
TABLE OF CONTENTS

Х

	Page
1.3.4 HPLC-photo diode array	32
1.3.5 HPLC-electrochemical detection	34
1.3.6 HPLC-mass spectrometry	34
Fast atom bombardment (FAB)	37
MALDI mass spectrometry	38
Almospheric pressure ionization	40
Electrospray ionization (ESI)	41
Atmospheric pressure chemical ionization (APCI)	44
Ion trap mass spectrometer	46
Sector mass spectrometer	47
Quadruple mass spectrometer	48
Time of flight mass spectrometer (TOF)	50
Mass spectrometry-mass spectrometer (MS/MS)	51
1.4 Fragmentation pathways of anthocyanin glycoside	53
1.5 Aims of this research	61
CHAPTER II EXPERIMENTAL	
2.1 Apparatus and Chemicals Chiang Mai University	62
2.1.1 Apparatus	62
2.1.2 Chemicals	63
2.2 Black rice samples	63
2.3 Extraction of anthocynins from Thai black rice sample	64
2.3.1 Selection of solvents	64

	Page
2.3.2 Clean up of black rice sample extracts	65
2.4 Separation of anthocyanins from black rice bran extracts by LC-DAD and	
LC-ESI-MS	
2.4.1 Optimization of separation condition	66
2.4.1.1Optimization of mobile phase composition	66
2.4.1.2 Optimization of mobile phase flow rate	67
2.4.1.3 Optimization of column dimension	68
2.4.1.4 Optimization of gradient profile of mobile phase	69
2.5 Identification of anthocyanins in Thai black rice extracts by LC-ESI-MS	70
and LC-ESI-MS/MS	
2.5.1 Optimization of electrospray ionization condition	71
2.5.1.1 Fragmentor voltage	71
2.5.1.2 Capillary voltage	72
2.5.1.3 Drying gas temperature	72
2.5.1.4 Drying gas flow rate	72
2.5.1.5 Nebulizer pressure	72
2.5.2 Optimization of MS/MS	S ⁷³
2.6 Determination of the relative contents of anthocyanins in extracts of leaves	75
and seed of the two black rice cultivars at different growth stages	

	Page
CHAPTER III RESULTS AND DISCUSSION	
3.1 Extraction of anthocynins from bran of Thai black rice	77
3.2 Separation of anthocyanin components from Thai black rice extracts by	79
LC-DAD and LC-ESI-MS	
3.2.1 Effect of type of mobile phase on component separation	79
3.2.2 Effect of mobile phase flow rate on component separation	81
3.2.3 Effect of column dimension on component separation	82
3.2.4 Effect of mobile phase composition on component separation	83
3.3 Identification of anthocyanins in the black rice sample extracts by LC-DAD,	86
ESI-MS and MS/MS	
3.3.1 Optimization of electrospray ionization mass parameters for	86
analysis of anthocyanin standards	
3.3.1.1 Fragmentor voltage in positive ionization mode	86
3.3.1.2 Capillary voltage in positive ionization mode	88
3.3.1.3 Drying gas temperature in positive ionization mode	90
3.3.1.4 Drying gas flow rate in positive ionization mode	92
3.3.1.5 Nebulizer pressure in positive ionization mode	94
3.3.2 Optimization of collision energy inCID process for the identification	97
of anthocyanins components	
3.3.3 Identification of anthocyanins in the black rice leaf, seed, and bran	103
extracts by LC-DAD, LC-ESI-MS and LC-ESI-MS/MS	

xiii

	Page
3.3.3.1 Anthocyanins identified by LC-DAD	103
3.3.3.2 Anthocyanins identified by LC-ESI-MS	105
3.3.3.3 Anthocyanins identified by LC-ESI-MS/MS	106
3.3.3.4 Anthocyanins in bran of the Thai black rice	110
Cyanidin-3-O-glucoside	111
Peonidin-3-O-glucoside	115
3.3.3.5 Anthocyanins in leaves of the Thai black rice	119
Cyanidin-3-O-glucoside-5-O-rhamnoside	120
Cyanidin-3-O-diglucoside-5-O-glucoside	123
Cyanidin-3-O-xyloside-glucoside	126
Cyanidin-3-O-xyloside-glucoside (isomer)	128
Cyanidin-3-O-diglucoside	131
Cyanidin-3-O-(p-coumaroyl)glucoside-5-O-glucoside	134
Cyanidin-3-O-(feruloyl)glucoside-5-O-glucoside	137
Peonidin-3-O-diglucoside	140
Peonidin-3- <i>O</i> -(<i>p</i> -coumaroyl)glucoside-5- <i>O</i> -xyloside	143
Malvidin-3- <i>O</i> -(<i>p</i> -coumaroyl)glucoside-5- <i>O</i> -glucoside	146
3.4 Relative contents of the identified anthocyanons in extracts of the two black rice cultivars at different growth stages	154
CHAPTER IV CONCLUSION	166
REFERENCES	168
CERRICULUM VITAE	173

