

Appendix A: Raw data

Virus	Propagation	Day after	Titer ^a	V	olume (µl)
viius	Preparation	Infection	(FFU/ml)	140	250	1,000
16681Nde(+)	C6-3(C6-2/3, D5, 22 Jan 04)	5	1.08×10^{6}	2	65	-
100011(de(1))		000	6.27×10^7	_ 2	44	-
JEVpr/16681	C6-3(C6-2, D5, 1 Jan 04)	5	$1.38 imes 10^6$		16	12
JEvpi/10081		8	5.36×10^5	-	10	10
16681prE203A	C6-3/1(C6-2, D5, 26 May 05)	5	$3.78 imes 10^6$	2	68	-
#1.1-10.1	C0-3/1(C0-2, D3, 20 Way 03)		3.42×10^7	2	46	-
16681pr(+4,-0)HS	C6 2(C6 2 D4 20 Day 02)	5	6.48×10^{5}	2	68	\ -
#5.4.11	C6-3(C6-2, D4, 20 Dec 03)	3	1.65×10^7	2	41	-
16681pr(+7,-2)	C6-3(C6-2, D4, 20 Dec 03)	5	$1.05 imes 10^5$	2	250	·
#4.4-2.1	C0-3(C0-2, D4, 20 Dec 03)	7	$1.32 imes 10^7$	2	48	

Table 9. Viral expansion, concentrations and number of aliquots (1st expansion)

Table 10. Viral expansion, concentrations and number of aliquots (2nd expansion)

Virus	Expansion code	Day after	Titer ^a	Vo	olume (µl)
Viius	Expansion code	Infection	(FFU/ml)	100	500	1,000
16681pr(+6,-2)P8,10+	C6-2/1(C6-1, D7, Tx.)	5	$4.45 \ge 10^3$	-	5	12
10081pr(+0,-2)P8,10+	C0-2/1(C0-1, D7, 1X.)	7	9.36 x 10 ⁵	-	4	10
16681pr(+6,-2) P8,10+	C6-2/2(C6-1, D7, Tx.)	5	9.03 x 10 ⁵	10	20	-
	C0-2/2(C0-1, D7, 1X.)	ncin	1.06 x 10 ⁶	10	20	131
16681pr(+6,-2)P8,P13+	C6-2(C6-1, D7, Tx.)	5	3.34×10^7	0.0	20	
		7	1.71 x 10 ⁶	1.1	20	
16681pr(+6,-2)P10,13+	C6-2(C6-1, D7, Tx.)	niang	2.30×10^5	10	20	rsit
10001p1(+0,-2)F10,15+	C0-2(C0-1, D7, 1X.)	5	5.66 x 10 ⁶	10	20	
	r y n t	3	CS		V	C

a is represented the average of titers from three separated experiments.

Time	E	xtracellular virus	(FFU/ml) of 166	81Nde(+)
(Hour) -	1 st Experiment	2 nd Experiment	3 rd Experiment	Mean ± SE
0	1.35×10^3	$1.30 imes 10^2$	81.82	$5.20 \times 10^2 \pm 4.14 \times 10^2$
4	90	1.54×10^2	1.00×10^2	$1.14\times10^2\pm19.88$
12	$2.88 imes 10^2$	1.44×10^2	81.82	$1.71 \times 10^{2} \pm 61.06$
14	$5.82 imes 10^3$	6.32×10^2	$5.13 imes 10^2$	$2.32 \times 10^{3} \pm 1.75 \times 10^{3}$
16	$1.22 imes 10^4$	$1.00 imes 10^4$	$2.59 imes 10^3$	$8.26 \times 10^{3} \pm 2.91 \times 10^{3}$
20	3.91×10^{5}	1.60×10^{5}	$9.00 imes 10^4$	$2.14 \times 10^5 \pm 9.09 \times 10^4$
24	1.21×10^{6}	5.64×10^5	1.03×10^{6}	$9.35 \times 10^5 \pm 1.92 \times 10^5$
36	$7.00 imes 10^6$	$4.00 imes 10^6$	$7.66 imes 10^6$	$6.22 \times 10^6 \pm 1.13 \times 10^6$
48	$2.00 imes 10^7$	$1.52 imes 10^7$	1.14×10^{7}	$1.55 \times 10^7 \pm 1.49 \times 10^6$

Table 11. Virus titers, means and standard error of the means (SE) of three separated

 single-step kinetic experiments

Table 12. Virus titers, means and standard error of the means (SE) of three separated single-step kinetic experiments

Time	Cell-associated virus (FFU/ml) of 16681Nde(+)				
(Hour)	1 st Experiment	2 nd Experiment	3 rd Experiment	Mean ± SE	
	1.45×10^5	$2.20 imes 10^4$	1.33×10^4	$6.01 imes 10^4 \pm 4.25 imes 10^4$	
4	$8.46 imes 10^2$	$1.23 imes 10^3$	$7.92 imes 10^2$	$9.56 \times 10^2 \pm 1.37 \times 10^2$	
Cop ¹² ri	4.00×10^{2}	3.96×10^{2}	1.63 × 102	$3.19 imes 10^2 \pm 78.34$	
14	$7.00 imes 10^3$	$4.68 imes 10^3$		${4.42\times10^{3}\pm1.57\times10^{3}}$	
A 16	$6.60 imes10^4$	$5.73 imes 10^4$	$1.60 imes 10^4$	$4.46 \times 10^{4} \pm 1.54 \times 10^{4}$	
20	$6.64 imes 10^5$	9.01×10^{5}	$6.45 imes 10^5$	${7.37 \times 10^5 \pm 8.23 \times 10^4}$	
24	$1.24 imes 10^6$	$2.18 imes 10^6$	$4.05 imes 10^5$	$1.28 \times 10^{6} \pm 5.13 \times 10^{5}$	
36	$7.63 imes 10^6$	$9.73 imes 10^6$	$4.00 imes 10^6$	$7.12 \times 10^{6} \pm 1.67 \times 10^{6}$	
48	5.27×10^6	1.93×10^7	8.91×10^7	$1.12 \times 10^7 \pm 3.00 \times 10^7$	

Time		Extracellular virus (FFU/ml) of JEVpr/16681				
(Hour) -	1 st Experiment	2 nd Experiment	3 rd Experiment	Mean ± SE		
0	10	2.00×10^{2}	36.36	82.12 ± 59.43		
4	63.63	2.50×10^{2}	45.45	$2.42 imes 10^2 \pm 65.36$		
12	20	90	10	34.24 ± 25.17		
14	10	90.9	10	30 ± 26.97		
16	10	5.54×10^{2}	10	$18.79 \pm 1.81 \times 10^2$		
20	1.08×10^2	1.77×10^{4}	10	$62.67 \pm 5.88 \times 10^{3}$		
24	1.65 $\times 10^3$	1.00×10^{5}	50	$7.53 \times 10^2 \pm 3.31 \times 10^4$		
36	1.14×10^{5}	1.89×10^{6}	2.09×10^{3}	$3.75 \times \! 10^5 \pm 6.12 \times \! 10^5$		
48	4.50×10^{5}	5.31 ×10 ⁶	7.09×10^{4}	$4.80 \times 10^5 \pm 1.69 \times 10^6$		

Table 13. Virus titers, means and standard error of the means (SE) of three separated

 single-step kinetic experiments

Table 14. Virus titers, means and standard error of the means (SE) of three separated single-step kinetic experiments

Time (Hour) -	Cell-associated virus (FFU/ml) of JEVpr/16681				
(11001)	1 st Experiment	2 nd Experiment	3 rd Experiment	Mean ± SE	
	3.00×10^{3}	2.78×10^{4}	1.62×10^4	$1.54 \times 10^4 \pm 7.16 \times 10^3$	
GU 41	2.61×10^{2}	2.32×10^{3}	4.59×10^{2}	$1.01 \times 10^3 \pm 6.55 \times 10^2$	
	$\mathbf{oht}^{\mathbf{C}}$ 50	63.63	$\mathbf{\sigma}$ Ma ¹⁰	41.21 ± 16.09	
14	1.73×10^{2}	1.26×10^{2}	10 10 10	$1.03 imes 10^2 \pm 48.44$	
A 16	8.09×10^{2}	1.14×10^{4}	6.48×10^2	$4.29{\times}10^3{\pm}3.56{\times}10^3$	
20	$2.85 imes 10^4$	1.85×10^{5}	1.75×10^{4}	$8.83 \times 10^4 \pm 7.80 \times 10^4$	
24	1.33×10^{5}	1.51×10^{6}	5.00×10^{5}	$7.14 \times \! 10^5 \! \pm 4.12 \times \! 10^5$	
36	1.39×10^{6}	1.66×10^{7}	2.18×10^{5}	$6.07 \times \! 10^6 \! \pm 5.28 \times \! 10^6$	
48	5.55×10^{6}	1.43×10^{7}	1.01×10^{7}	$9.98 \times 10^6 \pm 2.53 \times 10^6$	

