TABLE OF CONTENTS

viii

Page

1.4	Controlled Molecular Architecture	17
1.5	Degradation Phenomena in Biodegradable Polymers	20
1.6	In Vitro Hydrolytic Degradation Testing	22
	1.6.1 Weight Loss	22
	1.6.2 Polymer Morphology	23
	1.6.3 pH	23
9.7	Previous Work Relevant to This Study	24
1.8	Aims of This Study	27
CHAPTER 2	EXPERIMENTAL METHODS	
2.1	Chemicals, Apparatus and Instruments	30
5	2.1.1 Chemicals	30
	2.1.2 Apparatus and Instruments	31
2.2	Monomer Preparation and Purification	33
	2.2.1 Synthesis of L-Lactide	33
	2.2.2 Purification and Purity Analysis of L-Lactide	35
	2.2.3 Purification of <i>ɛ</i> -Caprolactone by Vacuum Distillation	36
2.3	Catalyst and Initiator Purification	37
	2.3.1 Stannous Octoate	37
	2.3.2 1-Hexanol	38
	2.3.3 Pentaerythritol	38
2.4	Characterization Methods	38
	2.4.1 Fourier Transform Infrared Spectroscopy (FT-IR)	38

	2.4.2	High Resolution Mass Spectroscopy (HR-MS)	39
	2.4.3	Nuclear Magnetic Resonance Spectroscopy (NMR)	39
	2.4.4	Gel Permeation Chromatography (GPC)	40
	2.4.5	Differential Scanning Calorimetry (DSC)	40
	2.4.6	Thermogravimetric Analysis (TGA)	41
	2.4.7	Dilute-Solution Viscometry	41
	2.4.8	Mechanical Tensile Testing	41
	2.4.9	Melt Rheology Measurements	42
2.5	Synthe	esis of Pentaerythritol tetrakis(6'-hydroxyhexanoate) Star-	43
	Core N	Macroinitiator	
	2.5.1	Synthesis of Methyl 6-hydroxyhexanoate (2)	43
	2.5.2	Synthesis of Methyl 6-(tetrahydro-2 <i>H</i> -pyran-2-yloxy)	46
		hexanoate (3)	
	2.5.3	Synthesis of 6-(Tetrahydro-2H-pyran-2-yloxy)hexanoic	48
		acid (4)	
	2.5.4	Synthesis of Pentaerythritol tetrakis(6'-hydroxyhexanoate)	51
		ตาวิทยาลัยเชียงไห	
2.6	Polym	er Synthesis and Purification	54
	2.6.1	Synthesis of Low Molecular Weight Poly(<i>ɛ</i> -caprolactone),	55
		PCL Model Compounds with Different Molecular	
		Architectures	
	2.6.2	Synthesis of High Molecular Weight Poly(&-caprolactone),	56
		PCL with Different Molecular Architectures	

Page

		I	Page
	2.6.3	Synthesis of High Molecular Weight Poly(L-lactide), PLL	57
		with Different Molecular Architectures	
2.7	In Vitr	o Hydrolytic Biodegradation Studies	58
	2.7.1	Preparation of Phosphate Buffer Saline (PBS)	59
	2.7.2	Preparation of Polymer Samples and Glassware	59
	2.7.3	Sampling Procedure	61
CHAPTER 3	RESU	LTS AND DISCUSSION	
3.1	Synthe	sis of Pentaerythritol tetrakis(6'-hydroxyhexanoate)	62
3.2	Synthe	sis of Low Molecular Weight PCL Model Compounds	69
	with D	ifferent Molecular Architectures	
E S	3.2.1	Molecular Weight Determination of PCL Model	72
		Compounds by GPC and Dilute-Solution Viscometry	
	3.2.2	Structural Analysis and Molecular Weight Determination	79
		of PCL Model Compounds by ¹ H-NMR Spectroscopy	
	3.2.3	Thermal Characterization of PCL Model Compounds by	84
		pschonghages	
	3.2.4	Thermal Characterization of PCL Model Compounds by	86
		TGA	
3.3	Synthe	sis and Characterization of High Molecular Weight PCL	88
	with D	ifferent Molecular Architectures	
	3.3.1	Molecular Weight Determinations of High Molecular	90
		Weight PCL by GPC and Dilute-Solution Viscometry	

