TABLE OF CONTENTS

3.3 Research designs	20
3.4 Plants materials	21
3.5 Preparation of extracts	22
3.5.1 Ethanol crude extracts	22
3.5.2 Fractionation extracts	22
3.6 Antioxidant activity methods	25
3.6.1 ABTS assay	26
3.6.2 DPPH method	27
3.6.3 Determination of the reducing power	28
3.6.4 β -Carotene bleaching model	29
3.7 Determination of total phenolic content	29
3.8 Chemical screening test	30
3.8.1 Phenolic and tannin test	30
3.8.2 Flavonoids test	31
3.9 Cytotoxicity	33
3.9.1 Caco-2 cell culture	33
3.9.2 Preparation of PBMC	34
3.9.3 Measurement of cytotoxicity activity	34 MU
3.10 Isolation of bioactive compounds from guava leaves extract	versity
A 3.10.1 General techniques C S C	V ₃₆ e d
1. Thin-Layer chromatography	36
2. Column chromatography	37
1) Flash column chromatography	37

2) Gel filtration chromatography	37
3.10.2 Isolation of quercetin	38
3.10.3 Isolation of quercetin-3-O-glucopyranoside	38
3.10.4 Isolation of morin	39
3.11 Identification of bioactive compounds	39
CHAPTER 4: RESULTS AND DISCUSSION	40
4.1 Yield of crude extracts from Plants	40
4.2 Antioxidant activities and cytotoxicity capacities	44
of the ethanol crude extracts	22
4.3 Antioxidant activity of guava leaves extracts	59
4.3.1 ABTS scavenging activity	61
4.3.2 FRAP reducing power	62
4.3.3 DPPH scavenging activity	63
4.3.4 β-Carotene bleaching model	64
4.3.5 Total phenolic content	66
4.4 Isolation of antioxidant compounds	70
4.5 Identification of bioactive compounds	70
A.6 Antioxidant activity of the isolated compounds	76
CHAPTER 5: CONCLUSIONS REFERENCES	80 ersity 82
A Appendix reser	V ₉₃ e d
VITA	117
LIST OF PUBLICATIONS	118

LIST OF TABLES

· 49818169 .	
Table	Page
2.1 Examples of free radicals	3
2.2 The major classes of phenolic compounds in plants	8
3.1 All chemicals used in this study and listed as	16
3.2 Principal instruments used in this study were analytical grades and listed as	
3.3 The name and part of use from certain plants	23
4.1 Percentage of yield of samples (ordering)	41
4.2 Antioxidant activity of ethanolic crude extracts from plants by	46
ABTS assay	
4.3 Antioxidant activity of ethanolic crude extracts from plants by	48
DPPH assay	
4.4 Anti- β -carotene bleaching activity of ethanolic crude extracts	51
from plants	JOINJ
4.5 Antioxidant activity of ethanolic crude extracts by	iv ⁵⁴ rsity
FRAP assay	ved
4.6 Cytotoxicity of crude extracts with PBMC and Caco-2 cell	57
(safety-ordering)	
4.7 Comparison of antioxidant activity of guava leaves fractions by	60
DPPH, ABTS, β -carotene bleaching model and FRAP assays	

4.8 Chemical test results of guava leaf extracts from methanol,	67
butanol, ethyl acetate, and hexane	
4.9 The yield and antioxidant activity (IC ₅₀) of fractions from	69
column chromatography	
4.10 ¹³ C and ¹ H NMR data of Compound 1 and	72
authentic quercetin	30
4.11 ¹³ C and ¹ H NMR data of Compound 2 and	5 73
authentic quercetin-3-O-glucopyranoside	
4.12 ¹³ C and ¹ H NMR data of Compound 3 and	75
authentic morin	र्द्ध्
	4
HE KAN	60
	\sim
ALUNIVERSI	
UNIVE	

ลิขสิทธิ์มหาวิทยาลัยเชียงใหม่ Copyright[©] by Chiang Mai University All rights reserved

LIST OF FIGURES

· 978181869 ,	
Figure	Page
2.1 Chemical structures of flavonoids	9
2.2 Structures for flavonoids to be an effective antioxidant	10
3.1 Hot air oven	18
3.2 Miller	5 19
3.3 Rotary evaporator	19
3.4 Microtiter plate reader	19
3.5 Relation of %inhibition and concentration of Trolox standard	27
3.6 Relation of absorbance and concentration of FeSO ₄	28
3.7 Relation of absorbance and concentration of gallic acid	30
4.1 Free radical scavenging activity of guava leaves extracts	62
from methanol (GM), butanol (GB), ethyl acetate (GE),	
and hexane (GH) in comparison with that of	? !
butylated hydroxyl toluene (BHT) and quercetin (QCT)	JOINU
4.2 Reducing power of guava leaves extracts	nive ³ rsity
from methanol (GM), butanol (GB), ethyl acetate (GE),	rved
and hexane (GH) in comparison with that of	
butylated hydroxyl toluene (BHT) and quercetin (QCT)	