Time	Ex	tracellular virus (Fl	FU/ml) of 16681pt	r(+4,-0)HS
(Hour) -	1 st Experiment	2 nd Experiment	3 rd Experiment	Mean ± SE
0	10	2.36×10^{2}	63.64	82.12 ± 68.18
4	2.61×10^{2}	2.50×10^{2}	54.54	$2.42 \times 10^2 \pm 67.06$
12	50	90	30	34.24 ± 17.64
14	1.72×10^{2}	90.9	30	30 ± 41.13
16	8.09×10^{2}	5.54×10^{2}	54.54	$18.79 \pm 2.21 \times 10^2$
20	1.76×10^{5}	1.77×10^{4}	4.91×10^{3}	$62.67 \pm 5.50 imes 10^4$
24	1.16×10^{6}	1.00×10^{5}	6.13×10^4	$7.53 imes 10^2 \pm 3.60 imes 10^5$
36	1.05×10^{7}	1.89×10^{6}	7.27×10^{5}	$3.75 \times \! 10^5 \pm 3.08 \times \! 10^6$
48	6.09×10^{6}	5.31 ×10 ⁶	2.21 ×10 ⁶	$4.80 \times 10^5 \pm 1.18 \times 10^6$

Table 15. Virus titers, means and standard error of the means (SE) of three separated

 single-step kinetic experiments

Table 16. Virus titers, means and standard error of the means (SE) of three separated single-step kinetic experiments

Time	Cell-	associated virus (FFU/ml) of 16681p	r(+4,-0)HS
(Hour) -	1 st Experiment	2 nd Experiment	3 rd Experiment	Mean ± SE
8 1 0 1	2.43×10^{4}	2.48×10^{4}	2.08×10^{2}	$2.33 \times 10^4 \pm 8.12 \times 10^3$
4	1.43×10^{3}	1.73×10^{2}	1.68×10^{3}	$1.61 \times 10^3 \pm 4.66 \times 10^2$
Cop ¹² ri	1.54×10^{2}	1.00×10^{2}	ng Ma ⁸⁰ l	$1.11 \times 10^2 \pm 22.10$
14	1.11×10^{3}	1.07×10^{3}	2.36×10^2	$8.05 \times 10^3 \pm 2.84 \times 10^2$
A 16	1.02×10^4	1.51×10^{4}	2.95×10^{3}	$9.42 \times 10^3 \pm 3.53 \times 10^3$
20	7.64×10^{5}	4.45×10^{5}	3.90×10^{4}	$4.16 \times 10^5 \pm 2.10 \times 10^5$
24	2.09×10^{6}	1.79×10^{6}	2.67×10^{5}	$1.38 \times 10^6 \pm 5.64 \times 10^5$
36	1.78×10^7	1.24×10^{7}	4.82×10^{6}	$1.17 \times \! 10^7 \pm 3.76 \times \! 10^6$
48	1.74×10^{7}	1.97×10^{7}	2.46×10^{7}	$2.05 \times 10^7 \pm 2.12 \times 10^6$

Time (Hour) -	Extracellular virus (FFU/ml) of 16681prE203A				
(11001) -	1 st Experiment	2 nd Experiment	3 rd Experiment	Mean ± SE	
0	30	80	10	40 ± 21.02	
4	63.63	30	10	34.54 ± 15.65	
12	20	30	10	20 ± 5.77	
14	1.54×10^{2}	10	30	64.67 ± 45.04	
16	8.06×10^{2}	1.20×10^2	2.27×10^{2}	$3.84 \times 10^2 \pm 2.13 \times 10^2$	
20	$8.82 imes 10^4$	1.37×10^{4}	$1.18 imes 10^4$	$3.79 \times 10^4 \pm 2.52 \times 10^4$	
24	4.46×10^5	1.44×10^{5}	2.21×10^{5}	$2.67 \times 10^5 \pm 9.06 \times 10^4$	
36	4.73×10^{7}	2.79×10^{6}	6.67×10^{6}	$4.73 \times 10^{6} \pm 2.00 \times 10^{7}$	
48	1.88×10^7	1.61×10^{7}	1.55×10^{7}	$1.68 \times 10^7 \pm 1.01 \times 10^6$	

Table 17. Virus titers, means and standard error of the means (SE) of three separated

 single-step kinetic experiments

Table 18. Virus titers, means and standard error of the means (SE) of three separated

 single-step kinetic experiments

Time	Ce	ll-associated virus	(FFU/ml) of 16681	prE203A
(Hour)	1 st Experiment	2 nd Experiment	3 rd Experiment	Mean ± SE
8 7 9 7	4.54×10^{3}	5.94×10^{3}	6.91 ×10 ³	$5.80 \times 10^3 \pm 6.87 \times 10^2$
	5.45×10^{2}	5.36×10^{2}	4.86×10^{2}	$5.22 imes 10^2 \pm 18.35$
Cop ¹² ri	ght [©] 60	ov Chi50r	ng Ma ⁹⁰ l	66.67 ± 12.21
14	5.49×10^{2}	3.63×10^{2}	1.35×10^2	$3.49 \times 10^2 \pm 1.19 \times 10^2$
A 16	7.92×10^{3}	1.00×10^{3}	1.43×10^{3}	$3.45 \times 10^3 \pm 2.24 \times 10^4$
20	1.79×10^{5}	$8.91 imes 10^4$	4.55×10^{3}	$9.09 \times 10^4 \pm 5.04 \times 10^4$
24	1.22×10^{6}	9.01×10^{5}	1.71×10^{5}	$7.64 \times 10^5 \pm 3.10 \times 10^5$
36	1.12×10^7	7.75×10^{6}	1.30×10^{7}	$1.07 \times \! 10^6 \pm 1.54 \times \! 10^6$
48	1.38×10^7	2.82×10^7	2.75×10^{7}	$2.32 \times 10^7 \pm 4.69 \times 10^6$

Time	Ex	tracellular virus (F	FFU/ml) of 16681p	r(+7,-2)
(Hour) –	1 st Experiment	2 nd Experiment	3 rd Experiment	Mean ± SE
0	10	1.72×10^{2}	40	74 ± 49.76
4	60	3.72×10^2	1.45×10^2	$1.92 \times 10^2 \pm 93.12$
12	10	40	20	23.33 ± 8.82
14	90.9	72.73	50	71.21 ± 11.83
16	3.42×10^{2}	2.52×10^2	1.63×10^{2}	$2.53 \times 10^2 \pm 51.67$
20	1.30×10^{4}	1.00×10^{4}	4.64×10^{3}	$9.21 \times 10^3 \pm 2.45 \times 10^3$
24	6.13 ×10 ⁴	8.11×10^{5}	3.41×10^{4}	$5.88 \times 10^4 \pm 2.55 \times 10^5$
36	2.20×10^{5}	1.64×10^{6}	3.64×10^{5}	$7.41 \times \! 10^5 \pm 4.51 \times \! 10^5$
48	1.17×10^{6}	1.68×10^{6}	1.34×10^{6}	$1.40 \times 10^6 \pm 1.50 \times 10^5$

Table 19. Virus titers, means and standard error of the means (SE) of three separated

 single-step kinetic experiments

Table.20. Virus titers, means and standard error of the means (SE) of three separated single-step kinetic experiments

Time	Ce	ll-associated virus	(FFU/ml) of 16681	lpr(+7,-2)
(Hour)	1 st Experiment	2 nd Experiment	3 rd Experiment	Mean ± SE
	9.27×10^2	1.72×10^4	2.41×10^4	$1.41 \times 10^4 \pm 6.87 \times 10^3$
	1.25×10^2	1.66×10^{3}	8.37×10^{2}	$1.25 \times 10^{3} \pm 4.44 \times 10^{2}$
Cop ¹² ri	2 3.36 ×10 ³	7.45×10^{2}	6.30×10^2	$1.58 \times 10^3 \pm 8.91 \times 10^2$
14	2.37×10^4	9.82×10^{3}	6.73×10^3	$1.14 \times 10^4 \pm 5.22 \times 10^3$
A 16	1.72×10^{5}	9.91×10^{4}	3.88×10^4	$1.03 \times 10^5 \pm 3.85 \times 10^4$
20	3.66×10^{6}	1.01×10^{6}	2.13×10^{5}	$1.63 \times 10^{6} \pm 1.04 \times 10^{6}$
24	6.90×10^{6}	2.66×10^{6}	6.73×10^{5}	$3.41 \times 10^6 \pm 1.84 \times 10^6$
36	2.99×10^{7}	1.53×10^{7}	4.03×10^{6}	$1.64 \times 10^7 \pm 7.49 \times 10^6$
48	1.16×10^{7}	1.89×10^{7}	1.95×10^{7}	$1.32 \times 10^7 \pm 2.54 \times 10^6$

transfection	16681pr(+6,-	16681pr(+6,-	16681pr(+6,-	
	2)P8,10+	2)P10,13+	2)P8,13+	16681Nde(+)
0	0		0	C
4	1.10×10^2	1.30×10^{2}	$2.45 imes 10^2$	6.63×10^2
7	1.14×10^{5}	6.75×10^{5}	2.12×10^5	7.57×10^{5}
11	1.89×10^{6}	$2.58 imes 10^6$	$1.25 imes 10^6$	$8.09 imes 10^6$
14	$7.00 imes 10^6$	7.47×10^6	$7.32 imes 10^6$	2.28×10^6
CHIER	G MAI	UNIVE	RSIT	700
	มหาวิ	ทยาลั	ัยเชีย	อให

Table 21. Virus titers from RNA transfection of a new set of double mutant at pr-M

 junction and 16681Nde(+) viruses

Time	16681Nde(+) (FFU/ml)		JEVpr/ (FFU		16681pr(+7,-2) (FFU/ml)		
(Hour)	Extracellular virus	Cell- associated virus	Extracellular Virus	Cell- associated virus	Extracellular virus	Cell- associated virus	
0	10	0	1.60×10^{2}	60	0	0	
4	20	0	$1.80 imes 10^2$	1.00×10^2	20	0	
12	10	0	$1.00 imes 10^2$	70	0	0	
14	1.00×10^2	0	20	60	10	0	
16	36.36	0	10	1.00×10^2	0	10	
20	$2.88 imes 10^2$	$4.95 imes 10^2$	10	3.36×10^2	20	30	
24	$8.01 imes 10^2$	9.64×10^{3}	- 2.3 5	$3.45 imes 10^3$	1.09×10^2	9.90×10^3	
36	$2.73 imes 10^5$	2.36×10^5	$1.80 imes 10^2$	$2.41 imes 10^5$	$8.46 imes 10^2$	$2.49 imes 10^5$	
48	9.72×10^5	$6.49 imes 10^5$	6.76×10^3	3.74×10^5	$3.85 imes 10^4$	$8.18 imes 10^5$	

Table 22. Virus titers from the single-step kinetic experiment of 16681Nde(+),JEVpr/16681 and 16681pr(+7,-2) viruses.