xiv

LIST OF TABLES	
Table	Page
1.1 Naturally occurring anthocyanins	15
3.1 The optimum LC-DAD and LC-ESI-MS condition	85
3.2 Peak areas and ion counts of cyanidin-3-O-glucoside at varied fragmentor	87
voltages in positive ionization mode 3.3 Peak areas and ion counts of cyanidin-3- <i>O</i> -glucoside at varied capillary	89
voltage in positive ionization mode	
3.4 Peak areas and ion counts of cyanidin-3- <i>O</i> -glucoside at varied drying gas	91
temperatures in positive ionization mode	
3.5 Peak areas and ion counts of cyanidin-3-O-glucoside at varied drying gas	93
flow rates in positive ionization mode	
3.6 Peak areas and ion counts of cyanidin-3-O-glucoside at varied nebulizer	95
pressures in positive ionization mode.	
3.7 The optimum ESI-MS conditions for analysis of anthocyanins	96
3.8 The optimum collision energy conditions	102
3.9 Anthocyanins identified in leaves of the Thai black rice cultivars Khumdoisakhet and BGMSN 11	149
3.10 Anthocyanins identified in seed of the Thai black rice cultivars	150
Khumdoisakhet and BGMSN 11	

Table	Page
3.11 Anthocyanins identified in bran of the Thai black rice cultivars	150
Khumdoisakhet and BGMSN 11	
3.12 % Relative contents of the identified anthocyanins in leaves of	155
BGMSN11extracts at different growth stages	
3.13 % Relative contents of the identified anthocyanins in leaves of	156
Khumdoisakhet extracts at different growth stages	
3.14 % Relative contents of the identified anthocyanins in seed of BGMSN11	157
extracts at different growth stages	
3.15 % Relative contents of the identified anthocyanins in seed of	158
Khumdoisakhet extracts at different growth stages	

ลิขสิทธิ์มหาวิทยาลัยเชียงใหม่ Copyright[©] by Chiang Mai University All rights reserved

LIST OF FIGURES	
Figure	Page
1.1 Schematic of rice	2
1.2 Germination to emergence stages of rice growth	3
1.3 Seeding stage of rice growth	4
1.4 Tillering stage of rice growth	4
1.5 Stem elongations stage of rice growth	5 5
1.6 Panicle initiations to booting stages of rice growth	5
1.7 Heading or panicle exsertion stages of rice growth	6
1.8 Flowering stage of rice growth	6
1.9 Milk grain stage of rice growth	7
1.10 Dough grain of rice growth	8
1.11 Mature grain stages of rice growth	8
1.12 Schematic of the structure of pigmentd rice kernel	2 10
1.13 Basic structures of many classes of flavonoids	14
1.14 Basic structure of anthocyanidins	15
1.15 Structure of the anthocyanidins most commonly found in foods	16
1.16 Chemical structures of many classes of sugar	19
1.17 Chemical structures of many classes of acylate	20
1.18 Chemical transformations of anthocyanins	20
1.19 Diagram of high performance liquid chromatography (HPLC)	28

xvii

Figure	Page
1.20 A schematic diagram of UV-Vis absorption detector	31
1.21 A schematic of photo diode array detector diagram	33
1.22 Schematic diagram of a mass spectrometer	35
1.23 Schematic of the mechanism of fast atom bombardment ionization	38
mass spectrometry (FAB)	
1.24 A schematic diagram of the mechanism of MALDI	39
1.25 A schematic of an ESI interface	42
1.26 A schematic of the mechanism of ion formation in ESI interface	42
1.27 A schematic of the components of an APCI source	45
1.28 A schematic of more detailed view of the mechanism of APCI	45
1.29 A schematic of a quadrupole ion trap mass analyzer	47
1.30 A schematic of a sector mass spectrometer	48
1.31 Schematic of a quadrupole mass analyzer	49
1.32 Schematic of a TOF mass analyzer	50
1.33 Schematic diagram of relative applicability of LC-MS techniques compar	ed 52
With of GC-MS by Chiang Mai Univer	
1.34 Ion nomenclature adopted for anthocyanin glycosides fragmentation	53
(A) anthocyanin aglycone (B) anthocyanidin glycoside	

