Appendix A

Medium and solution preparation

A1) A mineral salt agar (Ralston and Vela, 1979)

The medium contained (g/l):

1 9	NaHCO ₃	0.125	g
	KH ₂ PO ₄	0.1	g
	NH ₄ Cl	0.07	g
	Na ₂ SiO ₃	0.02	g
	FeSO ₄ . 7H ₂ O	0.01	g
	MnCl ₂ . 4H ₂ O	0.007	g
ลินสิทร์	ZnSO ₄ . 7H ₂ O	0.0015	เชียงใหม
CIOCIII	Casamino acid	0.01	g
Copyrigh	Agar by Cl	nian _{5.00} Ma	ig University
AII	right	s re	served

Medium pH was adjusted to 8.0 with 1 N NaOH solution and was brought to boil to dissolve the agar completely. Aliquot the solution in 5 ml portions into vials and then sterilize by autoclaving at 121 °C for 15 minutes. After autoclaving, phenol

was added to a concentration of 0.2 g/l and the vials were left to solidify in a slanted position.

A2) A mineral salt broth (Ralston and Vela, 1979)

from 1	1.		/	/11	
The	medilim	contained	(σ)	/ 🗀	
1110	medium	Comanica	151	1,	٠.

NaHCO ₃	0.125	g
KH ₂ PO ₄	0.1	g
NH ₄ Cl	0.07	g
Na ₂ SiO ₃	0.02	g
FeSO ₄ . 7H ₂ O	0.01	g
MnCl ₂ . 4H ₂ O	0.007	g
ZnSO ₄ . 7H ₂ O	0.0015	g
Casamino acid	0.01	g

Medium pH was adjusted to 8.0 with 1 N NaOH solution before sterilization at 121 °C for 15 minutes. Filter sterilized phenol was added to the sterilized medium to a specificed concentration.

Copyright by Chiang Mai University

All rights reserved

A3) Yeast malt broth

The medium contained (g/l):

. พมยา	杨。	
peptone	5.0	g
yeast extract	3.0	g
malt extract	3.0	g
glucose	10.0	g
deionize water	1	L

The pH was adjusted to 8.0 with 1 N NaOH solution. Aliquot a specific volume into 500 ml Erlenmeyer flasks and sterilize at 121 °C for 15 minutes.

A4) Stock phenol solution

Stock phenol solution was prepared by dissolving 12 g phenol flakes in deionized water and diluted to 1 L. This solution was added to the cultivation medium to a specified concentration.

Appendix B

Chemical analyses

B) Phenol analysis (Greenberg et al., 1992)

B 1.1) Reagents

Prepare all reagents with deionzed water free of phenol and chlorine.

- a) Stock phenol solution: Dissolve 100 mg phenol in freshly boiled and cooled deionized water and dilute to 100 ml.
- b) Intermediate phenol solution: Dilute 1.00 ml stock phenol solution in freshly boiled and cooled deionized water to 100 ml (1 ml = 10 μg phenol). Prepare daily.

by Chiang Mai University

c) Standard phenol solution: Dilute 50.0 ml intermediate phenol solution to 500 ml with freshly boiled and cooled deionized water (1 ml = 1.0 μ g phenol). Prepare within 2 hours of use.

- d) Ammonium hydroxide (NH $_4$ OH) 0.5 N: Dilute 35 ml fresh, conc. NH $_4$ OH to 1 L with deionzied water.
- e) Phosphate buffer solution: Dissolve 104.5 g K_2HPO_4 and 72.3 g KH_2PO_4 in deionized water and dilute to 1 L. The pH should be 6.8.
- f) 4-aminoantipyrine solution: Dissolve 2.0 g 4-aminoantipyrine in deionized water and dilute to 100 ml. Prepare daily.
- g) Potassium ferricyanide solution: Dissolve $8.0 \, g$ $K_3Fe(CN)_6$ in deionzed water and dilute to $100 \, ml$. Filter if necessary. Store in a brown glass bottle. Prepare fresh weekly.
 - B 1.2) Apparatus
 - a) a spectrophotometer (Shimadzu 1601, Japan)

Copyright B 1.3) Procedure A la g h t s reserved

1) Place a portion of sample containing not more than $0.5~\mathrm{mg}$ phenol dilute to $100~\mathrm{ml}$, in a $250~\mathrm{ml}$ beaker.

