TABLE OF CONTENTS

		Page
Acknowledgme	ent Culture	iii
Abstract in Th	ai si	iv
Abstract in En	glish	vi
List of Tables		xii
List of Figures		xiii
CHAPTER 1	INTRODUCTION	1
1.1	General Statement	1
1.2	Objective	2
1.3	Scope of works	2
1.4	Study Area	3
1.5	Data sources	3
00Vr g1.6	Expected results hang haid hivens	-5
1.7	Literature reviews	5
CHAPTER 2	GENERAL GEOLOGICAL OF THE REGION	7
2.1	Regional Geology in the Gulf of Thailand	7

viii

2.2	Geolo	gical Background of Northern Malay basin	8
	2.2.1	Geological Setting	8
	2.2.2	Tectono-stratigraphy	9
2.3	Arthit	Field	10
	2.3.1	Geological Setting	11
	2.3.2	Stratigraphy	12
	2.3.3	The previous log marker and formation top	16
CHAPTER 3	THE	ORY AND METHOD	18
3.1	Orbita	al-forcing of climate change	18
	3.1.1	Orbital control insolation	18
	3.1.2	Insolation and circulation of the atmosphere	22
3.2	Cyclic	c sedimentation, Cyclostratigraphy and Global	
Cyclostratigraphy			23
3.3	Clima	te stratigraphy	25
	3.3.1	Hierarchy of stratal units and geological dimensions	
		in climate stratigraphy Stratal units	27
	3.3.2	Relationship of hierarchical levels to geological time	29
	3.3.3	Climate change oscillation and basin dynamics	31
	3.3.4	Climate stratigraphic packages and	
		basin accommodation	33

Page

3.4	Detern	ninistic modeling and analysis of wireline log data	34
	3.4.1	Wave and oscillating processes in the time and depth domain	34
	3.4.2.	Composite waveforms and principles of	
		spectral analysis	36
	3.4.3.	Transformation of Logs	38
	3.4.4.	Maximum Entropy Method (MEM) and Maximum	
		Entropy Spectral Analysis (MESA)	41
	3.4.5	Spectral Change Attribute analysis (PEFA)	43
	3.4.6.	Spectral Trend Attribute analysis (INPEFA)	46
		3.4.6.1 The INPEFA trends	48
		3.4.6.2 The INPEFA turning points	51
		3.4.6.3 Long-term and short-term Spectral Trend	
		Attribute (INPEFA) curves	52
CHAPTER 4	RESU	by Chiang Mai University	54
4.1	Long	Term INPEFA	54
4.2	Short	Term INPEFA	62

CHAPTER 5	DISSCUSSION AND CONCLUSION	76	
5.1	Comparison between the Previous Litho-stratigraphy and		
	Climate-stratigraphy in Formation 2	76	
5.2	Climate-stratigraphy in Formation 1 (FM1)	83	
5.3	Relationship of Climate Stratigraphy and Eustatic Sea Level	91	
	Fluctuation in FM1 and FM2		
5.4	Application	93	
5.5	Conclusion	95	
REFERENCE		96	
APPENDIX		102	
CURRICULUM VITAE			

ลิขสิทธิ์มหาวิทยาลัยเชียงใหม่ Copyright[©] by Chiang Mai University All rights reserved

LIST OF TABLES

Table

Tab	le	Page
3.1	Control of climate on the production, transportation	30
	and deposition of sediments.	
4.1	Climate Stratigraphic scheme of Top Formation 0 - Top Unit 2D.	65
5.1	Comparison between the climate stratigraphy into StratPacs and the	
	litho-stratigraphy of previous top and marker.	77
5.2	Relationship of climate stratigraphy into StratPacs, previous top and	
	marker and Seismic Markers.	86

LIST OF FIGURES

Page

Figure

1.1	Map showing the Arthit area of the North Malay basin in the Gulf	
	of Thailand.	4
2.1	Map showing 10 geological trends, which are referred in Arthit Area.	12
2.2	Stratigraphic column of the North Malay Basin.	13
3.1	Connection between the orbital parameters and their record in strata.	19
3.2	The basic orbital parameters that affect insolation and its latitudinal	
	and seasonal distribution.	20
3.3	One of the basic orbital parameters, Precession.	21
3.4	Latitude-parallel zonation of humidity and its seasonal distribution.	23
3.5	Flow chart of climate stratigraphy working procedures.	26
3.6	Overview of modern stratigraphic concepts as applied to the subsurface.	27
3.7	Hierarchy of stratal units as used in climate stratigraphy.	28
3.8	Hierarchy of geological dimensions and their relationship to the spectrum	
	of geological time, show on a logarithmic scale.	29
3.9	Cartoon summary of the role of climate and climate change on modern	
	sedimentary depositional systems.	30

