APPENDIX

APPENDIX A

List of chemicals and materials used in this study

All reagents used were of analytical grade or equivalent.

1. Chemicals were obtained from:

Sigma

Sodium chloride, DMEM medium, DMEM medium F12, fibronectin, laminin, type I collagen, bovine serum albumin, fetal calf serum, penicillin, streptomycin, trypsin, EDTA, TRIZMA-HCl, TRIZMA-Base, xylene, magnesium chloride, citric acid, X-gal (5-bromo-4-chloro-3-indosyl-β-D-galactopyranoside), dimethyl formamide (DMF), urea, potassium acetate, cyanoacetamide, calcium chloride, deferosamine mesylate, Triton X-100, paraformaldehyde, glyceraldehyde, acetaldehyde, cesium chloride, low melting agarose,

Nacalai

Hydrochloric acid, sodium hydroxide, sulfuric acid, ethanol, methanol, glutaraldehyde, dimethyl sulfoxide (DMSO), formaldehyde, potassium ferricyanide, potassium ferrocyanide, potassium chloride, potassium phosphate dibasic, potassium phosphate monobasic, butanol, N-methylmaleimine (NEM), phenylmethylsulfonylfluoride (PMSF), sodium acetate, acetone, distilled water HPLC grade, tetra-N-butylammonium hydroge

nsulfate, acetonitrile, hydrogen peroxide, ammonium persulfate, TEMED, glycerol

Amersham

DEAE sephacel

Seikagaku

Hyaluronan, hyaluronan binding protein (HABP), standard chondroitin sulfate derived disaccharides (CStri, CSE, CSD, CS6, CS4, CS0), biotinylated HABP

Dako

Mounting solution, mouse-IgG blocking solution, diaminobenzidine (DAB), hematoxylin, formalin, 10% goat serum

KPL

3,3,5,5-tetramethyl benzidine (TMB)

Takara

Extaq DNA polymerase buffer, dNTP

Biosource

Alamar blue dye

Roche Applied Science

Epidermal growth factor (EGF), transforming growth factor-β1 (TGF-β1)

ht[©] by Chiang Mai University rights reserved

Cell Signaling Technology

PD98059 (MEK1 inhibitor)

2. Antibodies were obtained from:

Cell Signal Technology

Anti p53, anti p21, anti ERK1/2, anti phospho-ERK1/2, anti p38, anti phospho-p38, anti JNK, anti phospho-JNK, anti rabbit IgG-HRP, anti goat IgG-HRP, anti phospho-epidermal growth factor receptor (EGFR), anti epidermal growth factor receptor

