TABLE OF CONTENTS

	Page
ACKNOWLEDGEMENTS	iii
ABSTRACT (ENGLISH)	iv
ABSTRACT (THAI)	vii
TABLE OF CONTENTS	X
LIST OF TABLES	xvii
LIST OF FIGURES	xxi
ABBREVIATIONS AND SYMBOLS	XXV
CHAPTER I INTRODUCTION	
1.1 Flow Injection Analysis (FIA)	1
1.1.1 Principle of FIA	2
1.1.2 Dispersion	3
1.1.3 FIA Instrumentation	7
1.2 Sequential Injection Analysis (SIA)	10
1.2.1 Programmable Flow of SIA	rsitv
1.2.2 Sequential Injection Analyzer	12
1.2.3 SIA Dispersion Zones	16

			Page
	1.2.4	Mixing and Zone Overlap of SIA	19
1.3	Seleniu	m	20
	1.3.1	Histrory	20
	1.3.2	Occurrence	20
	1.3.3	Preparation	20
	1.3.4	Physical properties	20
	1.3.5	Chemical properties	21
	1.3.6	Distribution to environment	21
	1.3.7	Deficiency signs	22
	1.3.8	Effect of excess selenium	23
	1.3.9	Therapeutic uses	24
	1.3.10	Uses	25
	1.3.11	Determination of Selenium	27
1.4	Variam	ine Blue	29
1.5	Researc	ch Objectives	30
СН	APTER	the Chiang Mai Univer	
		nents and Apparatus	e_{31} C
	Chemic		31

xi

				Page
2.3	Prepa	ation of St	andard Solution and Reagents	33
	2.3.1	Preparatio	on of Standard Solutions and Reagents of FIA procedure	33
		2.3.1.1	Selenium stock solution 1000 mg L ⁻¹	33
		2.3.1.2	Variamine Blue stock solution 500 mg L ⁻¹	33
		2.3.1.3	Potassium iodide stock solution 3.0 %(w/v)	33
		2.3.1.4	Sodium acetate stock solution 0.4 mol L ⁻¹	34
		2.3.1.5	Hydrochloric acid stock solution 0.2 mol L ⁻¹	34
	2.3.2	Preparatio	on of standard solutions and reagents of SIA procedure	34
		2.3.2.1	Selenium stock solution 1000 mg L ⁻¹	34
		2.3.2.2	Variamine Blue stock solution 100 mg L ⁻¹	34
		2.3.2.3	Potassium iodide stock solution 2.0 %(w/v)	34
		2.3.2.4	Sodium acetate stock solution 0.2 mol L ⁻¹	35
		2.3.2.5	Hydrochloric acid stock solution 0.4 mol L ⁻¹	35
2.4	Proced	lure		35
	2.4.1	Sample co	ollection and pretreatments	35
	2.4.2	FIA spec	ctrophotometric determination of selenium using VB	36
		solution a	s complexing reagent	
		2.4.2.1	Optimization of the flow injection system	37
		2.4.2.2	Linearity of calibration graph	39

			Page
	2.4.2.3	Precision	40
	2.4.2.4	Detection limit	40
	2.42.5	Accuracy of the proposed method	41
	2.4.2.6	Interference studies	41
	2.4.2.7	Validation method	41
2.4.3	SIA spec	trophotometric determination of selenium using VB	43
	solution a	as complexing agent	
	2.4.3.1	Sequential injection method	44
	2.4.3.2	Optimization of the sequential injection system	49
	2.4.3.3	Linearity of calibration graph	50
	2.4.3.4	Precision	51
	2.4.3.5	Detection limit	51
	2.4.3.6	Accuracy of the proposed method	51
	2.4.3.7	Interference studies	51
	2.4.3.8	Validation method	52