Table 23. Virus titers from the single-step kinetic experiment of 16681pr(+6,-2)P8,10+, 16681pr(+6,-2)P8,13+ and 16681pr(+6,-2)P10,13+.

Time	16681pr(+6,-2)P8,10+ (FFU/ml)			5,-2)P8,13+ J/ml)	16681pr(+6,-2)P10,13+ (FFU/ml)		
(Hour)	Extracellular virus	Cell- associated virus	Extracellular virus	Cell- associated virus	Extracellular virus	Cell- associated virus	
		_10	5		000	10	
4	$3.77 imes 10^2$	20	90	0	40	0	
C ₁₂ Dy	1.68×10^2	by o	hiango	Mai 10	nive 25	IIII	
14	$2.91 imes 10^2$	0	10	0	27	0	
A 16	33	0	40	E S ₁₀	98.64	10	
20	3.76×10^2	63.63	$1.77 imes 10^2$	$6.94 imes 10^3$	$1.87 imes 10^2$	3.73×10^3	
24	9.59×10^2	3.62×10^4	$1.77 imes 10^4$	6.49×10^4	$8.05 imes 10^2$	1.91×10^4	
36	$2.97 imes 10^3$	3.82×10^5	5.36×10^5	9.73×10^5	6.53×10^4	6.58×10^5	
48	$1.06 imes 10^5$	$3.84 imes 10^5$	$1.04 imes 10^6$	$1.46 imes 10^6$	2.13×10^5	$2.55 imes 10^6$	

Focus	Focus size (cells/focus)							
number	16681Nde(+) JE	Vpr/16681	16681pr(+6,- 2)P8,10+	16681pr(+6,- 2)P8,13+	16681pr(+6,- 2)P10,13+			
1	251	10	32	361	299			
2	232	11	53	131	244			
3	225	10	66	345	200			
4	261	18	60	91	239			
5 6	281	25	60	158	366			
6	259	H	50	28	590			
7	269	19	93	244	273			
8	146	⇒11	35	206	280			
9 95	251	16	63	203	257			
10	223	38	16	242	115			
11	81	21	39	211	252			
12	207	30	54	118	396			
13	216	20_	32	129	332			
14	286	35	63	246	437			
15	335	17	64	87	482			
16	235	41	15	127	130			
17	305	18	36	149	375			
18	117	18	91	155	579			
19	136	21	16	213	340			
20	SU 456	20	84	128	355			
21	224	40	23	68	611			
00218	nt ₃₅₉)	Ch361	ng Ma	240	ersi ₂₇₉			
23	125	18	60	333	116			
24	154	29	66	114	280			
25	203	20	68	75	236			
26	169	35	84	317	265			
27	247	38	62	234	253			

Table 24. Focus size of the parent, prM mutant and JEVpr/16681 viruses

Focus		Focus	size (cells/focu	s)	
number –	16681Nde(+) J	EVpr/16681	16681pr(+6,- 2)P8,10+	16681pr(+6,- 2)P8,13+	16681pr(+6,- 2)P10,13+
28	324	51	45	79	110
29	206	22	73	6 292	99
30	395	18	39	178	111
31	273	21	24	115	184
32	259	18	40	260	385
33	159	47	54	207	197
34	294	26	26	508	251
35	296	17	74	271	258
36	290	35	90	254	226
37	221	18	23	112	294
38	203	28	34	268	320
39	196	24	58	87	157
40	245	10	52	223	170
Mean (cell/foci)	240.35	24.10	55.35	195.13	283.58
Standard deviation	75.43	10.53	24.99	98.29	128.41

Table 24. Focus size of the parent, prM mutant and JEVpr/16681 viruses (continued)

Appendix B: Chromatogram of nucleotide sequence

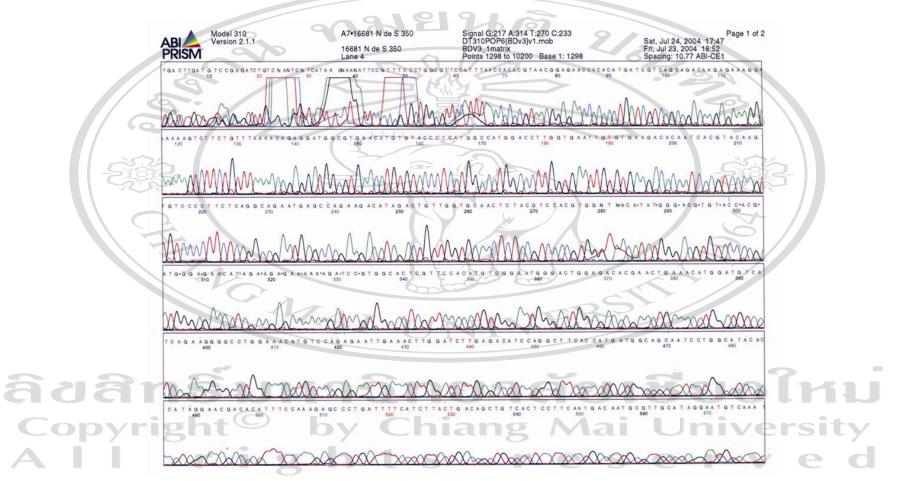


Figure 28. An entire sequence of the prM protein coding region of 16681Nde(+) virus

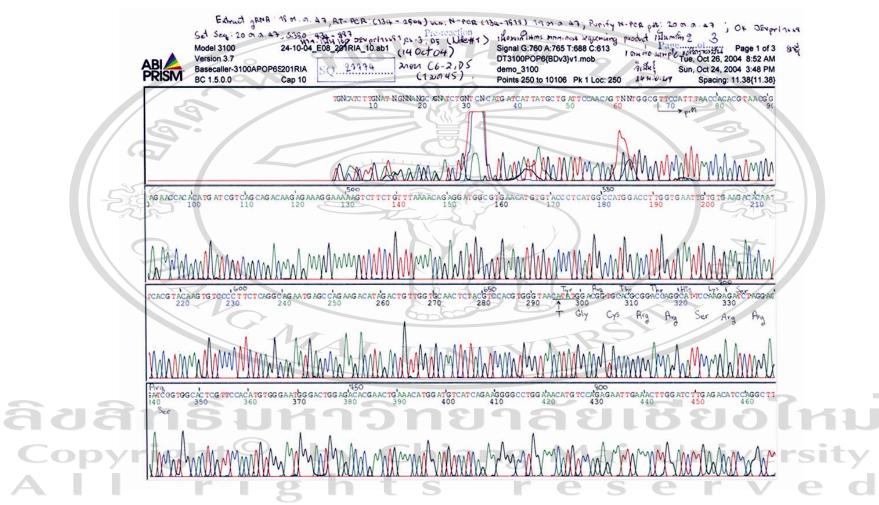


Figure 29. An entire sequence of the prM protein coding region of JEVpr/16681 virus

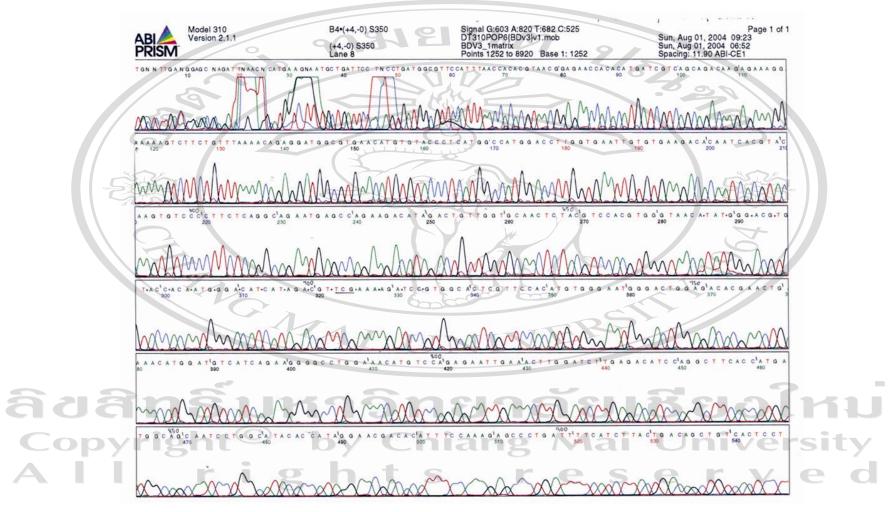


Figure 30. An entire sequence of the prM protein coding region of 16681pr(+4,-0)HS virus

