	
			and visible light irradiation	148
			3.4.2.2 Photocatalytic activity of Fe-doped TiO_2 w	vith
			various organic compounds under UVA,	
			solar light, and visible light irradiation	150
	3.5	Fourie	er transform infrared spectrophotometry studies	153
Chapter 4	Concl	usions		
	4.1	Synthe	esis and characterization of pure TiO ₂	
		and V	, Cu, Fe-doped TiO_2 by the modified	
		sol-ge	l method	165
	4.2	Photo	catalytic activity of pure TiO ₂	
		and V	, Cu, Fe-doped TiO_2 by the modified	
		sol-ge	l method	168

	L	IST OF TAI	BLES	

Table			rs Pa	age
1.1	Types and physical properties of titanium dioxide			5
1.2	Chemical and physical properties of titanium			6
1.3	Chemical and physical properties of vanadium			8
1.4	Chemical and physical properties of iron			10

1.5	Chemical and physical properties of copper	12
1.6	Environmental applications of TiO ₂ photocatalysis	27
3.1	Relation between elements and atomic% of V-doped TiO_2	111
3.2	Relation between elements and atomic% of Fe-doped TiO ₂	117
3.3	Relation between elements and atomic% of Fe-doped TiO ₂ prepared	
	by the impregnation method	121
3.4	XPS binding energies (eV) of pure TiO_2 , 2 at.% Fe-doped TiO_2 ,	
	0.5 at.% Cu-doped TiO ₂	124
3.5	Calibration data of different concentrations of sucrose	132
3.6	Calibration data of different concentrations of sucrose	138
3.7	FT-IR absorption bands of oxalic acid and formic acid	159

	LIST OF FIGURES	
Figure	ight [©] by Chiang Mai Univer	Page
1.1	The structure of titanium dioxide in anatase phase	4
1.2	The structure of titanium dioxide in rutile phase	2 4
1.3	The structure of titanium dioxide in brookite phase	5
1.4	Energy band diagrams for metallic, semiconductor, and insulator	14
1.5	Energy structures of various photosemiconductors	15

xvii

1.6	Simplified diagram of the mechanism for activation of semiconductor	
	photocatalyst	16
1.7	Electron mediation by metal ion in contact with TiO ₂ surface	21
1.8	Schematic diagram of X-ray line broadening effects 34	
1.9	Typical isotherm for N ₂ adsorption-desorption on γ -Al ₂ O ₃ 35	
1.10	BET plot for surface area (S.A.) determination for γ -Al ₂ O ₃ 36	
1.11	BJH analysis of data from Figure 1.10 showing differential	
	and cumulative mesopore volume distributions for γ -Al ₂ O ₃	39
1.12	(a) Signals generated during electron beam-sample interactions;	
	(b) a 'ray diagram' of image formation; and (c) a schematic diagram of	
	the principles of electron microscopy: (A) imaging and (B) diffraction	43
1.13	The process of electron-stimulated X-ray emission in the	
	electron microscope	44

Figur	้ำธิมหาวิทยาลัยเชียงไ	Page
1.14	(a) Ray diagram showing the formation of the diffraction pattern and	
	intermediate image by the objective lens. (b) In a three-lens microscope	
	the intermediate lens (or projector 1) is normally focused on	
	the intermediate image formed by objective lens	47
1.15	Schematic diagram of scanning electron microscope with CRT display	51
1.16	Diffuse reflectance spectrum of the fundamental absorption edge of	

xviii

titanium dioxide powder. Absorbance $((F(R_{\infty}))$ vs. wavelength:

(i) indirect transition; (ii) direct transition; (iii) direct band gap;

 $E_g = hc / \lambda_g$ 58 (a) Schematic energy band diagram showing hole-electron pair formation 1.17 as a consequence of differing energies of incident radiation; (b) schematic energy band diagram (energy vs. wave vector \tilde{k}) illustrating the difference between direct and indirect transitions 60 2.1 Schematic of the modified sol-gel method 75 2.2 Schematic of spiral photoreactor 81 3.1 UV-Vis (a) reflection spectra, (b) absorbance Kubelka-Munk, and (c) relation between band gap energy and $[F(R)hv]^{1/2}$ of P25, pure TiO₂ and 0.1-2 at.% of V-doped TiO₂ 87