CHAPTER III RESULTS AND DISCUSSION

3.1 Preliminary Studies of Spectrophotometric Determination of Selenium by 53Using Variamine Blue as Complexing Agent

xiii

			Page
3.1.1	Absorptio	on spectra	53
3.1.2	Chemica	l reaction	54
3.2 FIA S	Spectropho	tometric Determination of Selenium Using Variamine	54
Blue a	s Complex	sing Agent	
3.2.1	Optimiza	tion of the Flow System by Univariate Method	54
	3.2.1.1	Optimum wavelength	55
	3.2.1.2	Effect of potassium iodide concentration	56
	3.2.1.3	Effect of hydrochloric acid concentration	58
	3.2.1.4	Effect of ethanol concentration in Variamine Blue	59
		solution	
	3.2.1.5	Effect of Variamine Blue concentration	61
	3.2.1.6	Effect of sodium acetate concentration	62
	3.2.1.7	Effect of flow rate	64
	3.2.1.8	Effect of reaction coil (I) length	66
	3.2.1.9	Effect of reaction coil (II) length	67
	3.2.1.10	Effect of sample injection volume	69
3.2.2	Analytica	al Characteristics of the method	71
	3.2.2.1	Linear range S P e S e P V	71
	3.2.2.2	Precision of the flow injection system	73

xiv

			page
	3.2.2.3	Calibration curve	75
	3.2.2.4	Detection limit	77
	3.2.2.5	Interference studies	78
	3.2.2.6	Effect of masking agents and interference	84
	3.2.2.7	Determination of selenium in waters	87
3.3 SIA	Spectrophot	tometric Determination of Selenium Using Variamine	89
Blue	e as Complex	xing Agent	
3.3.	1 Study as	piration order	89
3.3.	2 Optimiza	ation of the sequential injection system by univariate	90
	method		
	3.3.2.1	Effect of potassium iodide concentration	91
	3.3.2.2	Effect of hydrochloric acid concentration	92
	3.3.2.3	Effect of ethanol concentration in Variamine Blue	94
		solution	
	3.3.2.4	Effect of Variamine Blue concentration	95
	3.3.2.5	Effect of sodium acetate concentration	97
	3.3.2.6	Effect of aspiration volumes of KI	98
	3.3.2.7	Effect of aspiration volumes of HCl	100
	3.3.2.8	Effect of aspiration volumes of VB	101

xv

			Page
	3.3.2.9	Effect of aspiration volumes of sample	103
	3.3.2.10	Effect of flow rate	104
	3.3.2.11	Effect of holding time	106
3.3.3	Analytica	al Characteristics of the method	108
	3.3.3.1	Linear range	108
	3.3.3.2	Precision of the sequentail injection system	110
	3.3.3.3	Calibration curve	111
	3.3.3.4	Detection limit	114
	3.3.3.5	Interference studies	115
	3.3.3.6	Effect of masking agents and interference	121
	3.3.3.7	Determination of selenium in waters	124
СНАРТЕВ	RIV CON	NCLUSIONS	126
REFEREN	ICES		129
THE RELI	EVANCY	OF THE RESEARCH WORK IN THAILAND	134
APPENDI	X A		136
APPENDE	ХВ		141
CURRICU	LUM VIT	AENTS RESERV	147

х	v	1

LIST OF TABLES

Table		Page
1.1	A brief review of FIA and SIA for the determination of selenium	28
2.1	The studied range for the optimization of experimental parameters	38
2.2	Preliminary experimental conditions of FIA for studying optimum	39
	wavelength of Se(IV) with VB	
2.3	Experimental protocol as shown in the FIAlab for windows software	46
2.4	The studied range for the optimization of experimental parameters	49
2.5	Preliminary experimental conditions of SIA for studying optimum	50
	concentration of VB	
3.1	Peak height at various wavelengths	55
3.2	Effect of KI concentrations on the sensitivity	57
3.3	Effect of HCl concentrations on the sensitivity	58
3.4	Effect of concentrations of ethanol on the sensitivity	60
3.5	Effect of concentrations of Variamine Blue on the sensitivity	61
3.6	Effect of concentrations of CH ₃ COONa on the sensitivity	63
3.7	Effect of flow rates on the sensitivity	65
3.8	Effect of reaction coil (I) lengths on the sensitivity	66