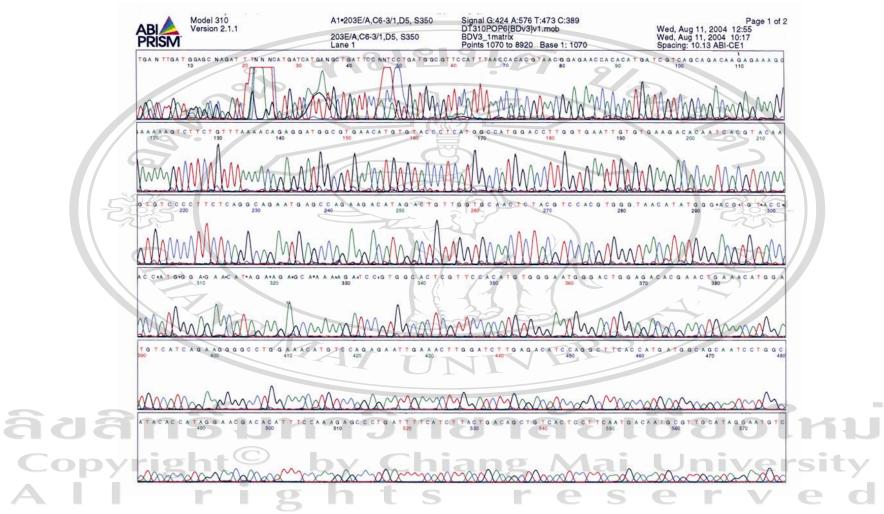


Figure 31. An entire sequence of the prM protein coding region of 16681prE203A

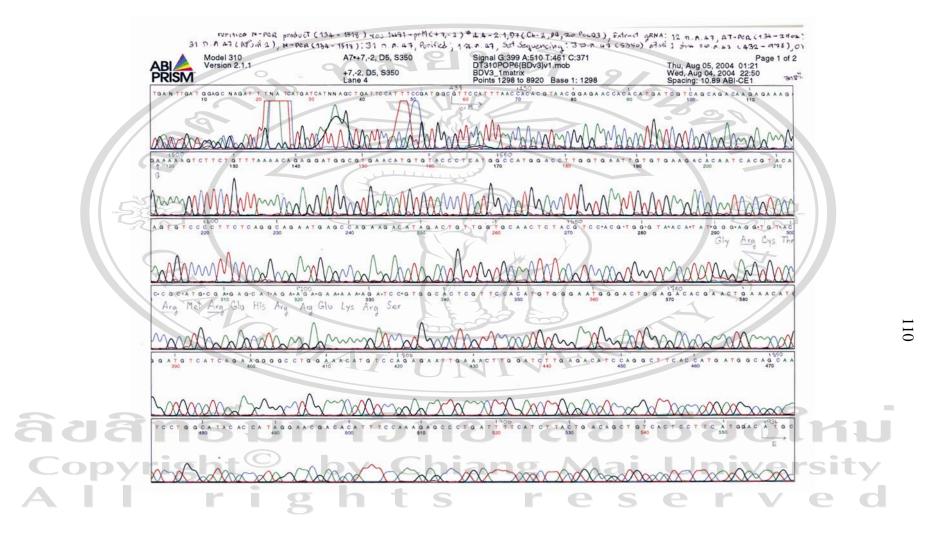


Figure 32. An entire sequence of the prM protein coding region of 16681pr(+7,-2) virus

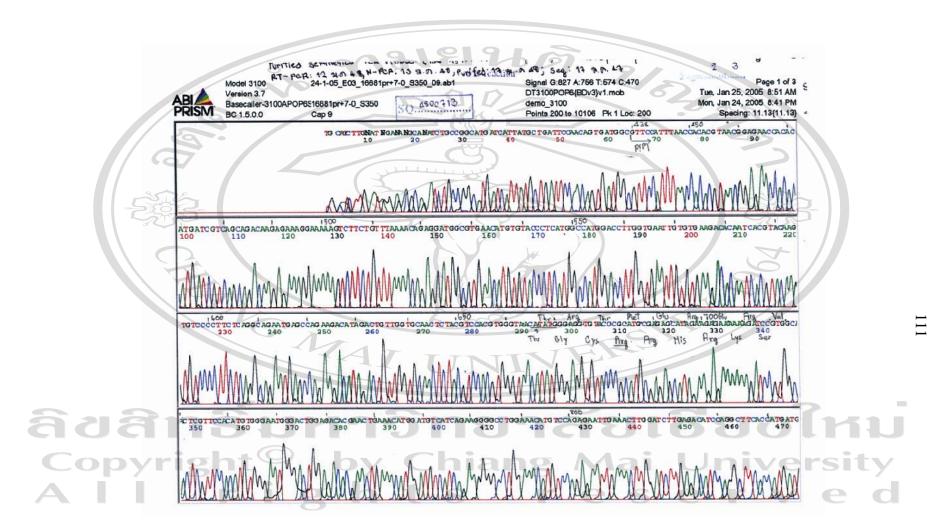


Figure 33. An entire sequence of the prM protein coding region of 16681pr(+7,-0) virus

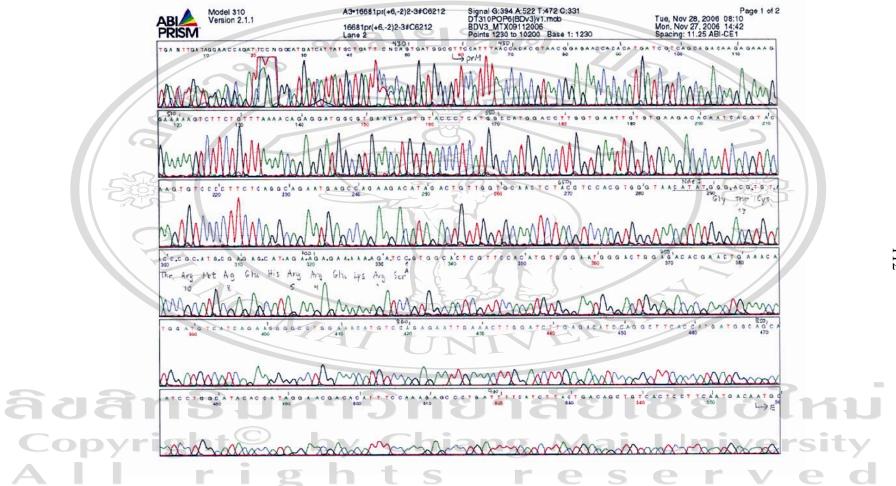


Figure 34. An entire sequence of the prM protein coding region of 16681pr(+6-2)P8,10+ virus