Figur	re	Page
3.2	UV-Vis (a) reflection spectra, (b) absorbance Kubelka-Munk, and	
	(c) relation between band gap energy and $[F(R)h\nu]^{1/2}$ of P25,	
	pure TiO ₂ and 0.5-5 at.% of Cu-doped TiO ₂	89
3.3	UV-Vis (a) reflection spectra, (b) absorbance Kubelka-Munk, and	
	(c) relation between band gap energy and $[F(R)h\nu]^{1/2}$ of P25,	
	pure TiO ₂ and 0.1-10 at.% of Fe-doped TiO ₂ prepared	
	by the modified sol-gel method	90

3.4	UV-Vis (a) reflection spectra, (b) absorbance Kubelka-Munk, and	
	(c) relation between band gap energy and $[F(R)h\nu]^{1/2}$ of P25,	
	pure TiO ₂ and 1-5 at.% of Fe-doped TiO ₂ prepared	
	by the impregnation method	92
3.5	SSA and BET equivalent diameter of pure TiO ₂ at different calcination	
	temperatures of 400-600 °C for 3h	95
3.6	SSA and BET equivalent diameter of 0.1-2 at.% of V-doped TiO_2	
	prepared by the modified sol-gel method	97
3.7	SSA and BET equivalent diameter of 0.5-5 at.% of Cu-doped TiO_2	
	prepared by the modified sol-gel method	98
3.8	SSA and BET equivalent diameter of 0.1-10 at.% of Fe-doped TiO_2	
	prepared by the modified sol-gel method	99
Figur	e AL UNUERS	Page
3.9	SSA and BET equivalent diameter of 1-5 at.% of Fe-doped TiO_2	
	prepared by the impregnation method	99
3.10	XRD patterns of pure TiO ₂ prepared by the modified sol-gel method	
	and subjected to heat treatment between 400-900 °C for 3h	101
3.11	Effect of calcination temperature on phase composition and particle size	
	TiO ₂ prepared by the modified sol-gel method and subjected to	
	heat treatment between 400-900 °C for 3h	102
3.12	XRD patterns of 0.1-2 at.% of V-doped TiO ₂ prepared by the modified	
	sol-gel method at the calcination temperature of 400 °C for 3h	104
	 3.4 3.5 3.6 3.7 3.8 Figur 3.9 3.10 3.11 3.12 	 3.4 UV-Vis (a) reflection spectra, (b) absorbance Kubelka-Munk, and (c) relation between band gap energy and [F(R)hu]^{1/2} of P25, pure TiO₂ and 1-5 at.% of Fe-doped TiO₂ prepared by the impregnation method 3.5 SSA and BET equivalent diameter of pure TiO₂ at different calcination temperatures of 400-600 °C for 3h 3.6 SSA and BET equivalent diameter of 0.1-2 at.% of V-doped TiO₂ prepared by the modified sol-gel method 3.7 SSA and BET equivalent diameter of 0.5-5 at.% of Cu-doped TiO₂ prepared by the modified sol-gel method 3.8 SSA and BET equivalent diameter of 0.1-10 at.% of Fe-doped TiO₂ prepared by the modified sol-gel method 3.8 SSA and BET equivalent diameter of 1.5 at.% of Fe-doped TiO₂ prepared by the modified sol-gel method 3.10 XRD patterns of pure TiO₂ prepared by the modified sol-gel method 3.11 Effect of calcination temperature on phase composition and particle size TiO₂ prepared by the modified sol-gel method and subjected to heat treatment between 400-900 °C for 3h 3.12 XRD patterns of 0.1-2 at.% of V-doped TiO₂ prepared by the modified sol-gel method at the calcination temperature of 400 °C for 3h

3.13	XRD patterns of 0.5-5 at.% of Cu-doped TiO_2 prepared by the modified	
	sol-gel method at the calcination temperature of 400 °C for 3h	105
3.14	XRD patterns of and 0.1-10 at.% of Fe-doped TiO ₂ prepared by the modif	ied
	sol-gel method at the calcination temperature of 400 °C for 3h	106
3.15	XRD patterns of 1-5 at.% of Fe-doped TiO ₂ prepared by impregnation	
	method at the calcination temperature of 400 °C for 3h	107
3.16	TEM images of pure TiO ₂ prepared by the modified sol-gel method	
	and subjected to heat treatment at (a) 400 °C (b) 500 °C (c) 600 °C	
	(d) 700 °C for 3h, respectively. Insets show the corresponding	
	diffraction patterns of pure TiO ₂ .	109