KPL

Biotinylated antimouse IgG

Cedar Lane

Anti CD44

Molecular Probe

Alexafluoro594-conjugated antibody

Sigma

Anti actin

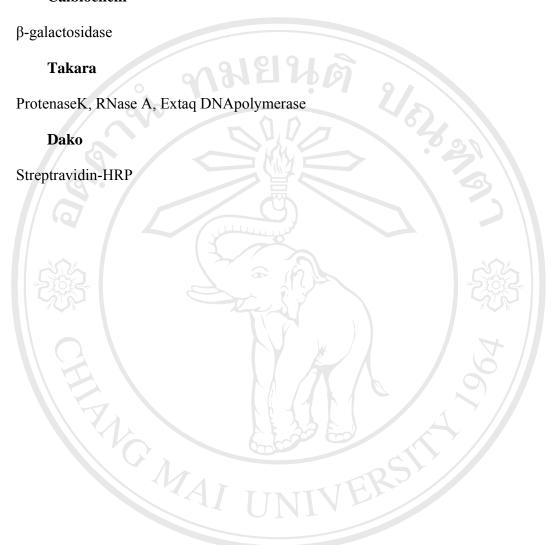
LSL

Anti collagen type I

Chemicon

Anti mouse β1 subunit integrin monoclonal antibody

3. Enzymes were obtained from:


Sigma

DNase, Bovine testicular hyaluronidase

Seikagaku

Streptococcus hyaluronidase

Calbiochem

APPENDIX B

List of Equipments used in this studied

Instrument angle 186	Model
High Performance Liquid Chromatography assist fl	uorescent detector Alliance
Vortex mixer	Vortex-Genie2
Refrigerated centrifuge	Kubota 1720
Micro autopipette	Gilson
PCR machine	Applied Biosystem
DNA sequencer	Applied Biosystem
Real time-RT PCR machine	Applied Biosystem
Florescent microplate reader	Versa Max
Spectrophotometric microplate reader	Versa Max
Analytical Balance	Sartorious
Magnetic stirrer	Corning
Light microscope	Olympus
Fluorescent microscope	Olympus
Confocal laser induce fluorescent microscopes	ZEISS LSM 5 PASCAL
Ultracentrifuge	Kubota KR-2000T
CO ₂ incubator	Napco 6200
Heat block incubator	Fastgene, EYELA MG-2000
Water bath incubator	TAITEC

TOMY SS-320

Autoclave

Microcentrifuge Eppendorf 5415-D pH meter Corning Speed vacuum concentrator Sarvant Biosafety cabinet Hitachi Leitz Cryosection machine Shaker incubator for bacterial culture TAITEC BR-15 UV light illuminator Al-C Epi-lightUV FA 2000 Gel Documentator Mitsubishi AP 9500/A Power supply for PAGE electrophoresis Nihon EIDO NC1010 Agarose gel electrophoresis machine Mupid 2X Millipore Peristaltic pump Olympus Camera Cell culture chamber slide **BD** Bioscience Plastic dish **Becton Dickinson** Cell culture dish Becton Dickinson Cell culture plate **Becton Dickinson**

ลิขสิทธิ์มหาวิทยาลัยเชียงใหม่ Copyright[©] by Chiang Mai University All rights reserved

Biotek

ELISA plate

APPENDIX C

Reagents and Buffers preparation

1. Reagents for cell culture

Complete DMEM medium

	DMEM medium		500	ml
	Fetal Calf Serum		10	ml
	Pennicillin/Streptomy	vein	5.5	ml
Phospha	te Buffer Saline			
	NaCl		80	g
	KCl		2	g
	Na ₂ HPO ₄		14.4	g
	KH ₂ PO ₄		2.4	g

All are dissolved to 1 L of distilled water, was adjusted pH to 7.4. The solution will be diluted 10 times with distilled water to achieve working PBS buffer.

2. Reagents for electrophoresis

Tris Buffer Saline (TBS) buffer for agarose gel electrophoresis

$C_4H_{11}NO_4$		24.2	g	
NaCl		80	g	

All are dissolved to 1 L of distilled water, was adjusted pH to 7.6 with concentrated HCl. The solution will be diluted 10 times with distilled water to

achieve working TBS buffer.

3. Reagents for ELISA

3.1 Tris Incubation buffer

BSA		1.0	g
Tween-20		1.0	ml
NaCl		8.77	g
Tris-HCl		1.21	g

All reagents were dissolved in 900 ml of distilled water, were adjusted pH to 7.4 and made up volume to 1 L. Stored at 4°C.

3.2 Citrate phosphate buffer

Citric acid monohyd	lrate	10.30	g
Na ₂ HPO ₄ ·3H ₂ O		18.16	g

All reagents were dissolved in 900 ml of distilled water, were adjusted pH to 5.0 and made up volume to 1 L, and stored reagent at 4°C.

