TABLE OF CONTENT

1.2.10 Oncogene-induced senescence	52
1.2.11 Senescence and tumorigenesis	57
1.2.12 CD44 structure and interactions	58
1.2.13 CD44 functions and relating signals	62
1.3 Objective	68
CHAPTER II MATERIALS AND METHODS	
2.1 Materials	69
2.2 Methods	
2.2.1 Preparation methods	
2.2.1.1 Versican Isolation	69
2.2.1.2 WT and A subdomain less versican mouse	70
embryonic fibroblasts culture preparation	
2.2.2 Analytical methods	
2.2.2.1 Cell proliferation assay	72
2.2.2.2Colony formation in soft agarose gel	73
2.2.2.3Tumor growth <i>in vivo</i>	73
2.2.2.4 β-galactosidase staining	73
2.2.2.5Immunocytochemistry and immunohistochemistry	S ⁷⁴
2.2.2.6 Sodium dodecyl sulfate-polyacrylamide gel	77
Electrophoresis (SDS-PAGE) and immunoblot analysis	
2.2.2.7 Chondroitin sulfate chain analysis	79
2.2.2.8 Real-time reverse transcription-polymerase	81
chain reaction (real-time RT-PCR)	

2.2.2.9Sandwich ELISA for hyaluronan content determination	82
2.2.2.10 Cell adhesion assay	83
2.2.2.11 Attachment assay	83
2.2.2.12 Protein assay	84
2.2.2.13 Collagen assay	84
2.2.2.14 Treatment with an anti-CD44 antibody	85
and hyaluronidase	
2.2.2.15 Treatment with a hyaluronan fragments	86
CHAPTER III RESULTS	
3.1 Cell behavior and morphology	
3.1.1 Fibroblasts culture established from $Cspg2^{\Delta 3/\Delta 3}$ embryo	87
3.1.2 $Cspg2^{\Delta 3/\Delta 3}$ embryo fibroblasts expressed low proliferation	94
rate and premature senescence characteristic at early passages	
3.1.3 $Cspg2^{\Delta 3/\Delta 3}$ fibroblasts escaped from senescence, and	99
expressed high proliferation rate after growing more than ten pas	sages
3.1.4 The transformed $Cspg2^{\Delta 3/\Delta 3}$ fibroblasts were malignant cells	104
3.1.5 Adhesion ability of the transformed $Cspg2^{\Delta 3/\Delta 3}$ fibroblasts	111
3.1.6Attaching ability of the transformed $Cspg2^{\Delta 3/\Delta 3}$ fibroblasts	S ₁₁₃
3.1.7 Exogenous versican adding to the $Cspg2^{\Delta 3/\Delta 3}$ fibroblasts	115
did not recover cell proliferation rate to the WT fibroblasts level	
3.2 Extracellular matrix proteins expression	
3.2.1 Versican expression decreased in the $Cspg2^{\Delta 3/\Delta 3}$ fibroblasts	118

х

the $Cspg2^{\Delta 3/\Delta 3}$ fibroblasts

3.2.3 Chondroitin sulfate content in versican from the 122 $Cspg2^{A3/A3}$ fibroblasts culture was decreased in the ECM

but increased in cultured medium

3.2.4 HA deposition is altered in levels and structure in the 126 $Cspg2^{\Delta 3/\Delta 3}$ fibroblasts

3.2.5 Expression of fibronectin, laminin in the $Cspg2^{\Delta 3/\Delta 3}$ 129

and the transformed $Cspg2^{\Delta 3/\Delta 3}$ cell cultures are comparable to the WT

3.2.6 Collagen expression decreased in the $Cspg2^{\Delta 3/\Delta 3}$, but 131

recovered in the transformed $Cspg2^{\Delta 3/\Delta 3}$ cells culture

3.3 Signaling pathway elucidation

- 3.3.1p53 protein was upregulated in the Cspg2^{A3/A3} fibroblasts, 134 but abrogated in the transformed Cspg2^{A3/A3} fibroblasts
 3.3.2Phosphorylated ERK1/2 was upregulated in the 135 Cspg2^{A3/A3} fibroblasts, but downregulated in the transformed Cspg2^{A3/A3} fibroblasts
 3.3.3Phosphorylated ERK1/2 was upregulated by upstream 137 molecules of the MAPK signal transduction cascade
 - 3.3.4 Anti-CD44 suppressed ERK1/2 phosphorylation in the 138 $Cspg2^{\Delta3/\Delta3}$ fibroblasts culture

3.3.5HA-CD44 interaction mediated ERK1/2 phosphorylation	on 141
in the hyaluronidase treated WT fibroblasts culture	
3.3.6 β 1-integrin and EGF receptor did not involve ERK1/2	143
phosphorylation in the $Cspg2^{\Delta 3/\Delta 3}$ fibroblasts culture	
3.3.7 Exogenous HA treatment enhanced phosphorylation of	f 144
ERK1/2	
CHAPTER IV DISCUSSION	146
REFERENCES	5 154
APPENDIX	177
CURRICULUM VITAE	187
ALUNTERST	

ลิขสิทธิ์มหาวิทยาลัยเชียงใหม่ Copyright[©] by Chiang Mai University All rights reserved

xii

LIST OF TABLES

Table			
1	Concentration of hyaluronan in tissues and tissue fluids	41	
2	Chondroitin sulfate derived disaccharide composition in proteoglycan	124	
	extracted from cell layers and cultured media of fibroblasts.		
3 - 5	Chondroitin sulfate disaccharide composition of versican	187	
	and aggrecan.		

