TABLE OF CONTENTS

	Page
ACKNOWLEDGEMENTS	iii
ABSTRACT (ENGLISH)	iv
ABSTRACT (THAI)	vi
LIST OF TABLES	xiii
LIST OF FIGURES	xvi
ABBREVIATIONS AND SYMBOLS	xxii
CHAPTER 1 INTRODUCTION	
1.1 Phenolic Compounds	1
1.2 Seaweeds	5
1.2.1 Classification	6
1.2.1.1 Phaeophyceae: Brown Algae	6
1.2.1.2 Chlorophyta: Green Algae	8
1.2.1.3 Rhodophyta: Red algae	9
1.2.2 Seaweed uses and utilization	10
1.2.3 Nutritional value	-11
1.3 High Performance Liquid Chromatography	17
1.3.1 Chromatographic theory	17
1.3.2 Instrumentation CONTRACT	220
1.3.2.1 Mobile phase	23
1.3.2.2 Stationary phase	25
1.3.2.3 Detectors for HPLC	26

	Page
1.4 The Scope and Aims of This Research	47
CHAPTER 2 EXPERIMENTAL	
2.1 Apparatus and Chemicals	48
2.1.1 Apparatus	48
2.1.2 Chemicals	49
2.1.3 Materials	50
2.2 Preparation of the Solutions	50
2.2.1 Preparation of phenolic compounds standard	50
stock solutions	
2.2.2 Preparation of mobile phase for analysis of	50
phenolic compounds	
2.3 Extraction by Solvent Extraction	51
2.3.1 Optimization of solvent	51
2.4 Determination of Total Phenolic Compound Content	52
2.5 Determination of Antioxidant Activity Using	52
DPPH Radical Scavenging Method	
2.6 Liquid Chromatographic Analysis	53
2.6.1 Separation of phenolic compounds	55
2.6.1.1 Optimization of HPLC conditions	55
2.6.1.2 Detection limit	58
2.6.1.3 Precision	58
2.6.1.4 Recovery test	59

		Page	
2.7	Confirmation of Phenolic Compounds by LC-ESI-MS	60	
	and LC-ESI-MS/MS		
	2.7.1 Optimization of electrospray ionization conditions	61	
	2.7.1.1 Optimization of fragmentor voltage in negative	61	
	ionization mode		
	2.7.1.2 Optimization of capillary voltage	62	
	2.7.1.3 Optimization of drying gas temperature	62	
	2.7.1.4 Optimization of drying gas flow rate	62	
	2.7.1.5 Optimization of nebulizer pressure	62	
	2.7.2 Optimization of MS/MS conditions	63	
2.8	Determination of Phenolic Compounds in Seaweed Samples	65	
	2.8.1 Quantitative analysis	65	
	2.8.2 Identification of phenolic compounds in seaweed samples	65	

CHAPTER 3 RESULTS AND DISCUSSION

3.1 Extraction of Phenolic Compounds from Seaweeds	66
3.2 Determination of Total Phenolic Compound Conten	nt 67
3.3 Determination of Antioxidant Activity Using	69
DPPH Radical Scavenging Method	
3.4 Separation of Phenolic Compounds	erve ₇₃ 0
3.4.1 Optimization of HPLC condition	73
3.4.1.1 Detection wavelength	73
3.4.1.2 Effect of type and mobile phase of	composition 77

3.4.1.3 Effect of type and concentration of acid	78
3.4.1.4 Effect of mobile phase flow rate	83
3.4.2 Summary of the optimum HPLC condition	86
3.4.3 Precision	87
3.4.4 Detection limit	92
3.4.5 Recovery test	96
3.4.6 Determinations of phenolic compounds in	99
real seaweed samples using HPLC-UV	
3.5 Confirmation of Phenolic Compounds by LC-ESI-MS	105
and LC-ESI-MS/MS	
3.5.1 Optimization of electrospray ionization mass spectrometry	105
(ESI-MS) parameters for analysis of the phenolic compound	
standards	
3.5.1.1 Fragmentor voltage in negative ionization mode	105
3.5.1.2 Capillary voltage in negative ionization mode	107
3.5.1.3 Drying gas temperature in negative ionization mod	e109
3.5.1.4 Drying gas flow rate in negative ionization mode	110
3.5.1.5 Nebulizer pressure in negative ionization mode	112
3.5.2 Confirmation of phenolic compounds in seaweed extracts	114
using LC-ESI-MS	
3.5.3 Confirmation of phenolic compounds using LC-ESI-MS/MS	118
3.5.3.1 Optimization of collision energy for	118

the identification of gallic acid

Page

		Page
3.5.3.2	Optimization of collision energy for	119
	the identification of catechin	
3.5.3.3	Optimization of collision energy for	120
	the identification of epicatechin	
3.5.3.4	Optimization of collision energy for	122
	the identification of caffeic acid	
3.5.3.5	Optimization of collision energy for	123
	the identification of rutin	
3.5.3.6	Optimization of collision energy for	124
	the identification of quercetin	
CHAPTER 4 CONCLUSIO	N	127