	3.3.2	Thermal Characterization of High Molecular Weight PCL	91
		by DSC	
	3.3.3	Thermal Characterization of High Molecular Weight PC	93
		by TG	
	3.3.4	Mechanical Properties of High Molecular Weight PCL	94
		by Tensile Testing	
	3.3.5	Rheological Properties of High Molecular Weight by	95
		Melt Rheology Measurement	
3.4	Synthesis	s and Characterization of High Molecular Weight PLL	96
	with	Different Molecular Architectures	
	3.4.1	Molecular Weight Determinations of High Molecular	97
		Weight PLL by Dilute-Solution Viscometry	
	3.4.2	Thermal Characterization of High Molecular Weight PLL	100
		by DSC	
3.5	In Vitr	vo Hydrolytic Biodegradation Studies of High Molecular	102
	Weigh	at PCL and PLL	
	3.5.1	Weight Loss Profiles	104
	3.5.2	pH Stability of Phosphate Immersion Medium	111
	3.5.3	Morphology Determination by DSC	113
		ghts reserve	

CHAPTER 4 CONCLUSIONS

4.1 Synthesis of Pentaerythritol tetrakis(6'-hydroxyhexanoate) Star- 121

Core Macroinitiator

		Page
4.2	Synthesis of Low Molecular Weight PCLs Model Compounds	122
	with Different Molecular Architectures	
4.3	Effect of Molecular Architecture on the Properties of High	124
	Molecular Weight PCLs and PLLs	
REFERENC	ES	128
RELEVANC	E OF THE RESEARCH WORK TO THAILAND	134
APPENDIX		135
VITA		156
5		
	AL UNITVERS	

ลิขสิทธิ์มหาวิทยาลัยเชียงใหม Copyright[©] by Chiang Mai University All rights reserved

LIST OF TABLES

]	Fable		Page
2	2.1	Chemicals used in this research project.	30
2	2.2	Apparatus and instruments used in this research project.	32
2	2.3	Data of compound 2.	45
2	2.4	Data of compound 3 .	47
2	2.5	Data of compound 4.	49
2	2.6	Data of compound 7.	53
2	2.7	Polymerization conditions of low molecular weight PCLs with different	56
		molecular architectures synthesis at 120°C for 48 hours.	
2	2.8	Polymerization conditions for high molecular weight PCLs with different	56
		molecular architectures synthesis at 120°C for 72 hours (10 g).	
2	2.9	Polymerization conditions for high molecular weight PCLs with different	57
		molecular architectures synthesis at 120°C for 72 hours (25 g).	
2	2.10	Polymerization conditions for low molecular weight PLLs with different	58
		molecular architectures synthesis at 120°C for 48 hours (10 g).	
2	2.11	Polymerization conditions for high molecular weight PLLs with different	58
		molecular architectures synthesis at 120°C for 72 hours (25 g).	
3	3.1	The results of low molecular weight PCL model compound with different	70
		molecular architectures.	
3	3.2	Dilute-solution viscometry data of low molecular weight	76

PCL_macroinitiator using THF as solvent at 30°C.

33	Proton assignments and corresponding chemical shift ranges for the	81
	various resonance peaks in the ¹ H NMP spectre of the linear and	
	various resonance peaks in the TI-NWIK spectra of the finear and	
	star-shaped low molecular weight purified PCL model compounds.	
3.4	Proton assignments and corresponding peak area integrations for the	81
	various resonance peaks in the ¹ H-NMR spectra of the linear and	
	star-shaped low molecular weight purified PCLs model compounds.	
3.5	The results of high molecular weight PCL with different molecular architectures.	88
3.6	The results of high molecular weight PLL homopolymer with different molecular architectures.	99
3.7	The results of the high molecular weight PCLs with different molecular	103
	architectures use for <i>in vitro</i> hydrolytic degradation study.	
3.8	The results of the high molecular weight PLLs with different molecular	104
	architectures use for <i>in vitro</i> hydrolytic degradation study.	
3.9	Weight, % weight loss, % weight retention and pH of homopolymer	105
	PCL_1-hexanol immersed in PBS medium at 37±1.0°C.	
3.10	Weight, % weight loss, % weight retention and pH of homopolymer	106
	PCL_PTOL immersed in PBS medium at 37±1.0°C.	
3.11	Weight, % weight loss, % weight retention and pH of homopolymer	106
	PCL_macroinitiator immersed in PBS medium at 37±1.0°C.	
3.12	Weight, % weight loss, % weight retention and pH of homopolymer	107
	PLL_1-hexanol immersed in PBS medium at 37±1.0°C.	
3.13	Weight, % weight loss, % weight retention and pH of homopolymer	107
	PLL_PTOL immersed in PBS medium at 37±1.0°C.	