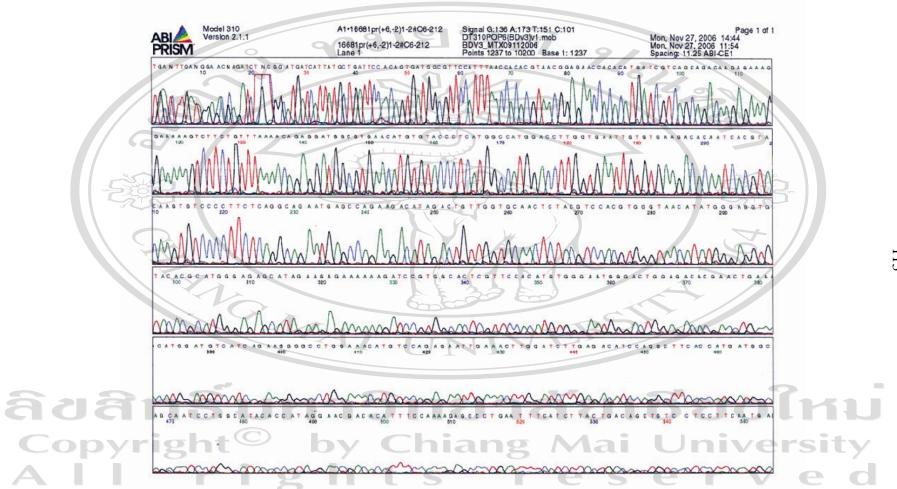
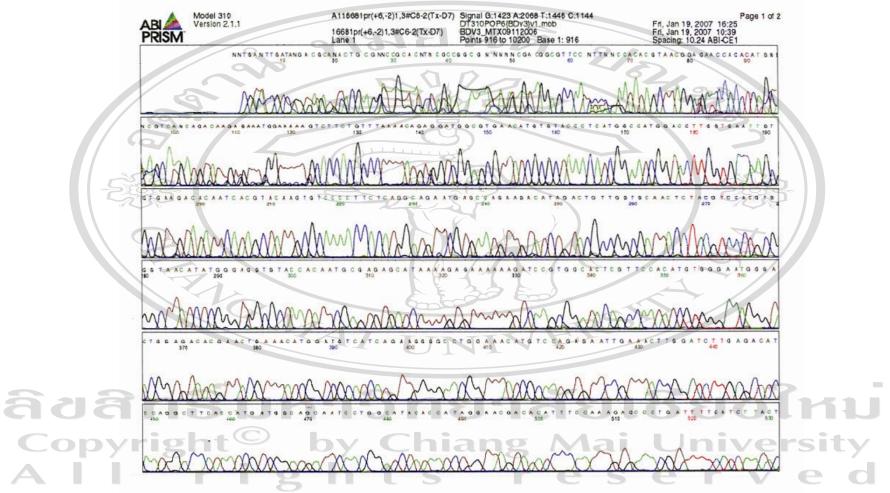
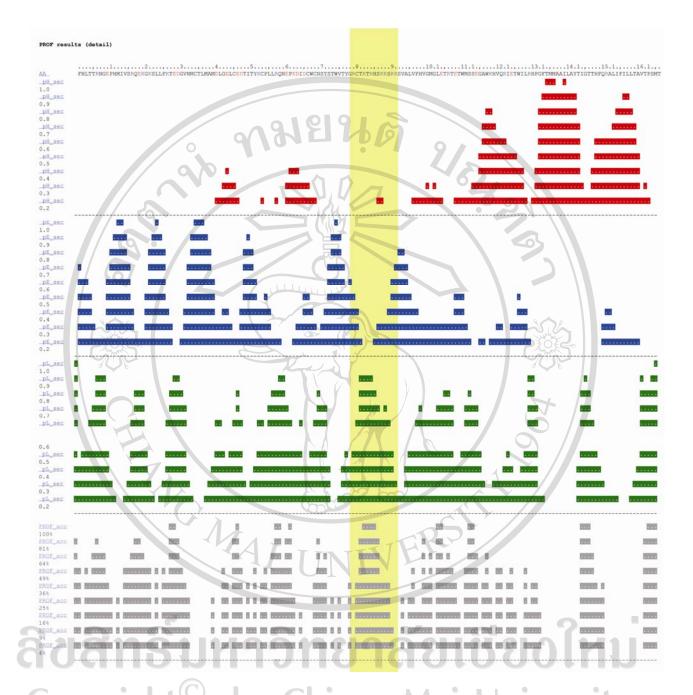
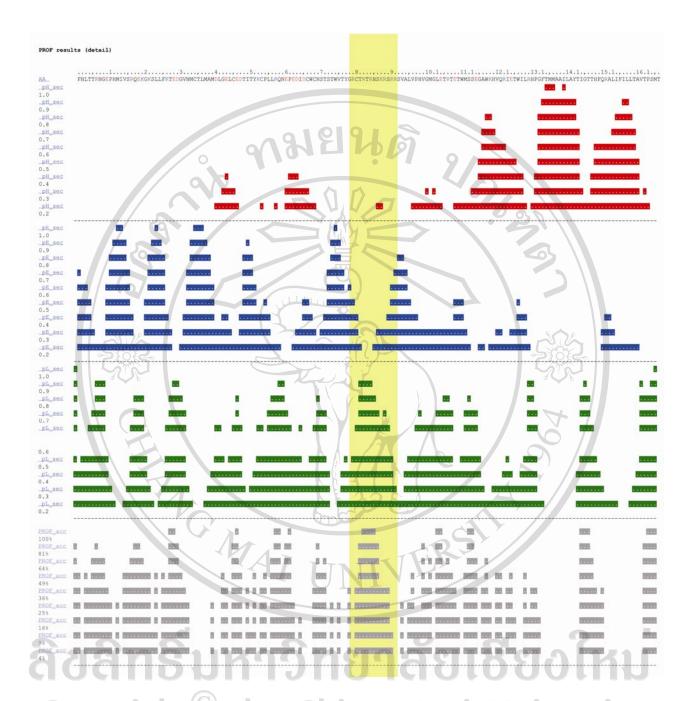
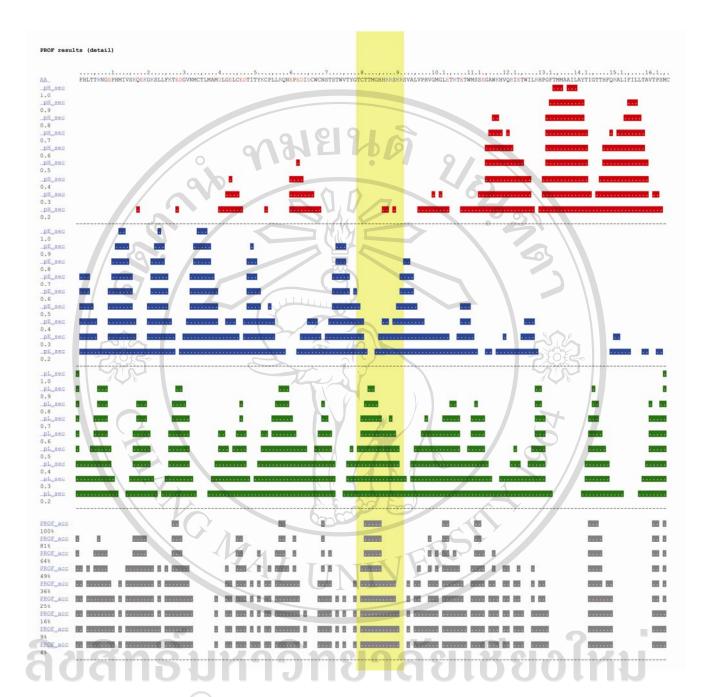
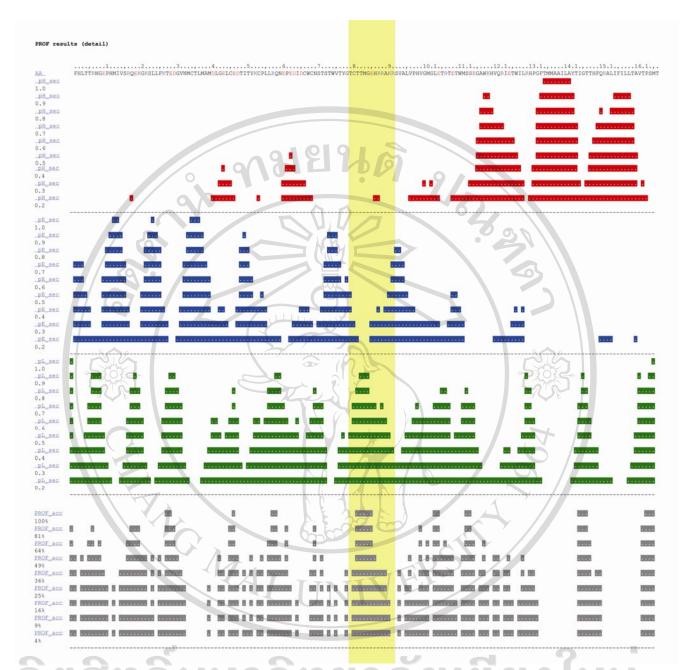
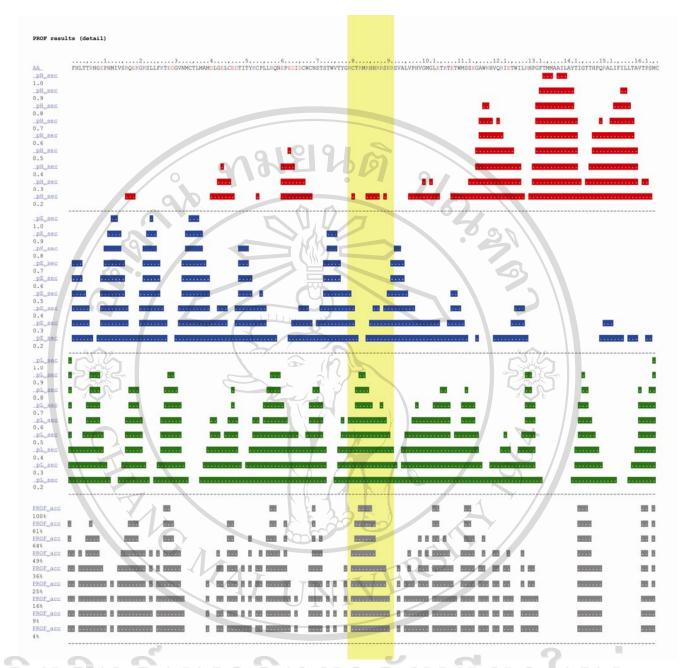


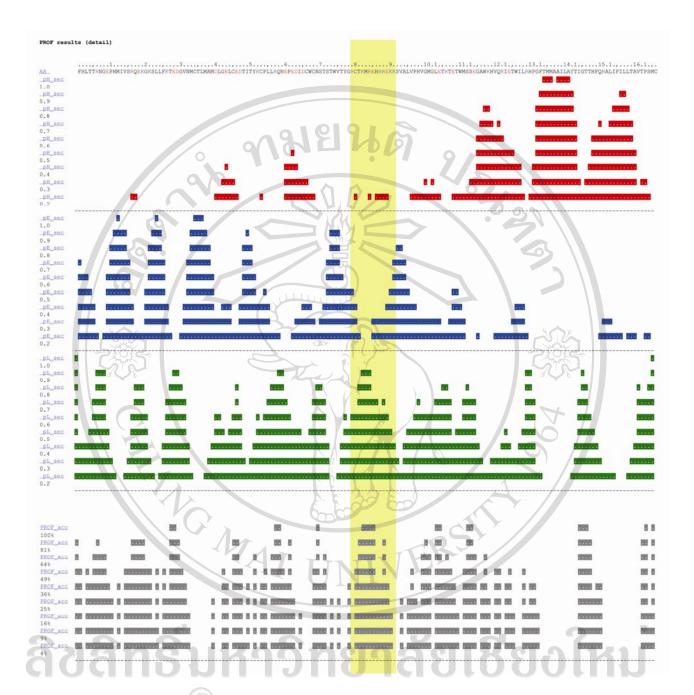
Figure 35. An entire sequence of the prM protein coding region of 16681pr(+6-2)P10,13+ virus