APPENDIX D

Table 1. Chondroitin sulfate disaccharide composition of versican and aggrecan. ND, not determined

	Versican	Aggrecan
	%	
Δ di 0 S	71	25
∆di4S	28	70
∆di6S	ND	1 5
ΔdiS_E ΔdiS_D	ND	0.4
ΔdiS_{D}	ND	ND
∆diTriS	ND	0.2

PUBLICATION FOR THESIS

- 1. Versican/PG-M aggregates in cartilage: identification and characterization. Kazu Matsumoto, Nobuhiro Kamiya, **Keittisak Suwan**, Fukiko Atsumi, Katsuji Shimizu, Tamayuki Shinomura, Yoshihiko Yamada, Koji Kimata, and Hideto Watanabe. *J. Biol. Chem.* 2006, 281(26):18257-63
- Alteration of chondroitin sulfate composition on proteoglycan produced by knock-in mouse embryonic fibroblasts whose versican lacks the A subdomain. Keittisak
 Suwan, Sonoko Hatano, Hideto Watanabe, Peeraphan Pothacharoen, Prachya Kongtawelert. Upsala Journal of Medical Sciences, 2009 In Press.
- Versican/PG-M assembles hyaluronan into the extracellular matrix and inhibits CD44-mediated signaling toward premature senescence in embryonic fibroblasts.
 Keittisak Suwan, Kanyamas Choocheep, Sonoko Hatano, Prachya Kongtawelert, Koji Kimata, and Hideto Watanabe. *J. Biol. Chem.* 2009, 284(13): 8596-8604.

CURRICULUM VITAE

Name Keittisak Suwan

Sex Male

Nationality Thai

Marital status Single

Date of birth 16 November, 1978

Birth place Chiang Mai

Home address 106 Moo 4, Tambol Papai, San Sai district, Chiang Mai,

50210, Thailand

Tel (Home) 053-397019

Tel (Laboratory) 053-945325 ext 217

Education

1990- 1996 Secondary and High school at Kawila Wittayalai,

Chiang Mai, Thailand

1996-2000 B.Sc. (Biochemistry and Biochemical Technology), Department of

Chemistry, Faculty of Science, Chiang Mai University, Chiang

Mai, Thailand

2000-2004 M.Sc. (Biochemistry), Department of Biochemistry, Faculty of

Medicine, Chiang Mai University, Chiang Mai, Thailand

2004-2009 Ph.D. student in Department of Biochemistry, Faculty of Medicine,

Chiang Mai University, Chiang Mai, Thailand

Research experiences

 November 2004 – September 2006 Fellowship Researcher in Institute for Molecular Science of Medicine, Aichi Medical University, Aichi, Japan

Presentation and Publication

- Poster presentation: Keittisak Suwan, Sininart Santiteerakul, Viboon Rattanapanon.
 Macrobiotic consuming behavior of Chiang Mai people. The 5th International Conference on Dietary Assessment Methods, 26-29 January 2003, Chiang Rai, Thailand
- Poster presentation: Keittisak Suwan, Sonoko Hatano, Koji Kimata, Hideto Watanabe.
 Knock-in fibroblasts whose versican/PG-M lacks the A sub-domain. The 78th Annual Meeting of the Japanese Biochemical Society, 19-22 Sep 2005, Kobe, Japan
- 3. Poster presentation: Keittisak Suwan, Sonoko Hatano, Koji Kimata, Hideto Watanabe. Analysis of fibroblasts whose versican/PG-M lacks the A subdomain. The 38th Annual Meeting of The Japanese Society for Connective Tissue research. 11-12 May 2006, Gunma, Japan.
- 4. Poster presentation: Sonoko Hatano, Keittisak Suwan, Koji Kimata, Hideto Watanabe. Lack of the A subdomain in versican/PG-M causes the cell immortality and tumorigenesis. The 65th Annual Meeting of the Japanese Cancer Association. 28-30 September 2006, Yokohama, Japan.

- 5. Poster presentation: Lack of the A subdomain in versican/PG-M causes the cell immortality and tumorigenesis. The Asian Pacific Organization for Cancer Research (APOCP) Satellite Meeting, 6-7 November 2006, Chiang Mai, Thailand.
- 6. Poster presentation: Characterization of the A subdomain less versican/PG-M fibroblasts. RGJ Seminar series LII, 4 September 2007, Chiang Mai, Thailand.