ลิขสิทธิ์มหาวิทยาลัยเชียงใหม่ Copyright[©] by Chiang Mai University All rights reserved

LIST OF FIGURES		
Figu	re	Page
1	Structure of extracellular matrix composes of several extracellular molecules.	7
2	The modular organization of Hyaluronan Binding Proteins.	10
3	Schematic representation of the human versican gene and	16
	intron/exon organization.	
4	A schematic of versican structure, composing of core protein	17
	(G1, CS chain binding region, and G3 domain).	
5	The interaction of versican with other molecules.	26
6	Schematic diagram of interaction of the G1 domain of versican	27
	(Ver), link protein (LP), and hyaluronan (HA).	
7	The chemical structure of hyaluronan.	39
80	Schematic of CD44-HA interactions.	44
9 V	Multiple pathways mediate Oncogene-induced senescence.	56
10	Schematic diagram of the structure of the CD44 gene.	66
11	CD44 protein structure.	67
12	The genomic organization of $Cspg2^{\Delta 3/\Delta 3}$, the targeting vector,	88
	and the mutated allele by homologous recombinant.	
13	Phenotype of Cspg2 gene modified mouse and embryo.	89

14	Agarose Gel electrophoresis of PCR products from mice embryo tails.	91
15	Morphology of the WT and $Cspg2^{\Delta 3/\Delta 3}$ fibroblasts at passages 5.	93
16	Proliferation rates of MEFs at different phenotype,	95
	measured by BrdU incorporation ELISA assay.	
17	Proliferation rates of MEFs at different phenotype,	96
	measured cell counting assay.	
18	Staining of β -galactosidase activity in fibroblasts culture.	98
19	Proliferation rates of MEFs in each passage.	102
20	Morphology of MEFs in each passage.	103
21	Agarose Gel electrophoresis of PCR products from	104
	fibroblasts culture.	
22	Colony formation assay. Fibroblasts were grown on 7%	106
	soft agarose gel culture.	
23	The tumor formation in BALB/c nu/nu mice.	108
24	Hematoxylin & Eosin histological staining of tumor isolated	110
	from mice which injected with the $Cspg2^{\Delta 3/\Delta 3}$ fibroblasts	
25	Adhering ability of the $Cspg2^{\Delta 3/\Delta 3}$ fibroblasts to various	112
	extracellular matrix molecules.	
26	Attaching ability of fibroblast.	114
27	Dot blot analysis of versican and aggrecan which extracted	116
	from mice brain.	
28	Proliferation rate of WT, $Cspg2^{\Delta 3/\Delta 3}$, and transformed	117

 $Cspg2^{\Delta 3/\Delta 3}$ fibroblasts.

29	Expression level of versican mRNA in wild type, $Cspg2^{\Delta 3/\Delta 3}$ (mortal)	119
	and transformed $Cspg2^{\Delta 3/\Delta 3}$ (IM1, IM2, IM3) fibroblasts.	
30	Localization of versican molecule in ECM of the WT, the $Cspg2^{\Delta 3/\Delta 3}$,	121
	and the transformed $Cspg2^{\Delta 3/\Delta 3}$ fibroblasts.	
31	Chondroitin sulfate derived disaccharide content of extracted	125
	proteoglycan from cell layers cultured media and total content	
	from cell layers and cultured media.	
32	Localization of hyaluronan molecule in ECM of the WT,	127
	the $Cspg2^{\Delta 3/\Delta 3}$, and the transformed $Cspg2^{\Delta 3/\Delta 3}$ fibroblasts.	
33	Content of hyaluronan in cell layers, and cultured media	128
	of fibroblasts cultures.	
34	Localization of fibronectin (FN) and laminin (LN) in ECM of	130
	wild type (WT), the $Cspg2^{\Delta 3/\Delta 3}$ (mortal), and the transformed	
	$Cspg2^{\Delta 3/\Delta 3}$ (IM) fibroblasts.	
35	Expression of fibronectin (FN) and laminin (LN) from	131
	fibroblast cultures.	
36	Localization of type I collagen in ECM of the WT,	132
	the $Cspg2^{\Delta 3/\Delta 3}$, and the transformed $Cspg2^{\Delta 3/\Delta 3}$ fibroblasts.	
37	Content of collagen in cell layers, and cultured media	133
	of fibroblasts cultures.	

38 Expression of p53 protein in the WT, the $Cspg2^{\Delta 3/\Delta 3}$, 135

and the transformed $Cspg2^{\Delta 3/\Delta 3}$.

39	Expression of MAPK signaling protein in (ERK1/2, p38, JNK)	136
	the WT, the $Cspg2^{\Delta 3/\Delta 3}$, and the transformed $Cspg2^{\Delta 3/\Delta 3}$.	
40	Effects of PD98059 and EGF to phosphorylation level of ERK1/2.	138
41	Effects of anti-CD44 treatment on phosphorylated ERK1/2.	140
42	Effects of hyaluronidase treatment on phosphorylation of	142
	ERK1/2 in the WT fibroblasts.	
43	Effects of combined treatment with hyaluronidase and anti-CD44.	142
44	Expression of integrin and phosphorylatedEGFR, the WT,	144
	the $Cspg2^{\Delta 3/\Delta 3}$, and the transformed $Cspg2^{\Delta 3/\Delta 3}$.	
45	Effects of exogenous HA on phosphorylation of ERK1/2.	145
46	A schematic diagram showing the mechanism underlying	147
	acquisition of the senescence and the immortality in the	
	$= -\sqrt{3}/\sqrt{3}$ at $= 1.1$	

Cspg2^{A3/A3} fibroblasts. Copyright[©] by Chiang Mai University All rights reserved

xvii

xviii

Hyaluronan Synthase

xix

HAS

Molar

XX

Phosphatidylinositol 3-kinase

PI3K

xxi

xxii

ลิขสิทธิ์มหาวิทยาลัยเชียงใหม่ Copyright[©] by Chiang Mai University All rights reserved

xxiii