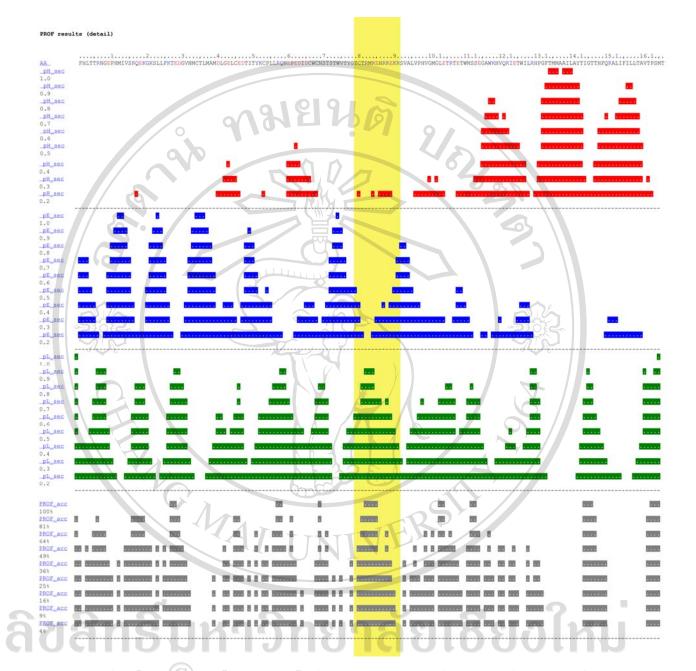





Figure 36. An entire sequence of the prM protein coding region of 16681pr(+6-2)P8,13+ virus


Figure 37. The secondary structure analysis of the amino acid sequences of the 16681Nde(+) prM protein by PHOFec (Rost et al., 2003). An entire amino acid sequence of the prM protein encoded from the DNA sequence was submitted to www.propredict.org, and the summary was shown: pH_sec, the score of helix (0.1-1.0); pE_sec, the score of the strand (0.1-1.0), pL_sec, the score of the loop (0.1-1.0) and PROF_acc, the solvent accessibility score (1-100%). The sequence of 13 amino acid residues that changed at proximal to pr-M junction was marked with yellow.


Figure 38. The secondary structure analysis of an amino acid sequences of the JEVpr/16681 prM protein by PHOFec (Rost et al., 2003). An entire amino acid sequence of the prM protein encoded from the DNA sequence was submitted to www.propredict.org , and the summary was shown: pH_sec, the score of helix (0.1-1.0); pE_sec, the score of the strand (0.1-1.0), pL_sec, the score of the loop (0.1-1.0) and PROF_acc, the solvent accessibility score (1-100%). The sequence of 13 amino acid residues that changed at proximal to pr-M junction was marked with yellow.


Figure 39. The secondary structure analysis of amino acid sequences of the 16681pr(+4,-0)HS prM protein by PHOFec (Rost et al., 2003). An entire amino acid sequence of the prM protein encoded from the DNA sequence was submitted to www.propredict.org, and the summary was shown: pH_sec, the score of helix (0.1-1.0); pE_sec, the score of the strand (0.1-1.0), pL_sec, the score of the loop (0.1-1.0) and PROF_acc, the solvent accessibility score (1-100%). The sequence of 13 amino acid residues that changed at proximal to pr-M junction was marked with yellow.


Figure 40. The secondary structure analysis of amino acid sequences of the 16681prE203A prM protein by PHOFec (Rost et al., 2003). An entire amino acid sequence of the prM protein encoded from the DNA sequence was submitted to www.propredict.org, and the summary was shown: pH_sec, the score of helix (0.1-1.0); pE_sec, the score of the strand (0.1-1.0), pL_sec, the score of the loop (0.1-1.0) and PROF_acc, the solvent accessibility score (1-100%). The sequence of 13 amino acid residues that changed at proximal to pr-M junction was marked with yellow.

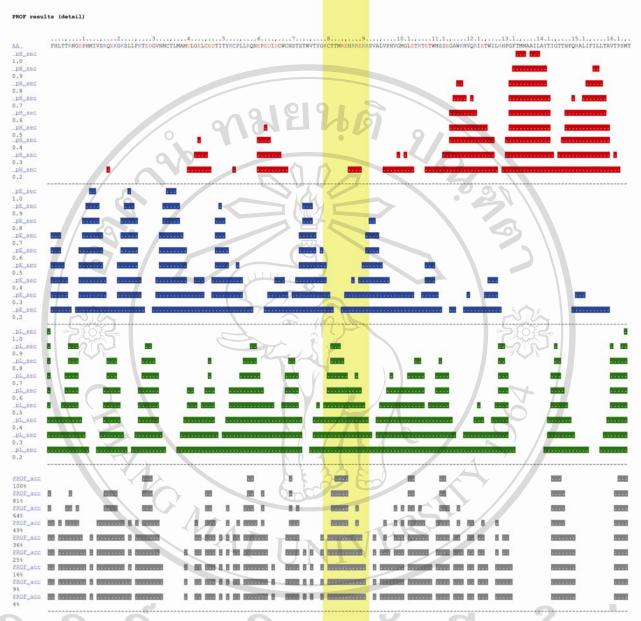

Figure 41. The secondary structure analysis of amino acid sequences of the 16681pr(+7,-0) prM protein by PHOFec (Rost et al., 2003). An entire amino acid sequence of the prM protein encoded from the DNA sequence was submitted to www.propredict.org, and the summary was shown: pH_sec, the score of helix (0.1-1.0); pE_sec, the score of the strand (0.1-1.0), pL_sec, the score of the loop (0.1-1.0) and PROF_acc, the solvent accessibility score (1-100%). The sequence of 13 amino acid residues that changed at proximal to pr-M junction was marked with yellow.

Figure 42. The secondary structure analysis of amino acid sequences of the 16681pr(+7,-2) prM protein by PHOFec (Rost et al., 2003). An entire amino acid sequence of the prM protein encoded from the DNA sequence was submitted to www.propredict.org, and the summary was shown: pH_sec, the score of helix (0.1-1.0); pE_sec, the score of the strand (0.1-1.0), pL_sec, the score of the loop (0.1-1.0) and PROF_acc, the solvent accessibility score (1-100%). The sequence of 13 amino acid residues that changed at proximal to pr-M junction was marked with yellow.

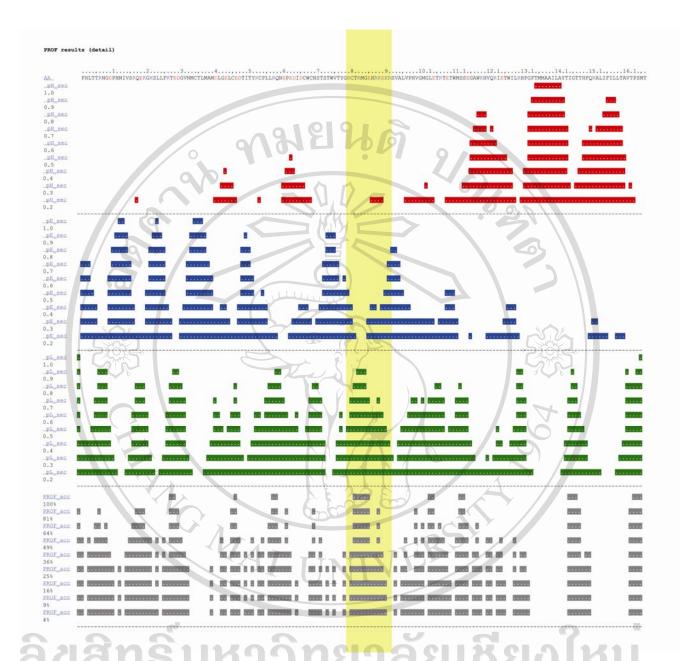


Figure 43. The secondary structure analysis of amino acid sequences of the 16681pr(+6,-2)P8,10+ prM protein by PHOFec (Rost et al., 2003). An entire amino acid sequence of the prM protein encoded from the DNA sequence was submitted to www.propredict.org, and the summary was shown: pH_sec, the score of helix (0.1-1.0); pE_sec, the score of the strand (0.1-1.0), pL_sec, the score of the loop (0.1-1.0) and PROF_acc, the solvent accessibility score (1-100%). The sequence of 13 amino acid residues that changed at proximal to pr-M junction was marked with yellow.

ลีขสิทธิมหาวิทย**า**ลัยเชียงไหม

Figure 44. The secondary structure analysis of amino acid sequences of the 16681pr(+6,-2)P8,13+ prM protein by PHOFec (Rost et al., 2003). An entire amino acid sequence of the prM protein encoded from the DNA sequence was submitted to www.propredict.org, and the summary was shown: pH_sec, the score of helix (0.1-1.0); pE_sec, the score of the strand (0.1-1.0), pL_sec, the score of the loop (0.1-1.0) and PROF_acc, the solvent accessibility score (1-100%). The sequence of 13 amino acid residues that changed at proximal to pr-M junction are marked with yellow.

Figure 45. The secondary structure analysis of amino acid sequences of the 16681pr(+6,-2)P10,13+ prM protein by PHOFec (Rost et al., 2003). An entire amino acid sequence of the prM protein encoded from the DNA sequence was submitted to www.propredict.org and the summary was shown: pH_sec, the score of helix (0.1-1.0); pE_sec, the score of the strand (0.1-1.0), pL_sec, the score of the loop (0.1-1.0) and PROF_acc, the solvent accessibility score (1-100%). The sequence of 13 acid amino residues that changed at proximal to pr-M junction was marked with yellow.