Figure	Page
1.35 Formation of the radical aglycone product ion (\mathbf{Y}_0^+) by a hemolytic	55
cleavage of the glycosidic bond between the aglycone and the glycan residu	e
1.36 Characteristic product ions formed by cross-ring cleavage in a hexose and	56
pentose residue	
1.37 Characteristic product ions formed by di-O-glucoside and O-diglucoside	57
anthocyanins	
2.1 Two Thai black rice cultivars used in the experiment: (A) BGMSN 11 (B)	64
Khumdoisakhet	
2.2 Schematic diagram of the Agilent LC-MS electrospray spray chamber setting	g 70
3.1 Four extracts of Khumdoisakhet rice bran; (A) methanol containing	77
0.5% formic acid (B) methanol (C) dichrolomethane: methanol (1:4) and	
(D) isopropanol	
3.2 Contents of anthocyanins in the black rice bran extracts expressed by UV-Vi	i s 78
absorbance at wavelength 520 nm	
3.3 LC-DAD chromatograms (at wavelength 520 nm) of the extract from bran of	f 80
Khumdoisakhet rice using (A) methanol : water (90:10), (B) methanol : 0.5	%
acetic acid in water (90:10) and (C) acetronitril : water (90:10) as mobile ph	ase
3.4 LC-DAD Chromatograms (at wavelength 520 nm) of the extract from bran of	of 81
Khumdoisakhet rice using (A) 0.3 ml/min and (B) 0.4 ml/min as flow rates	

of mobile phase

- 3.5 LC-DAD Chromatograms (at wavelength 520 nm) of the extract from bran of 82
 Khumdoasakhet rice using (A) Zorbaxe eclipse plus C₁₈ (B) Hypersil BDS
 C₁₈ as column on LC system
- 3.6 LC-ESI-MS Chromatograms of the extracts from the black rice leaves,
 Khumdoisakhet, using (A) 90% 50% of 0.5 % acetic acid in water,
 (B) 90% 55% of 0.5 % acetic acid in water and (C) 90% 0% of 0.5 %
 acetic acid in water mixed with methanol as composition of mobile phase
 3.7 TICs of cyanidin-3-*O*-glucoside at fragmentor voltage 110, 120, 130,140,
 and 150 V in positive ionization mode
 3.8 TICs of cyanidin-3-*O*-glucoside at capillary voltage 3000, 3500, 4000, 4500,
 and 5000 V in positive ionization mode
- 3.9 TICs of cyanidin-3-O-glucoside at drying gas temperature 300, 310, 320, 330, 91340 and 350 °C in positive ionization mode
- 3.10 TICs of cyanidin-3-*O*-glucoside at drying gas flow rate 8, 9, 10, 11 and 93 12 l/min in positive ionization mode
- 3.11 TICs of cyanidin-3-O-glucoside at nebulizer pressure 26, 28, 30, 32, and9534 psi in positive ionization mode
 - 3.12 Product ion mass spectra of malvidin-3-*O*-glucoside obtained by
 LC-ESI-MS/MS (Q-TOF) of *m/z* 493 using collision energy of (A) 22 V,
 (B) 20 V, (C) 17 V, and (D) 15 V

Figure	Page
3.13 Product ion mass spectra of cyanidin-3-O-xyloside glucoside obtained by	99
LC-ESI-MS/MS (Q-TOF) of ion at m/z 581 using collision energy of	
(A) 25 V, (B) 22 V, (C) 20 V, (D) 17 V, and (D) 15 V	
3.14 Product ion mass spectra of cyanidin-3-O-(p-coumaroyl)glucoside-5-	101
O-glucosidexx obtained by LC-ESI-MS/MS (Q-TOF) of m/z 757 using	
collision energy of (A) 25 V, (B) 22 V, (C) 20 V, (D) 17, and (E) 15 V	
3.15 Chromatograms obtained by LC-DAD at wavelength 520 nm of an extract	104
from bran of the black rice	
3.16 UV-Vis spectra obtained by LC-DAD of an extracts from bran of the	104
Khumdoisakhet rice (A) Peak 1 and (B) Peak 2, of which their chromatogram	n
is shown in Figure 3.15	
3.17 Full scan ESI-MS spectrum of cyanidin-3-O-glucoside having molecular	105
ion at <i>m/z</i> 449	
3.18 Chromatograms obtained from LC-ESI-MS of bran extract Khumdoisakhet	106
extract; (A) Mass chromatogram at m/z 449 (B) Total ion chromatogram	
3.19 Chromatograms obtained from LC-ESI-MS of extracts from leaves of two	108
black rice cultivars; (A) BGMSN 11 (B) Khumdoisakhet	
3.20 Chromatograms obtained from LC-ESI-MS of extracts from seed of two	108
black rice cultivars; (A) BGMSN 11 (B) Khumdoisakhet	
3.21 Chromatograms obtained from LC-ESI-MS of extracts from bran of two	109
black rice cultivars: (A) BGMSN 11 (B) Khumdoisakhet	