130

137

REFERENCES	
CURRICULUM VITAE	

LIST OF TABLES

Ta	ble	Page
1.1	Nutritional values of Irish Sea-vegetables and	12
	Irish Sea-vegetable aquaculture	
1.2	Properties of some mobile phases in LC	24
1.3	Commonly used bonded phases	26
1.4	Characteristics of chromatographic detectors	28
2.1	List of chemicals used, their purity grade and suppliers	49
2.2	The gradient elution program of three series of mobile phase compositions	56
2.3	The gradient elution program of mobile phase compositions	57
2.4	Concentration of phenolic compounds in standard mixtures	58
	for determination of detection limit	
2.5	Concentration of phenolic compounds in standard mixtures	59
	for determination of repeatability, reproducibility and recovery test	
3.1	Total phenolic content ($\mu gGAE/g DW$) and IC ₅₀ (mg/L)	71
	of seaweed samples extracts (n=3)	
3.2	Maximum absorption wavelength (λ_{max}) of phenolic compound standards	74
3.3	Peak areas and detector response of phenolic compound standards	76
	detected at three different wavelengths	
3.4	Retention times and peak areas of phenolic compounds at	e 79
	varied concentrations of phosphoric acid in water	
3.5	Retention times and peak areas of phenolic compounds at	81
	varied concentrations of acetic acid in water	

Table	Page
3.6 Peak areas of phenolic compounds at various flow rates	84
3.7 Repeatability of the retention time of each phenolic compound	88
3.8 Repeatability of the peak area of each phenolic compound	89
3.9 Reproducibility of the retention time of each phenolic compound	90
3.10 Reproducibility of the peak area of each phenolic compound	91
3.11 Peak areas of phenolic compounds at various concentrations	93
for determination of LOD and LOQ	
3.12 Summary of limits of detection (LOD) and limits of quantification (LOQ)	96
of phenolic compounds	
3.13 Peak areas of sample blank (unspiked) and spiked sample obtained by	97
adding standard phenolic compounds at various concentrations for	
determination of percentage recovery	
3.14 The percentage recovery of extraction for seaweed samples $(n=3)$	98
3.15 Amounts of phenolic compounds in seaweed samples (mean <u>+</u> SD ; n=3)	103
3.16 MS information and ion counts of quercetin at varied fragmentor voltages	106
in negative ionization mode	
3.17 MS information and ion counts of quercetin at varied capillary voltages	108
in negative ionization mode	
3.18 MS information and ion counts of quercetin at varied drying gas	109
temperatures in negative ionization mode	
3.19 MS information and ion counts of quercetin at varied drying gas flow rates	111
in negative ionization mode	

Table		Page
3.20	MS information and ion counts of quecetin at varied nebulizer pressures	112
	in negative ionization mode	
3.21	The optimum ESI-MS condition for analysis of phenolic compounds	113
3.22	Summary of peaks and MS information obtained by HPLC-ESI-MS	114
	separation of standard phenolic compounds	
3.23	The optimum collision energies of each phenolic compound	125

ลิขสิทธิ์มหาวิทยาลัยเชียงใหม่ Copyright[©] by Chiang Mai University All rights reserved

LIST OF FIGURES

Figure	Page
1.1 Chemical structures of common phenolic compounds	3
1.2 Basic colours of seaweeds	5
1.3 Generalized chromatogram used to calculate chromatographic parameters	19
1.4 Effects of separation factor, capacity factor and efficiency on resolution	21
1.5 Schematic diagram of HPLC system	23
1.6 Schematic diagram of a mass spectrometer	30
1.7 Schematic of the mechanism of fast atom bombardment ionization	33
mass spectrometry (FAB)	
1.8 A schematic diagram of the mechanism of MALDI	34
1.9 Schematic of atmospheric pressure ionization devices: (a) APCI and (b) ESI	36
1.10 A schematic of the mechanism of ion formation in of APCI interface	38
1.11 A schematic of the mechanism of ion formation in ESI interface	39
1.12 A schematic of a quadrupole ion trap mass analyzer	41
1.13 A schematic of a sector mass spectrometer	42
1.14 Schematic of a quadrupole mass analyzer	43
1.15 A simplified schematic of a time of flight spectrometer and the principle	44
of the ion reflector (reflectron). (1) sample and sample holder, (2) MALDI	
ionization device by pulsed laser bombardment, (3) and (3') ions are formed	
between a repeller plate and an extraction grid (PD 5000V) then accelerated	d by
an other grid, (4) control grid, (5) microchannel collector plate and (6) signa	ıl
output. Below, a reflectron, which is essentially an electrostatic mirror	