PrM mutant virus	Total helix in	Total strand in	Total loop in	Exposition of amino	All other
F IIVI mutant virus	protein (%)	protein (%)	protein (%)	acid residues (%)	residue (%)
16681Nde(+)	19.88	24.10	56.02	59.04	40.96
JEVpr/16681	19.88	27.11	53.01	59.64	40.36
16681prE203A	21.69	23.49	54.92	59.04	40.96
16681pr(+4,-0)HS	19.88	25.33	54.82	59.04	40.96
16681pr(+7,-0)	19.88	24.10	56.02	59.04	40.96
16681pr(+7,-2)	19.88	23.49	56.63	59.04	40.96
16681 pr(+6,-2)P8,10+	19.88	24.10	56.02	59.64	40.36
16681 pr(+6,-2)P10,13+	21.69	23.49	54.82	59.04	40.96
16681 pr(+6,-2)P8,13+	19.88	24.10	56.02	59.64	40.36
	VG MI	AI UN	IVE	SIT	

Table 25. The summary of the secondary structure analyses of amino acid sequencesof the mutant and wild type prM proteins by PROFec (Rost et al., 2003).

Appendix C: Properties of amino acids

1. The codon dictionary.

			Second	Position	
	0	U S	183	A	G
		UUU Phe	UCU Ser	UA <mark>U</mark> Tyr	UGU Cys
	U	UUC Phe	UCC Ser	UAC Tyr	UGC Cys
6		UUA Lue	UCA Ser	UAA End	UGA End
N N		UUG Lue	UCG Ser	UAG End	UG <mark>G</mark> Trp
		CUU Leu	CCU Pro	CAU His	CGU Arg
	C	CUC Leu	CCC Pro	CAC His	CGC Arg
uo	4	CUA Leu	CCA Pro	CAA Gln	CGA Arg
ositi		CUG Lue	CCG Pro	CAG Gln	CGG Arg
Tirst Position		AUU Ile	ACU Thr	AAU Asn	AGU Ser
STRE	Α	AUC Ile	ACC Thr	AAC Asn	AGC Ser
		AUA Ile	ACA Thr	AAA Lys	AGA Arg
		AUG Met	ACG Thr	AA <mark>G</mark> Lys	AGG Arg
		GU <mark>U</mark> Val	GCU Ala	GAU Asp	GGU Gly
	G	GU <mark>C</mark> Val	GCC Ala	GA <mark>C</mark> Asp	GGC Gly
	, U	GU <mark>A</mark> Val	GCA Ala	GAA Glu	GGA Gly
	A.	GU <mark>G</mark> Val	GC <mark>G</mark> Ala	GA <mark>G</mark> Glu	GGG Gly
	5		Entrac	6	$\langle \langle \rangle \rangle$

The third nucleotide in red color of each codon is less specific than the first two, and codons are read in 5' to 3' direction.

- 2. Abbreviation, pKa and molecular weight of amino acid residues
- 2.1 Amino acids with nonpolar R group. The amino acids are shown in ionizing forms at pH 6.0 to 7.0.

	Chemical structure	Amino acids	Three-letter code	One- letter code	pKa of ionizing side chain	Residue mass (Daltons)
H CH ₃ -C-COO ⁻ NH ₃		Alanine	Ala	A	6	71.08
	CH-C-COO CH-C-COO CH ₃ NH ₃	Valine	Val	v		99.14
	СН ₃ Н СН - СН ₂ -С-СОО ⁻ СН ₃ ЛН ₃ -	Leucine	Leu	L	967- 1	113.17
6	$\begin{array}{c} H \\ \\ CH_3 - CH_2 - CH - C - COO^{-} \\ & \\ CH_3 NH_3^{+} \end{array}$	Isoleucine	Ile	I	-	113.17
	$H_{2}C \xrightarrow{C^{2}} COO$ $H_{2}C \xrightarrow{N} H$ H	Proline	Prog	11010	1000	97.12
	H -CH ₂ -C-COO· NH ₃ +	Phenylalani ne	Phe	F	-	147.18

- OnepKa of Residue Three-letter Chemical structure Amino acids ionizing letter mass code side chain code (Daltons) CH.-C-COO. Tryptophan Trp 186.21 W ĊН NH,⁴ Н Methionine Met Μ 131.21 CH₃ - S - CH₂- CH₂-C-COO NH₃⁺ WG MAI
- 2.1 Amino acids with nonpolar R group. The amino acids are shown in ionizing forms at pH 6.0 to 7.0. (Continued)

pKa of One-Residue Three-letter Chemical structure Amino acids letter ionizing mass code side chain (Daltons) code Н Glycine Gly 57.06 H-C-COO G NH₃⁺ Н HO - CH2-C-COO Serine А 87.08 Ser NH₃⁺ но н CH₃ - C -C-COO Thr Т 113.17 Threonine H NH, H HS - CH₂C-COO Cysteine 8.3 103.14 Cys X NH₁⁺ Н HO-CH,-C-COO Tyrosine 10.1 163.18 Tyr Y NH Η NH, ų. C - CH,-C-COO Asparagine Asn 114.11 N 0 NH₃⁺ Η $C - CH_2 - CH_2 - C-COO$ NH₂ Glutamine Gln Q 128.14 NH3+

2.2 Amino acids with uncharged polar R group. The amino acids are shown in ionizing forms at pH 6.0 to 7.0.

2.3 Acid amino acids (negatively charged at pH6.0)

Chemical structure	Amino acids	Three-letter code	One- letter code	pKa of ionizing side chain	Residue mass (Daltons)
О С - CH ₂ - C-COO О NH ₃ ⁺	Aspatic acid	Asp	D	03,9	115.09
O ⁻ H C-CH ₂ -CH ₂ -C-COO ⁻ O NH ₃ ⁺	Glutamic acid	Glu	E	4.2	129.12
2.4 Basic amino acids (Positively charged at pH 6.0)					

2.4 Basic amino acids (Positively charged at pH 6.0)

	Chemical structure	Amino acids	Three-letter code	One- letter code	pKa of ionizing side chain	Residue mass (Daltons)
0	H 	Lysine	Lys	K	10.0	128.18
	H ₂ N-C-NH-CH ₂ -CH ₂ -CH ₂ -C-COO- NH ₂ NH ₃	Arginine	iang I	Mai I	580 Jn ^{12,5}	156.20
A	$HC = C-CH_2 - C-COO'$ $HN^* NH $ $NH $ NH_3^*	B Histidine	His	ese _H	6.0	e o 137.15

Appendix D: Reagents

1. Medium for bacterial growth

1.1 Luria-Bertani Broth (LB) Medium (per liter)

10.0 g Tryptone Yest Extract 5.0 g

NaCl 10.0 g

The powder of Luria-bertani medium is dissolved in 1,000 ml water, and pH is adjusted to pH 7.5 by 1 N NaOH. This medium was sterile by autoclave at 121°C for 15 min.

215)

1.2 Luria-Bertani Agar (per liter) Tryptone 10.0 g Yest Extract 5.0 g NaCl 10.0 g 20.0 g Agar

These compositions are dissolved with 1,000 ml of sterile water, and pH was adjusted to pH 7.5 by 1 N NaOH. This medium was sterile by autoclave. After sterilization, the medium was warmed to 55°C, and they were poured into 100 mm Petri dishes. 47 IMI

1.3 LB-Ampicillin Agar plate (per liter)

vright

250 µl of 100.0 mg/ml of ampicillin was added to 1,000 ml to Luria-Bertani agar. This medium was allowed to warm at 55°C, and then the media were poured into 100 mm Petri dishes. hiang Mai University hy (

yngne by	Cillai	18			UIII		31	ιγ
1.4 SOB Medium (per liter)	ts	r	ρ	S	e r	1/	ρ	
Tryptone 5	L J			3	20.0 g	W		U
Yeast extracts					5.0 g			
NaCl					0.5 g			

All the components were mixed in 1,000 ml of sterile distilled water to dissolve, and they were sterile by autoclave. Before use, 10 ml of 1.0 M MgCl₂ and 10 ml of 1 M MgSO₄ were added into the medium.

1.5 SOC Medium (100 ml)	ยนด
Tryptone or peptone	2.0 g
Yeast extract	0.5 g
NaCl	0.005 g
KCl	0.0186 g
20% (w/v) glucose	2.0 ml

All components were dissolved in 100 ml distill water, and pH of the medium was adjusted to pH 7.0. This medium was sterile by autoclave. The working stock solution was prepared by adding of 1 ml of 1 M MgCl₂, 2 ml of 1 M glucose into this medium. The medium was stored at 4°C until used.

2. Solution for plasmid DNA mini and midi-preparation.

2.1 Suspension Buffer (P1 Buffer) Tris-base 6.06 g EDTA.2H₂O

3.72 g

These two components were dissolved in 800 ml distill water, and then pH was adjusted to pH 8.0 with HCl. Total volume of solution was adjusted with distill water to make 1,000 ml. This medium was sterile by autoclave. Before use, RNase A was added to solution to be 100.0 µg/ml final concentrations.

hiang Mai Unive 2.2 Lysis Buffer (P2 Buffer) 0.2 N NaOH 1% (W/V) SDS

NaOH pellets (8 g) and SDS were dissolved in 1,000 ml distilled water, and this solution was sterile by autoclave.

2.3 Neutralization Buffer (P3 Buffer)

The 294.5 g of potassium acetate were dissolved in 500 ml distill water. Glacial acetic acid (~110 ml) was added into solution to adjust pH to pH 5.5, and this solution was added by water to be 1,000 ml. The solution was sterile by autoclave.