Figure	Page
3.22 ESI-MS and ESI-MS/MS spectrum of cyanidin-3-O-glucoside	109
-5-O-rhamnoside having molecular ion at m/z 595 obtained from of the Thai	
black rice extract; (A) ESI-MS (B) ESI-MS/MS	
3.23 Chromatograms obtained from LC-ESI-MS of an extracts from bran of the	112
black rice cultivar Khumdoisakhet; (A) Mass chromatograms at m/z 449	
(B) Total ion chromatogram	
3.24 Full scan mass spectra of an extract from bran of the black rice cultivar	113
Khumdoisakhet obtained by; (A) ESI-MS (B) ESI-MS/MS	
3.25 MS/MS spectra of the parent ion at m/z 287 obtained from LC-ESI-MS/MS	114
of the extract from leaves of the black rice cultivar, Khumdoisakhet showing	5
fragmentation pathway of some ion as well as the neutral losses	
3.26 Chromatograms obtained from LC-ESI-MS of the extract from bran of the	117
black rice cultivar BGMSN 11; (A) Mass chromatograms of m/z 463	
(B) Total ion chromatogram	
3.27 Full scan mass spectra of an extract from bran of the black rice cultivar	118
Khumdoisakhet obtained by; (A) ESI-MS (B) ESI-MS/MS	
3.28 MS/MS spectra of the parent ion at m/z 301 obtained from LC-ESI-MS/MS	119
of the extract from leaves of the black rice cultivar, Khumdoisakhet showing	S of
fragmentation pathway of some ion as well as the neutral losses	
3.29 Chromatograms obtained from LC-ESI-MS of an extract from leaves of	121
the black rice cultivar Khumdoisakhet; (A) Mass chromatograms at m/z 595	
(B) Total ion chromatogram	

xxii

xxiii

Figure	Page
3.30 Full scan mass spectra of an extract from leaves of the black rice cultivar	122
Khumdoisakhet obtained by; (A) ESI-MS (B) ESI-MS/MS	
3.31 Chromatograms obtained from LC-ESI-MS of an extract from leaves of the	124
black rice cultivar Khumdoisakhet; (A) Mass chromatograms at m/z 773	
(B) Total ion chromatogram	
3.32 Full scan mass spectra of an extract from leaves of the black rice cultivar	125
Khumdoisakhet obtained by; (A) ESI-MS (B) ESI-MS/MS	
3.33 Chromatograms obtained from LC-ESI-MS of the extracts from leaves of th	e 126
black rice cultivar, Khumdoisakhet; (A) Mass chromatograms at m/z 581	
(B) Total ion chromatogram	
3.34 Full scan mass spectra of an extract from leaves of the black rice cultivar	127
Khumdoisakhet obtained by; (A) ESI-MS (B) ESI-MS/MS	
3.35 Chromatograms obtained from LC-ESI-MS of an extract from leaves of the	128
black rice cultivar Khumdoisakhet; (A) Mass chromatograms at m/z 581	
(B) Total ion chromatograms	
3.36 Full scan mass spectra of an extract from leaves of the black rice cultivar	130
Khumdoisakhet obtained by; (A) ESI-MS (B) ESI-MS/MS	
3.37 Chromatograms obtained from LC-ESI-MS of an extract from leaves of	132
the black rice cultivar Khumdoisakhet; (A) Mass chromatograms at m/z 611	