Figure

3.17 TEM micrographs of (a) 0.1 at.% of V, and (b) 0.5 at.% of V-doped TiO₂ prepared by the modified sol-gel method. The square areas selected emphasized for the EDS investigation with chemical elements of V-doped TiO₂.
3.18 EDS analysis of (a) 0.1 at.% of V and (b) 0.5 at.% of V-doped TiO₂ 111
3.19 TEM micrographs of (a) 0.5 at% of Cu, (b) 1 at% of Cu, and (c) 2 at% of Cu-doped TiO₂ prepared by the modified sol-gel method 113
3.20 TEM micrographs of (a) 0.5 at.% of Fe, (b) 1 at.% of Fe, (c) 2 at.% of Fe,

Page

and (d) 5 at.% of Fe-doped TiO_2 prepared by the modified sol-gel method.

The square areas selected emphasized for the EDS

		investigation with chemical elements of Fe-doped TiO ₂ .	115
3	.21	EDS analysis of (a) 0.5 at.% of Fe, (b) 1 at.% of Fe, (c) 2 at.% of Fe,	
		and (d) 5 at.% of Fe-doped TiO_2	117
3	.22	TEM micrographs of (a) 1 at% of Fe, (b) 2 at% of Fe, (c) 3 at% of Fe,	
		(d) 4 at% of Fe, and (e) 5 at% of Fe-doped TiO_2 prepared by the	
		impregnation method. The square areas selected emphasized	
		for the EDS investigation with chemical elements of Fe-doped TiO_2 .	119
3	.23	EDS analysis of (a) 2 at.% of Fe, (b) 3 at.% of Fe, (c) 4 at.% of Fe,	
		(d) 5 at.% of Fe-doped TiO ₂	120
3	.24	(a) SEM micrograph and EDS mapping mode of 0.5 at.% Cu-doped TiO_2	
		(b) Ti, (c) O, and (c) Cu elements	123
F	ligur	e	Page
3	.25	XPS spectra of pure TiO_2 (a) survey, (b) Ti 2p peaks, and (c) O 1s peaks	125
3	.26	XPS spectra of 0.5 at.% of Cu-doped TiO_2 (a) survey, (b) Ti 2p peaks,	
		and (c) O 1s	128
3	.27	and (c) O 1s XPS spectra of 2 at.% of Fe-doped TiO ₂ (a) survey, (b) Ti 2p peaks,	128
3	.27	and (c) O 1s XPS spectra of 2 at.% of Fe-doped TiO ₂ (a) survey, (b) Ti 2p peaks, (c) O 1s, and (d) Fe 2p peaks	128 129
3	.27 .28	and (c) O 1s XPS spectra of 2 at.% of Fe-doped TiO ₂ (a) survey, (b) Ti 2p peaks, (c) O 1s, and (d) Fe 2p peaks XPS spectra of pure TiO ₂ and 2 at.% of Fe-doped TiO ₂ prepared by	128 129
3	.27 .28	 and (c) O 1s XPS spectra of 2 at.% of Fe-doped TiO₂ (a) survey, (b) Ti 2p peaks, (c) O 1s, and (d) Fe 2p peaks XPS spectra of pure TiO₂ and 2 at.% of Fe-doped TiO₂ prepared by impregnation method (a) survey, (b) Ti 2p peaks, (c) O 1s, and (d) Fe 2p 	128 129
	.27 .28	and (c) O 1s XPS spectra of 2 at.% of Fe-doped TiO ₂ (a) survey, (b) Ti 2p peaks, (c) O 1s, and (d) Fe 2p peaks XPS spectra of pure TiO ₂ and 2 at.% of Fe-doped TiO ₂ prepared by impregnation method (a) survey, (b) Ti 2p peaks, (c) O 1s, and (d) Fe 2p peaks	128 129 131
3 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	.27 .28	and (c) O 1s XPS spectra of 2 at.% of Fe-doped TiO ₂ (a) survey, (b) Ti 2p peaks, (c) O 1s, and (d) Fe 2p peaks XPS spectra of pure TiO ₂ and 2 at.% of Fe-doped TiO ₂ prepared by impregnation method (a) survey, (b) Ti 2p peaks, (c) O 1s, and (d) Fe 2p peaks Calibration slope for conductivity probe	128 129 131 133
3 3 3 3 3 3	.27 .28 .29 .30	and (c) O 1s XPS spectra of 2 at.% of Fe-doped TiO ₂ (a) survey, (b) Ti 2p peaks, (c) O 1s, and (d) Fe 2p peaks XPS spectra of pure TiO ₂ and 2 at.% of Fe-doped TiO ₂ prepared by impregnation method (a) survey, (b) Ti 2p peaks, (c) O 1s, and (d) Fe 2p peaks Calibration slope for conductivity probe The rate of 50% mineralization rate of oxalic acid with 500 µg of carbon b	128 129 131 133 yy