2.4 Equilibration Buffer (QBT Buffer)

NaCl	43.83 g
Acid free MOPC	10.46 g
Isopropanol	150.00 ml
10% (V/V) Triton X-100	15.00 ml

All components were dissolved with 800 ml distill water, and pH was adjusted to pH 7.0. isopropanol and 10% (V/V) Triton X-100 were added into the solution. The volume was adjusted to 1,000 ml by distill water, and this solution was sterile by filtration through 0.2 µm pore size membrane.

2.5 Wash Buffer (QC Buffer)

NaCl	58.44 g
Acid free MOPC	10.46 g
Isopropanal	150.00 ml

Sodium chloride and MOPC were dissolved in 800 ml distill water, and pH was adjusted to pH 7.0. isopropanol was added into this solution. The final volume of solution was adjusted with distill water to be 1,000 ml, and this solution was sterile by filtration through the micropore $(0.2 \,\mu m)$ membrane.

2.6 Elution Buffer (QF Buffer)

niversitv 73.05 g NaC1 Tris-base 6.06 150.00 ml Isopropanol

Sodium chloride and Tris-base were dissolved in 800 ml distill water, adjusted pH to 8.5. 150 ml of Isopropanol was added into solution. The volume was adjusted with sterile water to 1,000 ml and sterile though micropore filter.

3 Solution for DNA agarose gel electrophoresis

3.1 50X TAE Buffer (Stock solution)

Tris-HCl		242.0	g
Acetic acid	28	57.1	g Ø
0.5 M EDTA		100.0	g

Tris-HCl was dissolved with 800 ml of distill water. After that, 0.5 M EDTA and acetic acid were added to the solution. The pH of solution was adjusted to pH 8.0 and final volume was made to 1,000 ml by adding of sterile water.

3.2 6X-loading buffer

0.25% (w/v) bromophenol blue

0.25% (w/v) xylene cyanol FF

45% (v/v) glycerol in sterile water

The 2.5 g of both bromophenol blue and xylene cyanol were dissolved in 350 μ l of sterile water. Then 450 μ l of 100% glycerol were added to the solution, and they were mixed by vertex. This solution was adjusted to one ml.

3.3 Ethidium bromide stock solution

Ethidium bromide100.0 mgSterile distilled water10.0 ml

Dissolved ethidium bromide into water, and this solution was mixed. The ethidium bromide solution was stored in dark bottle.

4. Solution for in vitro transcription

4.1 RNase free water Deithyl pyrocarbonate Deionized water 100.0 ml

Jniversity

Dethylpyrocarbonate was added to deionizing water, and this solution was mixed by stirred. The solution was incubated for overnight. Next day, the dethylpyrocarbonate remaining in this solution was destroyed by autoclave.

5. RNA agarose gel electrophoresis

5.1 RNA loading buffer

6.25% (v/v) Deionized formamide

1.14 M formaldehyde

 $200 \ \mu g/ml$ bromophenol blue

200 µl xylene cyanole

1.25X MOPE-EDTA-Sodium acetate buffer

Sample was added in to loading buffer, and they were heated at 65° C for 10 minutes.

2/02/03

5.2 10X MOPS-EDTA-sodium acetate buffer MOPS 20.92 g Sodium acetate 3.28 g Sterile RNAse-free water 450 ml

All of the components were added in water, and 10 ml of 0.5 M EDTA (pH 8.0) were added to the solution. This solution was treated with 0.5 ml of DEPC, and they were incubated at room temperature for overnight. Next day, this solution was subjected to autoclave.

6. Reagents for focus immunological staining

 6.1 10X phosphate buffer saline (PBS) for 1,000 ml (137.0 mM NaCl, 2.7 mM KCl,

 10.0 mM Na₂HPO₄, 2.0 mM KH₂PO₄)

 NaCl
 80.0 g

 KCl
 2.0 g

 Na₂HPO₄
 11.5 g

 K₂HPO₄
 2.0 g

All the components were dissolved in 800 ml of deionizing water. The pH of this solution was adjusted to pH 7.4 by 1 N HCl in 1,000 ml final volume. This solution was sterile by autoclave.

6.2	2.0%	(v/v) Triton-X 100	
6.2	2.0%	(v/v) Triton-X 100	

- Triton-X 100 0.2 ml
- 1X sterile PBS 10.0 ml

0.2 ml of Triton-X 100 was added into ten ml 1X PBS, and they were gently mixed.

6.3 3.7% (v/v) Formaldehyde	. 31
37% Formaldehyde	2.0 ml
1X sterile PBS 18.0 ml	

Two ml of 37% (v/v) of formaldehyde solution were added into 18.0 ml of 1X PBS, and they were mixed by inverting.

6.4 1X PBS-0.05% (v/v) Tween-20, 2.0% (v/v) Fetal bovine serum

1X sterile PBS	9.8 ml
Tween-20	2.5 μl
Fetal bovine serum	0.2 ml

All components were added to sterile PBS pH 7.4, and they were gently mixed by swirling.

6.5 Peroxidase substrate	NIVER
6.0% (v/v) H ₂ O ₂	200.0 ml
3,3 diaminobenzidine	500.0 mg
1X sterile PBS	8988189.0 ml
Those components are dissolved	in 1X PBS to 10 ml final volume, mixed and

Okept away form light. by Chiang Mai University

								- 77
6.6 Alkaline Phosphate buffer (AP buffer)	ľ	e	S	e	r	V	e	C
1 M Tris-HCl (pH 9.5)		.1.0 ml						
1 M NaCl					1.0 1	nl		
1 M MgCl ₂					0.05	ml		
Sterile water					7.95	ml		

All the reagents were added in water, and they were mixed by inverting.

7. Reagents for cell culture

Leibovitz's L-15 Medium (1X)

The Leibovitz's L-15 Medium is contained of phosphates and free-base amino acids as the buffer. The compositions obtain: inorganic salts, i.e. 1.26 mM Calcium chloride (CaCl₂), 5.30 mM Potassium chloride (KCl), 0.441 mM Potassium phosphate monobasic (KH₂PO₄), 0.986 mM Magnesium chloride (MgCl₂), 0.814 mM Magnesium sulfate (MgSO₄), 138.00 mM Sodium chloride (NaCl), 1.34 mM Sodium phosphate (Na₂HPO₄).

The amino acids including in the medium were 2.252 mM L-Alanine, 2.87 mM Arginine, 1.89 mM L-Asparagine, 0.992 mM L-Cysteine, 2.055 mM L-Glutamine, 2.670 mM Glycine, 1.61 mM L-Histidine, 1.910 mM mM L-Isoleucine, 0.945 mM L-Leucine, 0.503 mM L-Lysine, 1.01 mM L- Methionine, 0.76 mM L-Phenylalanine, 1.90 mM L-Serine, 2.52 mM L-Threonine, 0.098 mM L_Tryptophan, 1.66 mM L-Tyrosine, 0.85 mM L-Valine; vitamins, i.e. 0.002 mM L-pantothenate, 0.0071 mM Choline chloride, 0.0022 mM Folic acid, 0.011 mM i-Inositol, 0.0081 mM Niacinamide, 0.0048 mM Pyridoxine hydrochloride, 0.00209 mM Riboflavin 5'-phosphate, Na, 0.00226 mM Thiamine monophospate; Other components, i.e. 5.00 mM D Galactose, 5.00 mM Sodium pyruvate, 0.025 mM phenol red.

Appendix E: Instruments

- 1. DNA thermal cycles, model 480 (Perkin Elmer, Foser City, California, USA)
- 2. Flip-Flop shaker (model FF 120 s, J.S.C. instrument)
- 3. Freezer, -20° C (Sanyo, Japan)
- 4. Freezer, -70° C (Forma Scientific Inc, USA)
- 5. Freezer, -70° C (Thermal Electron corporation, USA)
- 6. Gel documentary sytem, model gel doc 1000 (Bio-Rad Laboratories, Inc., RSA)
- 7. Genetic analyzer ABI PRISM 310 (Perkin Elmer, Foster City, California, USA)
- 8. High speed refrigerated microcentrifuge, model 4239R (ALC, Milano, Italy)
- 9. Incubator (Forma Scientific Inc, USA)
- 10. Incubator, model 1565 (Shellab, USA)
- 11. Laminar air flow cabinet, model NU-425-400 (NUAire, USA)
- 12. Microcentrifuge (ALC, Milano, Italy)
- 13. Microwave oven NN-6208 (Mutsushita Electric industrial Co., Ltd., Japan)
- 14. Orbital shaker bath Model 360 (Precision Scientific, USA)
- 15. Orbital shaker model Gyromax 737R (Amerex Instruments, Ins., USA)

hts re

- pH meter model 661 (Orion Research Incorporated Laboratory product group, USA)
- 17. Superspeed refrigerated centrifuge, model Sorval RC-5 (E.I. Dupont Denemours & Co., USA)
 - 18. Spectrophotometer (Spectronic Genesysz, UK)

Ig

19. Ultraviolet transilluminator (Vilber Lourmet, France)

CURRICULUM VITAE Name Mr. Matthawee Lausumpao 1318 20 Date of Birth August 30, 1980 **Birth place** Chainat Academic degree Faculty of Science, Maejo University, Chiang Mai, March, 2003: Bachelor Degree of Science (Biotechnology) A A AI

ลิขสิทธิ์มหาวิทยาลัยเชียงใหม่ Copyright[©] by Chiang Mai University All rights reserved