- 2) Prepare a 100 ml deionzed water blank and a series of 100 ml phenol standards containing 0.1, 0.2, 0.3, 0.4 and 0.5 mg phenol.
 - 3) Treat sample, blank and standards as follows:
- 3.1) Add 2.5 ml 0.5N NH₄OH solution and immediately adjust to pH 7.9 ± 0.1 with phosphate buffer
- 3.2) Add 1.0 ml 4-aminoantipyrine solution, mix well, add 1 ml $K_3Fe(CN)_6$ solution and mix well
 - 3.3) After 15 minutes, transfer to a cell and read absorbance of samples and standards against the blank at 500 nm.

Construct a calibration curve by plotting absorbances against mg phenol concentrations.

Estimate sample phenol mg from spectrophotometric readings by using a calibration curve:

mg phenol/l = $(A/B) \times 1000$

where:

A = mg phenol in sample from a calibration curve

B = ml original sample

Appendix C

Calibration graphs

C1) Biomass

The relationship between cell dry weight and optical density of *Candida tropicalis* culture broth measured at 600 nm is illustrated in Figure C 1.

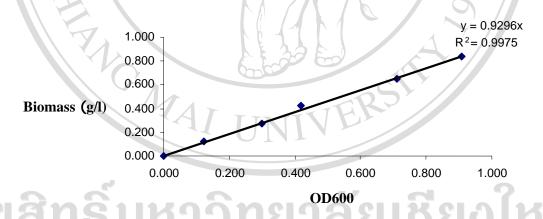


Figure C 1. Biomass calibration graph (suspended growth).

This , therefore, provides the equation below for the calculation of biomass concentration from the optical density of the culture at 600 nm.

C2) Phenol

The relationship between phenol concentration (g/l) and optical density of a sample measured at 500 nm is illustrated in Figure C 3.

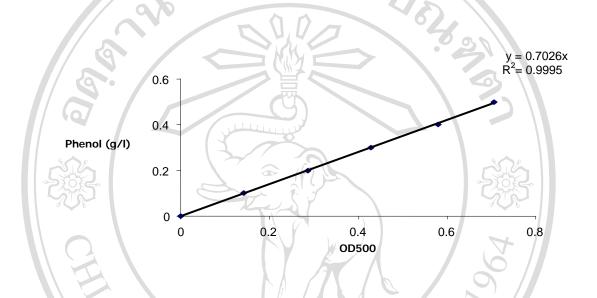


Figure C 2. Phenol calibration graph.

This, therefore, provides the equation below for the calculation of phenol concentration in a sample from the optical density at 500 nm.

Phenol concentration (g/l) = 0.7026 x optical density

Copyright

by Chiang Mai University

All rights reserved

CIRRICULUM VITAE

Name Miss Montira Intanon

Date of birth 5 September 1983

Academic background 2005 B.S. (Agro-Industrial Biotechnology)

Faculty of Agro-Industry, Chiang Mai University

Chiang Mai, Thailand

Publication Montira Intanon and Ampin Kuntiya. 2008.

Biodegradation of phenol by Candida tropicalis CMU

10 in the form of free and immobilized cells, 34th

Congress on Science and Technology of Thailand:

Science and Technology for Global Challenges, 31

October - 2 November 2008, Queen Sirikit National

Convention Center, Bangkok, Thailand, Poster

Presentation, Full paper in CD

ลิขสิทธิ์มหาวิทยาลัยเชียงใหม่ Copyright[©] by Chiang Mai University All rights reserved