Figure	Page
that is used to time-focus ions of the same mass but which have initially	
different energies. The widths of the peaks are of the order of 10^{-9} s and the	e
resolution ranges between 15 to 20,000.	
1.16 Schematic of a MS/MS mass analyzer	45
1.17 Schematic diagram of relative applicability of LC-MS techniques	47
compared with that of GC-MS	
2.1 Summary of experimental procedure for the determination of	54
phenolic compounds by HPLC	
2.2 Schematic diagram of the Agilent LC-MS electrospray spray	60
chamber setting	
3.1 Calibration curve of gallic acid used for calculating the total	68
phenolic compound content	
3.2 Total phenolic compound contents ($\mu gGAE/g DW$) of seaweed extract	68
obtained from various types of solvent extraction	
3.3 %DPPH radical scavenging activity of seaweeds extract obtained by	70
different solvent extractions	
3.4 IC_{50} values of seaweeds extract obtained by different solvent extractions	70
3.5 Total phenolic content (µgGAE/g DW) of seaweed sample extracts	72
3.6 IC ₅₀ (mg/L) of seaweed sample extracts	72
3.7 Absorption spectra of 5 ppm solution of phenolic compound standards	e ₇₄ 0

xvii

Figure	Page
3.8 Chromatograms of mixture of four phenolic compounds obtained using	77
various mobile phase compositions of methanol (MeOH), acetonitrile (AC	N),
and 0.1% (v/v) phosphoric acid in water in gradient elution programs:	
(a) Series 1, (b) Series 2 and (c) Series 3	
3.9 Relationship between concentration of phosphoric acid in water and	80
retention time of phenolic compounds	
3.10 Relationship between concentration of phosphoric acid in water and	80
peak area of phenolic compounds	
3.11 Relationship between concentration of acetic acid in water and	82
retention time of phenolic compounds	
3.12 Relationship between concentration of acetic acid in water and	82
peak area of phenolic compounds	
3.13 Chromatograms of mixture of six phenolic compounds obtained using	83
various mobile phase compositions of ACN-H ₂ O with the presence of:	
(a) 0.1% (v/v) phosphoric acid and (b) 0.1% (v/v) acetic acid in water	
3.14 Chromatograms of phenolic compounds obtained using acetonitrile and	85
0.1% (v/v) acetic acid in water at various flow rates: (a) 0.4 ml min ⁻¹ ;	
(b) 0.6 ml min ⁻¹ ; (c) 0.8 ml min ⁻¹ ; (d) 1.0 ml min ⁻¹ ; (e) 1.2 ml min ⁻¹	
Peak identification: (1) gallic acid, (2) catechin, (3) epicatechin;	
(4) caffeic acid, (5) rutin and (6) quercetin	
3.15 Calibration curve of gallic acid used for calculating the detection limit	94
3.16 Calibration curve of catechin used for calculating the detection limit	94
3.17 Calibration curve of epicatechin used for calculating the detection limit	94

Figure	Page
3.18 Calibration curve of caffeic acid used for calculating the detection limit	95
3.19 Calibration curve of rutin used for calculating the detection limit	95
3.20 Calibration curve of quercetin used for calculating the detection limit	95
3.21 Calibration curve used for calculating gallic acid concentration in seaweed samples	100
3.22 Calibration curve used for calculating catechin concentration in seaweed samples	100
3.23 Calibration curve used for calculating epicatechin concentration in seaweed samples	101
3.24 Calibration curve used for calculating caffeic acid concentration in seaweed samples	101
3.25 Calibration curve used for calculating rutin concentration in seaweed samples	102
3.26 Calibration curve used for calculating quercetin concentration in seaweed samples	102
3.27 Chromatograms of phenolic compounds in seaweed sample extracts obtained using acetonitrile and 0.1% (v/v) acetic acid in water	104
Peak identification: (1) gallic acid, (2) catechin, (3) epicatechin, (4) rutin and (5) quercetin	
3.28 TICs of quercetin at fragmentor voltage 60, 80, 100, 120, 140, 130, 140 and 160 V in negative ionization mode	e ₁₀₆
3.29 TICs of quercetin at capillary voltage 2000, 2500, 3000, 3500, 4000 and 4500 V in negative ionization mode	108