4.3 The IC ₅₀ of guava leaves extracts	64
from methanol (GM), butanol (GB), ethyl acetate (GE),	
and hexane (GH) in comparison with that of	
butylated hydroxyl toluene (BHT) and quercetin (QCT)	
4.4 The percentage of antioxidant activity of guava leaves extracts	65
from methanol (GM), butanol (GB), ethyl acetate (GE),	
and hexane (GH) in comparison with that of	3
butylated hydroxyl toluene (BHT) and quercetin (QCT)	2
4.5 Total phenolic content of guava leaves extracts from	66
methanol (GM), butanol (GB), ethyl acetate (GE),	
and hexane (GH)	
4.6 Antioxidant activity of isolated and purified compounds by	76
DPPH method	~ //
4.7 Antioxidant activity of isolated and purified compounds by	77
ABTS method	
4.8 Antioxidant activity of isolated and purified compounds by	78
FRAP method	
1 A IR spectrum of methanol crude extract from	98
<i>Psidium guajava</i> leaves 2 A UV spectrum of methanol crude extract from	iversity
A Psidium guajava leaves t S r e s e r	ve
3 A The structure of Compound $1 = $ Quercetin	100
4 A The structure of Compound 2 = Quercetin-3-O-glucopyranoside	100
5 A The structure of Compound $3 = Morin$	100

6 A TLC chromatogram of Compound 1	101
7 A TLC chromatogram of Compound 2	101
8 A TLC chromatogram of Compound 3	101
9 A IR spectrum of Compound 1	102
10 A MS spectrum of Compound 1	103
11 A ¹ H spectrum of Compound 1	104
12 A ¹³ C spectrum of Compound 1	105
13 A ¹³ C DEPT135 spectrum of Compound 1	106
14 A IR spectrum of Compound 2	107
15 A MS spectrum of Compound 2	108
16 A ¹ H spectrum of Compound 2	109
17 A ¹³ C spectrum of Compound 2	0110
18 A HMQC spectrum of Compound 2	111
19 A HMBC spectrum of Compound 2	112
20 A IR spectrum of Compound 3	113
21 A MS spectrum of Compound 3	114
22 A ¹ H spectrum of Compound 3	115
23 A ¹³ C spectrum of Compound 3	
Copyright [©] by Chiang Mai Ur	niversity
All rights rese	rved

LIST OF SCHEMES

262831

Page

20

25

94

95

96

Scheme

3.1 Research designs

3.2 Four complementary methods for antioxidant activity test

- 1 A The fractionation and Isolation of guava leaves
- 2 A The Isolation of fraction C from guava leaves
- 3 A The Isolation of fraction E from guava leaves
- 4 A The Isolation of fraction D from guava leaves

ETAC MAI

ลิขสิทธิ์มหาวิทยาลัยเชียงใหม่ Copyright[©] by Chiang Mai University All rights reserved

ABBREVIATIONS AND SYMBOLS

		0	งามยนติ ,
	ABTS	-	2, 2'-azino-bis (3-ethylbenzo-thiazoline-6-sulfonic acid)
	9		diammonium salt
	%AA	=	Percentage of antioxidant activity
	BHA	= 4	Butylated hydroxyanisole
	BHT	=	Butylated hydroxytoluene
	n-BuOH	=	n-Butanol
	CO ₂	=	Carbon dioxide
	¹³ C-NMR	-	Carbon 13 nuclear magnetic resonance
	DEPT	Ē	Distortionless enhancement by polarization transfer
	DMSO	÷G.	Dimethyl sulfoxide
	DNA	=	Deoxyribonucleic acid
	DPPH	=	2, 2-diphenyl-1-picryl-hydrazyl
0	EC	٢.	Reducing power equivalent concentration
a	ED ₅₀	5-U	Effective dose at 50%
Со	Fyrigh	ıt [©]	Electron impact ionization Mai University
Δ	EtOAc	=	Ethyl acetate
	FBS	=	Fetal bovine serum
	FeCl ₃ [·] 6H ₂ O	=	Ferric chloride
	FeSO ₄ ·7H ₂ O	=	Ferrous sulfate

	FRAP	=	Ferric reducing antioxidant power
	FT-IR	=	Fourier transform infrared
	HC1	=	Hydrochloric acid
	НМВС	_	Heteronuclear multiple-bond correlation
	НМОС	-0	Heteronuclear multiple quantum coherence
	¹ H-NMR	=	Proton nuclear magnetic resonance
	HPLC	=	High-performance liquid chromatography
	IC ₅₀	_	Inhibition concentration at 50%
	ID ₅₀	=	Inhibition dose at 50%
	IR	=	Infrared
	ko	=	Kilogram
	K ₂ S ₂ O ₂	_	Potassium persulfate
	K25208		
			Low density lipoprotein
	MS	ĔG.	Mass spectrometry
	MHz	_	Megahertz
	МеОН	=	Methanol
	μg	-	Microgram
ลิข	μΜ	-1	Micromole Manager All Stolmu
	mM	Ī	Millimolar
CO	mg	<u> </u>	Milligram
Α	ml r	_	Milliliter ts reserved
	MTT	=	3-(4, 5-Dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide
	nm	=	Nanometer
	NaCl	=	Sodium chloride

ppm	=	Part per million
p.o	=	Per-oral
PBMC	=	Peripheral blood mononucler cell
QCT	=	Quercetin
ROS	=0	Reactive oxygen species
RNS	=	Reactive nitrogen species
SOD	=	Superoxide dismutase
TMS	= _	Tetramethylsilane
TBHQ	=	tert-Butylhydroquinone
TEAC	=	Trolox equivalent antioxidant capacity
TLC	=	Thin layer chromatography
ТРТZ	÷	2, 4, 6-Tri (2-pyridyl)-s-triazine
Trolox	=	6-Hydroxy-2, 5, 7, 8-tetramethylchroman-2-carboxylic acid
UV	E	Ultraviolet-visible
δ	-	NMR chemical shift in ppm downfield from a standard

ลิขสิทธิ์มหาวิทยาลัยเชียงใหม่ Copyright[©] by Chiang Mai University All rights reserved