xvii

•	٠	٠
XV1	1	1

Table		Page
3.9	Effect of reaction coil (II) lengths on the sensitivity	68
3.10	Effect of sample injection volumes on the sensitivity	69
3.11	Optimum conditions for selenium determination	71
3.12	Linearity of selenium determination	72
3.13	Precision verification using standard 0.20 mg L ⁻¹ selenium standard	74
	solution	
3.14	ΔPeak height for calibration curve	75
3.15	Interference studies for 1.00 mg L ⁻¹ selenium standard solution by FIA	79
	method	
3.16	Summary of interference effects of some ions on the response obtained	83
	from selenium 1.00 mg L ⁻¹	
3.17	Effect of masking agent for mask Fe^{2+} , Fe^{3+} Cu^{2+} and NO_2^- on the	84
	response obtained from selenium 1.00 mg L^{-1}	
3.18	Determination of selenium in water samples by FIA method	87
3.19	Comparative determination of selenium in water samples by proposed	88
	FIA method and ICP-MS	
3.20	Sensitivity at various aspiration orders	90
3.21	Effect of various concentrations of KI on the sensitivity	91
3.22	Effect of various concentrations of HCl on the sensitivity	93

xix

Table		Page
3.23	Effect of various concentrations of ethanol on the sensitivity	94
3.24	Effect of various concentrations of VB in 30% ethanol on the sensitivity	96
3.25	Effect of various concentrations of CH ₃ COONa on the sensitivity	97
3.26	Effect of various aspiration volumes of 2.0 %(w/v) of KI on the sensitivity	99
3.27	Effect of various aspiration volumes of 0.4 mol L ⁻¹ of HCl on the	100
	sensitivity	
3.28	Effect of various aspiration volumes of 100 mg L ⁻¹ of VB in 30 % ethanol	102
	on the sensitivity	
3.29	Effect of various aspiration volumes of sample on the sensitivity	103
3.30	Effect of various flow rates on the sensitivity	105
3.31	Effect of various holding times on the sensitivity	106
3.32	Optimum conditions for selenium determination	108
3.33	Linearity of selenium determination	109
3.34	Precision verification using various concentrations of selenium standard	111
3.35	ΔPeak height for calibration curve	112
3.36	Interference studies for 1.00 mg L ⁻¹ selenium standard solution by SIA method	116
3.37	Summary of interference effects of some ions on the response obtained	120
	from selenium 1.00 mg L^{-1} by SIA method	

Table		Page
3.38	Effect of masking agent for mask Fe^{2+} , $Fe^{3+} Cu^{2+}$ and NO_2^- the response	121
	obtained from selenium 1.00 mg L ⁻¹	
3.39	Determination of selenium in water samples by SIA method	124
3.40	Comparative determination of selenium in water samples by proposed SIA	125
	method and ICP-MS	
4.1	Comparison between FIA and SIA procedure for selenium determination	128

ลิขสิทธิ์มหาวิทยาลัยเชียงใหม่ Copyright[©] by Chiang Mai University All rights reserved

XX

LIST OF FIGURES			
Figure		Page	
1.1	Stages of development and classification of automated solution analysis	1	
1.2	The basic components of FIA system	3	
1.3	General types of transport in closed tubes and the recorded profiles at	4	
	the detector		
1.4	Effect of convection and diffusion on concentration profile of analyses	5	
	at the detector		
1.5	Dispersed sample zone in flow system	5	
1.6	Relationship between the rollers of a peristaltic pump and	8	
	the pump tubes		
1.7	Sequence zone of SIA systems	11	
1.8	Structure of injected zones and concentration profiles as seen by	12	
	the detector		
1.9	Schematic flow diagram of a sequential injection analyzer	14	
1.10	Dispersed sample zones of SIA system	16	
1.11	Forward and reversal flow of SIA system	19	
1.12	The chemical structure of Variamine Blue	29	
2.1	Flow injection system for the determination of selenium	37	
2.2	SIA manifold for the determination of selenium in water samples	44	