Figure	Page
3.30 TICs of quercetin at drying gas temperature 300, 310, 320, 330 and	109
340°C in negative ionization mode	
3.31 TICs of quercetin at drying gas flow rate 8, 9, 10 and 11 l min ⁻¹	111
in negative ionization mode	
3.32 TICs of quercetin at nebulizer pressure 20, 22, 24, 26, 28 and 30 psi	112
in negative ionization mode	
3.33 Total ion chromatogram (TIC) of phenolic compounds	115
(10 ppm of each phenolic compound)	
Peak identification: (1) gallic acid, (2) catechin, (3) epicatechin,	
(4) caffeic acid, (5) rutin and (6) quercetin	
3.34 Negative-ion ES mass spectra of phenolic compounds originating	116
from standard solution. (a) gallic acid, (b) catechin and (c) epicatechin	
3.35 Negative-ion ES mass spectra of phenolic compounds originating	117
from standard solution. (d) caffeic acid, (e) rutin, (f) quercetin	
3.36 Product ion mass spectra of gallic acid obtained by LC-ESI-MS/MS	119
(Q-TOF) of ion at m/z 169 using collision energy of (a) 10 V, (b) 15 V	
and (c) 20 V	
3.37 Product ion mass spectra of catechin obtained by LC-ESI-MS/MS	120
(Q-TOF) of ion at m/z 289 using collision energy of (a) 10 V, (b) 15 V	
and (c) 20 V S 1 C S C C V	
3.38 Product ion mass spectra of epicatechin obtained by LC-ESI-MS/MS	121
(Q-TOF) of ion at m/z 289 using collision energy of (a) 10 V, (b) 15 V	
and (c) 20 V	

Figure	Page
3.39 Product ion mass spectra of caffeic acid obtained by LC-ESI-MS/MS	122
(Q-TOF) of ion at m/z 179 using collision energy of (a) 10 V, (b) 15 V	
and (c) 20 V	
3.40 Product ion mass spectra of rutin obtained by LC-ESI-MS/MS (Q-TOF)	123
of ion at m/z 609 using collision energy of (a) 20 V, (b) 25 V and (c) 30 V	
3.41 Product ion mass spectra of quercetin obtained by LC-ESI-MS/MS	124
(Q-TOF) of ion at m/z 301 using collision energy of (a) 20 V, (b) 25 V	
and (c) 30 V	
3.42 Total ion chromatogram (TIC) of phenolic compounds	125
Peak identification: (1) gallic acid, (2) Catechin, (3) epicatechin,	
(4) caffeic acid, (5) rutin and (6) quercetin	

ลิขสิทธิ์มหาวิทยาลัยเชียงใหม Copyright[©] by Chiang Mai University All rights reserved

ABBREVIATIONS AND SYMBOLS

Α	absorbance
amu ang	atomic mass unit
CID	collision-induced dissociation
°C	degree celsius
DAD	diode array detector
DW	dry weight
e.g.	for example
ESI	electrospray ionization
et al.	and others
etc.	et cetera
eV	electron volt
FI	flow injection
g	gram
GAE	gallic acid equivalent
GC	gas chromatography
หริบหาวิ	plate height
HETP	height equivalent to a theoretical plate
HPLC	high performance liquid chromatography
_{Hz} right	hertz reserved
Ι	intensity
I.D.	internal diameter
i.e.	id est.; that is

IR	infrared
K	partition coefficient
k	capacity factor
kV	kilovolt
	liter
L	length of the column
LC	liquid chromatography
LOD	limit of detection
LOQ	limit of quantification
MS	mass spectrometry
MW	molecular weight
μg	microgram
μΙ	microliter
μm	micrometer
μΜ	micromolar
μs	microsecond
mg	milligram
mSUK191	milliliter
mint [©] by C	minuteng Mai University
m/z	mass to charge ratio
λ_{max}	maximum absorption wavelength
3	molar absorptivity
Ν	number of theoretical plates
n.d.	not detected

nm	nanometer
%	percent
ppm	part per million
P' 98	polarity index
POV	peroxide value
psi	pound per square inch
Q-TOF	hybrid quadrupole time-of-flight
RP	reversed-phase
R^2	correlation coefficient
RA	relative abundance
RI	refractive index
rpm	round per minute
R _s	resolution
RSD	relative standard deviation
SD	standard deviation
TIC	total ion chromatogram
t _R	retention time
a SUK199	separation factor
ε [°] by C	solvent strength ultraviolet
UV-VIS	ultraviolet-visible S e f V e o
V	volt
v/v	volume by volume
W	peak width