(B) Total ion chromatogram

Figure		
3.38 Full scan mass spectra of an extract from leaves of the black rice cultivar		
Khumdoisakhet obtained by; (A) ESI-MS (B) ESI-MS/MS		
3.39 Chromatograms obtained from LC-ESI-MS of an extract from leaves of	135	
the black rice cultivar, Khumdoisakhet; (A) Mass chromatograms at m/z 75	7	
(B) Total ion chromatogram		
3.40 Full scan mass spectra of an extract from leaves of the black rice cultivar	136	
Khumdoisakhet obtained by; (A) ESI-MS (B) ESI-MS/MS		
3.41 Chromatograms obtained from LC-ESI-MS of an extract from leaves of	138	
the black rice cultivar Khumdoisakhet; (A) Mass chromatogram at m/z 787		
(B) Total ion chromatogram		
3.42 Full scan mass spectra of an extract from leaves of the black rice cultivar	139	
Khumdoisakhet obtained by; (A) ESI-MS (B) ESI-MS/MS		
3.43 Chromatograms obtained from LC-ESI-MS of an extract from leaves of	141	
the black rice cultivar Khumdoisakhet extract; (A) Mass chromatograms at		
m/z 625 (B) Total ion chromatogram		
3.44 Full scan mass spectra of an extract from leaves of the black rice cultivar	142	
Khumdoisakhet obtained by; (A) ESI-MS (B) ESI-MS/MS		
3.45 Chromatograms obtained from LC-ESI-MS of an extract from leaves of	144	
the black rice cultivar Khumdoisakhet and BGMSN 11; (A) Mass		
chromatograms at m/z 741 (B) Total ion chromatograms		

xxiv

Figure	Page
3.46 Full scan mass spectra of an extract from leaves of the black rice cultivar	145
Khumdoisakhet obtained by; (A) ESI-MS (B) ESI-MS/MS	
3.47 Chromatograms obtained from LC-ESI-MS of an extract from leaves of	147
the black rice cultivar, Khumdoisakhet ; (A) Mass chromatograms at m/z 80	1
(B) Total ion chromatogram	
3.48 Full scan mass spectra of the extracts from the black rice cultivar	147
Khumdoisakhet	
3.49 MS/MS spectra of the parent ion at m/z 331 obtained from LC-ESI-MS/MS	148
of the extracts from leaves of the black rice cultivar Khumdoisakhet showin	g
fragmentation pathway of some ions as well as the neutral losses	
3.50 Total ion chromatograms of the extracts from leaves of the black rice	151
cultivar; (A) Khumdoisakhet and (B) BGMSN 11, obtained by LC-ESI-MS	
showing the presence of the identified anthocyanins and their positions	
3.51 Total ion chromatograms of the extracts from seed of the black rice	152
cultivar; (A) Khumdoisakhet and (B) BGMSN 11, obtained by LC-ESI-MS	
showing the presence of the identified anthocyanins and their positions	
3.52 Total ion chromatograms of the extracts from bran of the black rice	153
cultivar; (A) Khumdoisakhet and (B) BGMSN 11, obtained by LC-ESI-MS	
showing the presence of the identified anthocyanins and their positions	
3.53 Relative contents of anthocyanins obtained from LC-ESI-MS of the	159
extract from leaves and seed at different growth stages of the black rice	
cultivars, Khumdoisakhet and BGMSN 11	

XXV

ABBREVIATIONS AND SYMBOLS

	MeCN	acetonitrile
	C ₁₈	octadecyl
	°C	degree Celsius
	CID	collision-induced dissociation
	DCM	dichloromethane
	ESI	electrospray ionization
	eV	electron volt
	FI	flow injection
	G	gram
	HPLC	high performance liquid chromatography
	Kg	kilogram
	kV	kilovolt
	1	liter
	LC	liquid chromatography
Copyri	LC-ESI-MS	liquid chromatography- electrospray ionization mass
		spectrometry
	LC-MS	liquid chromatography-mass spectrometry
	MS	mass spectrometry
	MS/MS	mass spectrometry-mass spectrometry
	min	minute

xxvi

milliliter ml meter 2/02/03/19 m molecular weight MW mass-to-charge ratio m/z, MeOH methanol mg milligram MCP micro channel plate nanometer nm PDA photodiode array part per million ppm pound per square inch psi Q-TOF hybrid quadrupole time-of-flight total ion chromatograms TICs TOF time-of-flight μl micro liter micrometer μm ultraviolet **NGAGISCON** ^{vol}by Chiang Mai University ghts reserved Copyrigh ig

xxvii