xxi

	٠	٠
XX	1	1

Figure		Page
2.3	The SIA system for determination of selenium	44
2.4	The SIAgrams obtained by mean of the developed software	45
2.5	FIAlab 5.0 for windows software	45
3.1	Absorption Spectra of VB, Se(IV)-HCl-KI and Se(IV)-HCl-KI-VB	53
	complexs against water	
3.2	The reaction between Se(IV) and Variamine Blue	54
3.3	ΔPeak height at various wavelengths	56
3.4	Relationship between concentrations of KI and sensitivity for Se(IV)	57
	determination $(0.01 - 0.90 \text{ mg L}^{-1})$	
3.5	Relationship between concentrations of HCl and sensitivity for Se(IV)	59
	determination $(0.01 - 0.90 \text{ mg L}^{-1})$	
3.6	Relationship between concentrations of ethanol in VB solution	60
	and sensitivity for Se(IV) determination $(0.01 - 0.90 \text{ mg L}^{-1})$	
3.7	Relationship between concentrations of VB solution and sensitivity of	62
	the propose method	
3.8	Relationship between concentrations of CH ₃ COONa and sensitivity of	64
	the propose method	
3.9	Relationship between flow rates and sensitivity of the propose method	65

Figure		Page
3.10	Relationship between reaction coil (I) lengths and sensitivity of the	67
	propose method	
3.11	Relationship between reaction coil (II) lengths and sensitivity of the	68
	propose method	
3.12	Relationship between sample injection volumes and sensitivity of the	70
	propose method	
3.13	Relationship between Δ peak height and concentration of selenium	73
3.14	Calibration signal of FIA spectrophotometric determination of selenium	76
	$0.05 - 2.50 \text{ mg L}^{-1}$	
3.15	The Calibration curve of FIA spectrophotometric determination of	76
	selenium $0.05 - 2.50 \text{ mg L}^{-1}$	
3.16	Relationship between various concentrations of KI and sensitivity of the	92
	SIA method	
3.17	Relationship between various concentrations of HCl and sensitivity of	93
	the SIA method	
3.18	Relationship between various concentrations of ethanol in VB solution	95
	and sensitivity of the SIA method	
3.19	Relationship between various concentrations of VB in 30% ethanol	96
	solution and sensitivity of the SIA method	

xxiii

Figure		Page
3.20	Relationship between concentrations of CH ₃ COONa on the sensitivity	98
	of the SIA method	
3.21	Relationship between various aspiration volumes of 2.0 % (w/v) of KI	99
	on the sensitivity of the SIA method	
3.22	Relationship between various aspiration volumes of 0.40 mol L ⁻¹ of HCl	101
	on the sensitivity of the SIA method	
3.23	Relationship between various aspiration volumes of 100 mg L^{-1} of VB	102
	in 30% ethanol on the sensitivity of the SIA method	
3.24	Relationship between various aspiration volumes of sample on the	104
	sensitivity of the SIA method	
3.25	Relationship between various flow rates on the sensitivity of	105
	the SIA method	
3.26	Relationship between various holding times on the sensitivity of	107
	the SIA method	
3.27	Relationship between Δ peak height and concentration of selenium	110
3.28		113
	$0.01 - 2.50 \text{ mg L}^{-1}$	
3.29	The Calibration curve of SIA spectrophotometric determination of selenium	113
	$0.01 - 2.50 \text{ mg L}^{-1}$	

xxiv

ABBREVIATIONS AND SYMBOLS

AAS	atomic absorption spectroscopy
AFS	atomic fluorescence spectroscopy
AU	absorbance unit
FIA	flow injection analysis
HG	hybrid generation
h	hour
i.d.	inner diameter
in.	inch
L	liter
LOD	limit of detection
LOQ	limit of quantitation
M	^{molar} วิทยาลัยเชียงใหม่
mg	milligram
min	minute Chiang Mai University
mL	milliliter S r e s e r v e o
mm	millimeter
o.d.	outer diameter

xxv

		٠
vv	71	1
ΛI	x v	T

PE	polyethylene
PTFE •	polytetrafluoroethylene
x	mean
P.H.	peak height
RSD	relative standard deviation
SD	standard deviation
S	second
SIA	sequential injection analysis
v/v	volume by volume
w/v	weight by volume
μL	microliter
mol L ⁻¹	mole/liter
UV-VIS	ultraviolet visible spectrophotometry
ICP-MS	the inductively coupled plasma - mass spectrometer

ลิขสิทธิ์มหาวิทยาลัยเชียงใหม่ Copyright[©] by Chiang Mai University All rights reserved