xxii

		10.4
	400-700 °C for 3h under UVA irradiation	134
3.31	The rate of 50% mineralization of oxalic acid with 500 μ g of carbon	
	by using 0.1-2 at.% of V-doped TiO ₂ under UVA irradiation	136
3.32	The rate of 50% mineralization of oxalic acid with 500 μ g of carbon	
	by using 0.1-10 at.% Fe-doped TiO ₂ under UVA irradiation	136
3.33	The rate of 50% mineralization of oxalic acid with 500 μ g of carbon	
	by using 0.05-5 at.% Cu-doped TiO ₂ under UVA irradiation	137
3.34	Percent mineralization of oxalic acid with 500 µg of carbon using	
	Degussa P25, pure TiO ₂ , and 0.1-2 at.% of V-doped TiO ₂ under	
	visible light and irradiation time of 180 minutes	137
Figur	e	Page
3.35	Percent mineralization of oxalic acid with 500 μ g of carbon using	
	Degussa P25, pure TiO ₂ , and 0.5-5 at% of Cu-doped TiO ₂ under	
	visible light and irradiation time of 180 min	138
3.36	Percent mineralization of oxalic acid with 500 μ g of carbon using	
	Degussa P25, pure TiO ₂ , and 0.1-10 at% of Fe-doped TiO ₂ under	
	visible light and irradiation time of 90 min	139
3.37	The rate of 50% mineralization of sucrose, phenol, oxalic acid,	
	formic acid, methanol, and malonic acid with 500 μ g of carbon by	
	various photocatalysts under UVA irradiation	140
3.38	The rate of 50% mineralization of sucrose, phenol, oxalic acid,	
	formic acid, methanol, and malonic acid with 500 μ g of carbon by	
	using various photocatalysts under solar light irradiation	141

xxiii

- 3.39 Mineralization of sucrose, phenol, oxalic acid, formic acid, methanol, and malonic acid with 500 µg of carbon by using various photocatalytsts under visible light illumination (fixed irradiation time = 3h, except 2 at.% of Fe doped TiO_2 fixed irradiation time = 90 min for oxalic acid) 142 3.40 Calibration slope for conductivity probe 148 3.41 The rate of 50% mineralization of oxalic acid with 500 µg of carbon by using 1-5 at.% of Fe-doped TiO₂ under UVA irradiation as compared to P25 and pure TiO₂ 150 Figure Page
- 3.42 The rate of 50% mineralization of oxalic acid with 500 µg of carbon by using 1-5 at.% of Fe-doped TiO₂ under solar light irradiation as compared to P25 and pure TiO₂ 150
- 3.43 Mineralization of oxalic acid with 500 µg of carbon by using various amount of Fe doping under visible light illumination fixed irradiation time = 50 min as compared to P25 and pure TiO_2
- The rate of 50% mineralization of sucrose, phenol, oxalic acid, 3 44 formic acid, and methanol with 500 µg of carbon by using various photocatalysts under UVA irradiation

3.45 The rate of 50% mineralization of sucrose, phenol, oxalic acid, formic acid, and methanol with 500 μ g of carbon by using various photocatalysts under solar light irradiation 153

3.46 Mineralization of sucrose, phenol, oxalic acid, formic acid, and methanol

with 500 µg of carbon by using various photocatalytsts under visible light illumination (fixed irradiation time = 3h, except 2 at.% of Fe-doped TiO₂ fixed irradiation time = 50 min for oxalic acid) 154 3.47 FT-IR spectra of (a) pure TiO₂, (b) 2 at.% of Fe-doped TiO₂ (the modified sol-gel method, (c) 2 at.% of Fe-doped TiO₂ with formic acid, (d) 2 at.% of Fe-doped TiO₂ with oxalic acid after mineralization under visible light for 15 min, (e) formic acid, and (f) oxalic acid 160 Figure Page FT-IR spectra of (a) pure TiO_2 , (b) 2 at.% of Fe-doped TiO_2 3.48 (the impregnation method, (c) 2 at.% of Fe-doped TiO₂ with formic acid, (d) 2 at.% of Fe-doped TiO_2 with oxalic acid after mineralization under visible light for 15 min, (e) formic acid, and (f) oxalic acid 161 FT-IR spectra of (a) pure TiO_2 , (b) 0.5 at.% of Cu-doped TiO_2 , 3.49 (c) 0.5 at.% of Cu-doped TiO₂ with formic acid, (d) 0.5 at.% of Cu-doped TiO₂ with oxalic acid after mineralization under visible light for 15 min, (e) formic acid, and (f) oxalic acid