xiii

3.10	Time frame of processed that are responsible for the construction	
	of the stratigraphic framework.	32
3.11	Preservation of the Milankovitch cycle stratigraphic packages versus	
	basin subsidence or basin accommodation.	33
3.12	A simplified, conceptual sedimentation system in which a single input	
	variable oscillates in time between sand-prone and shale-prone states.	36
3.13	Schematic illustration of the principle of addition of simple waves	
	representing the five Milankovitch periods to form a composite wave.	37
3.14	De-composing a composite waveform.	39
3.15	Maximum Entropy Method as the basis for (a) log transforms (PEFA	
	and INPEFA), and (b) spectral analysis.	40
3.16	Principles of Maximum Entropy Spectral Analysis (MESA),	
	using a sliding window of 40m.	42
3.17	Flowchart showing the different steps in the PEFA log transformation.	44
3.18	Graphical representation of the calculation of a single PEF value.	45
3.19	Phase jumps produced by missing section, amplitude changes and	
	frequency changes are detected by PEFA.	47
3.20	Flow chart of the INPEFA log transformation.	47
3.21	Interpretation of INPEFA trends and turning points in	
	an alluvial-fluvial setting	48

3.22	Terminology and definitions associated with the interpretation of	
	INPEFA curves.	49
4.1	Major stratigraphic packages base on the long term INPEFA-GR curve	
	of well 6.	56
4.2	Major stratigraphic packages and correlation well to well	
	base on the long term INPEFA-GR curve (Wells 11, 14, 10, 17, 6 and 7).	59
4.3	Major stratigraphic packages and correlation well to well	
	base on the long term INPEFA-GR curve (Wells 13, 16, 12, 3, 18 and 2).	60
4.4	Major stratigraphic packages and correlation well to well	
	base on the long term INPEFA-GR curve (Wells 1, 9, 5, 4, 8 and 15).	61
4.5	Major stratigraphic packages of well 6 enhance with short term	
	INPEFA-GR curve which can be distinguished to 21 minor	
	stratigraphic packages.	64
4.6	Short term INPEFA-GR curve and higher order StratPacs correlation	
	of wells 11, 10, 14, 17 and 6 (StratPacs M1000-M4000).	66
4.7	Short term INPEFA-GR curve and higher order StratPacs correlation	
	of wells 2, 7, 12, 3 and 18 (StratPacs M1000-M4000).	67
4.8	Short term INPEFA-GR curve and higher order StratPacs correlation	
	of wells 1, 9, 5 and 4 (StratPacs M1000-M4000).	68

4	.9	Short term INPEFA-GR curve and higher order StratPacs correlation	
		of wells 13, 16, 15 and 8 (StratPacs M1000-M4000).	69
4	.10	Short term INPEFA-GR curve and higher order StratPacs correlation	
		of wells 11, 10, 14, 17 and 6 (StratPacs M5000-M7000).	71
4	.11	Short term INPEFA-GR curve and higher order StratPacs correlation	
		of wells 2, 7, 12, 3 and 18 (StratPacs M5000-M7000).	72
4	.12	Short term INPEFA-GR curve and higher order StratPacs correlation	
		of wells 1, 9, 5 and 4 (StratPacs M5000-M7000).	73
4	.13	Short term INPEFA-GR curve and higher order StratPacs correlation	
		of wells 13, 16, 15 and 8 (StratPacs M5000-M7000).	74
5	5.1	show the location of the previous top and marker in 2A unit compare	
		with the negative bounding surface in the top part of StratPacs M4000	
		and StratPacs M5000 of well 6.	78
5	.2	Show the location of the previous top and marker in 2B and 2C units	
		compare with the negative bounding surface in top part of StratPacs	
		M5000 and StratPacs M6000 of well 6.	79
5	5.3	Show the location of the previous top and marker in 2D unit compare	
		with the negative and positive bounding surface in StratPacs M7000	
		of well 6.	80

5.4	shows some mistake of the Top-2C position in well 2 and the StratPacs	
	can be used for the verification.	82
5.5	Climate stratigraphic correlations of two well (well 10 and well 14)	
	in Formation 1 interval.	84
5.6	Marker from climate stratigraphy derives from the positive or	
	negative turning point, compare with the seismic horizon line, H65,	
	H80 and H90 (wells 11, 10, 14, 17 and 6).	87
5.7	Marker from climate stratigraphy derives from the positive or	
	negative turning point, compare with the seismic horizon line, H65,	
	H80 and H90 (wells 2, 7, 12, 3 and 18).	88
5.8	Marker from climate stratigraphy derives from the positive or	
	negative turning point, compare with the seismic horizon line, H65	
	and H80 (wells 1, 9, 5 and 4).	89
5.9	Marker from climate stratigraphy derives from the positive or	
	negative turning point, compare with the seismic horizon line, H65,	
	H80 and H90 (wells 13, 16, 15 and 8).	90
5.10	The relationship of Climate stratigraphy and Eustatic Sea Level Fluctuation	
	related to the depositional environment of FM1 and FM2 in Arthit area.	92
5.11	Climate stratigraphic correlations in reservoir-scale between	
	Top 2B and-marker M15-00 of well 8, well 6 and well 7.	94

xvii