xxvi

ABBREVIATIONS AND SYMBOLS

A	Absorption
A ⁺	Electron acceptor
at.%	Atomic %
В	Peak width measured at half height measured in
	radius
BET	Brunauer-Emmett-Teller
С	Amount of carbon
C	A constant, related to the free energy of adsorption
c	Speed of light
CRT	Cathode-ray tube
CMU	Chiang Mai University
CA	Concentration of element A
	Concentration of element B
°Cyright ^O hy	Degrees Celsius
d _{hkl}	Interplanar distance between (hkl) planes
la righ	Lattice planar spacing S C V C O
cb	Conduction band
e	Electron
e _{cb}	Conduction band electron
eV	Electron volt

E	Binding energy
EDS, EDX	Energy dispersive X-ray spectroscopy
EM	Electron microscope
E_0	Energy of ground state
E_1	Energy of first excited state
Ea	Apparent activation energy
E _b	Binding energy
Eg	Optical band gap of the semiconductor
Ek	Kinetic energy
E_{vac}	Energy of vacuum level
g/L	grams/liter
h 500	Plank's constant $(6.63 \times 10^{-34} \text{ Js})$
hν	Photon energy
\mathbf{h}^+	Hole
h^+_{vb}	Valence band hole
I_0	Intensity of the incident beam
Ι	Intensity of the transmittance
I _A	Background subtracted peak intensities for A
I _B	Background subtracted peak intensities for B
IUPAC	International union of pure and applied chemistry
J	Intensity of the reflected radiation
JCPDS	Joint committee powder diffraction standards
K	Kelvin
Coxvright [©]	Absorption coefficient
k	Conductivity value
A keV	kilo electron volt
kV	kilo-volt
Ĩ	Wave vector
$ ilde{k}'_{ ext{cb}}$	Wave vector of the lowest energy state in the
	conduction band

xxvii

xxviii

$ ilde{ m k}'_{ m vb}$	Wave vector of the highest energy state in the
	valence band
mg	Milligram
min	Minute
ml	Milliliter
mS	Millisiemen
n	Order of diffraction
nm	Nanometer (10 ⁻⁹ m)
Na	Avogadro's number (6.02×10^{23})
0	Oxygen
O_2^{\bullet}	Superoxide radical
OH•	Hydroxyl radical
Р	Pressure at the constant temperature
P_0	Saturation pressure at the measurement temperature
R_{lpha}	Absolute remittance
rpm	Revolution per minute
rk	Kelvin radius
rp	Actual pore radius
S	Twice the scattering coefficient of sample
SEM	Scanning electron microscopy
SSA	Specific surface area
S.A.	Surface area
S _{BET}	BET surface area
opyright [©] by	Transmittance Mai University
TTIP	Titanium tetraisopropoxide
TEM	Transmission electron microscopy
t	Thickness (t) of adsorbed N ₂ layers
$t_{ m hkl}$	Particle size measured from X-rays diffracted from
	the (<i>hkl</i>) planes
UNSW	University of New South Wales

UV-Vis	Ultraviolet-visible
UV-Vis DRS	Ultraviolet-visible diffuse reflectance spectroscopy
V	Volume, reduced to standard conditions (STP) of
	gas adsorbed per unit mass of adsorbent at a given
	pressure
vb	Valence band
Vm	Volume of gas adsorbed at STP per unit mass of
	adsorbent, when the surface is covered by a
	unimolecule layer of adsorbate
$V_{ m mol}$	Molar volume of absorbate gas at STP (22.4 mol ⁻¹)
WDS	Wavelength dispersive X-ray spectroscopy
XPS	X-ray photoelectron spectroscopy
XRD	X-ray diffraction
Z	Atomic number
λ	Wavelength
μg	Microgram (10 ⁻⁶ g)
μg C	Microgram of carbon
μm	Micron (10 ⁻⁶ meter)
μS/cm	MicroSiemens /square centimeter
Φ	Work function
3	Absorptivity
Hansurg	Bragg angle for the reflection
v	Frequency
v _{as} nght by	Frequency asymmetric
v _s	Frequency symmetric

xxix