Page

- 3.14Weight, % weight loss, % weight retention and pH of homopolymer108PLL_macroinitiator immersed in PBS medium at 37±1.0°C.
- 3.15 DSC results for first run of linear PLL_1-hexanol immersed in PBS 114 medium at 37±1.0°C.
- 3.16 DSC results for second run of linear PLL_1-hexanol immersed in PBS 115 medium at 37±1.0°C.
- 3.17 DSC results for first run of star-shaped PLL_PTOL immersed in PBS 115 medium at 37±1.0°C.
- 3.18 DSC results for second run of star-shaped PLL_PTOL immersed in PBS 116 medium at 37±1.0°C.
- 3.19 DSC results for first run of star-shaped PLL_macroinitiator immersed in 116PBS medium at 37±1.0°C.
- 3.20 DSC results for second run of star-shaped PLL_macroinitiator immersed 117 in PBS medium at 37±1.0°C.

ลิขสิทธิ์มหาวิทยาลัยเชียงใหม่ Copyright[©] by Chiang Mai University All rights reserved

LIST OF FIGURES

Figure		Page
1.1	Biodegradable monofilament sutures: commercial product (a) Dexon [®]	4
	and (b) Maxon [®] . [5, 6]	
1.2	Synthetic biodegradable monofilament suture, poly(lactide- co - ε -	4
	caprolactone-co-glycolide), poly(LL-co-CL-co-G) prototype, from	
	Biomedical Polymers Technology Unit. [10]	
1.3	Nerve repair methods (a) nerve suture (b) nerve graft and (c) nerve guide	e. 6
1.4	Synthetic biodegradable nerve guide tubes of (a) poly(DL-co-CL) from	7
	Neurolac [®] [13] (b) poly(LL-co-CL-co-G) from Biomedical Polymers	
	Technology Unit. [15]	
1.5	Equation representing the ROP of a cyclic ester. $(R = (CH_2)_{0-3} \text{ and/or})$	9
	CHR", M = metal).	
1.6	Structures of the different stereoforms of the lactide monomer and the	10
	resulting polymer repeating unit, with the chiral center marked with *. (a	l)
	L-lactide (LL), (b) D-lactide (DL) and (c) meso-lactide.	
1.7	The reaction pathway for the ROP of a cyclic ester by the coordination-	13
	insertion mechanism. Chiang Mai University	
1.8	Reaction schemes for transesterification reaction; (a) intermolecular	14
	transesterification and (b) intramolecular transesterification (back-biting)).
1.9	Tin (II) 2-ethylhexanoate or stannous octoate (SnOct ₂).	15

		Page
1.10	The main ROP mechanism proposals with $SnOct_2$ as catalyst that the	16
	complexation of a monomer and alcohol prior to ROP.	
1.11	The main ROP mechanism proposals with $SnOct_2$ as catalyst that the	16
	formation of a tin alkoxide before ROP of cyclic ester.	
1.12	Illustrations of the three approaches for the synthesis of a star-branched	18
	polymer (a) the core-first method (b) and (c) the arm-first method. [33]	
1.13	Representation of structures of polymers with different molecular	19
	architectures: (a) linear, (b) branch, (c) star-branch and (d) network.	
1.14	Simple hydrolysis of aliphatic polyester.	21
2.1	Two-step process used for synthesizing LL from L(+)-lactic acid.	33
2.2	The apparatus used in the synthesis of LL. [61]	34
2.3	DSC melting peak of synthesized LL (after 3 rd recrystallisation)	36
	(sample size = 2.850 mg, heating rate = 2° C/min).	
2.4	Vacuum distillation apparatus used for the purification of ε -caprolactone	. 37
2.5	Bohlin Gemini HR ^{nano} Rotational Rheometer apparatus; (a) parallel plate	43
	geometry and (b) the gap between the plates.	
2.6	Apparatus used in (a) the ring-opening bulk polymerization and (b)	55
	polymer purification by re-precipitation from solution.	
2.7	Incubator for <i>in vitro</i> hydrolytic degradation studies.	60
3.1	¹ H-NMR spectra data of compound 2 . 2	63
3.2	¹ H-NMR spectra data of compound 3 .	64
3.3	¹ H-NMR spectra data of compound 4 .	65

xviii

		Page
3.4	¹ H-NMR spectra data of compound 7 .	67
3.5	IR data of compound 7.	67
3.6	Polymerization of <i>ɛ</i> -caprolactone using 0.1 mole % SnOct ₂ as a catalyst	69
	and 4 mole% of (a) 1-hexanol (b) PTOL and (c) pentaerythritol tetrakis	
	(6'-hydroxyhexanoate) as initiators at 120°C for 48 hours.	
3.7	GPC curves of low molecular weight purified PCL model compounds;	73
	(a) PCL_1-hexanol (b) PCL_PTOL and (c) PCL_macroinitiator.	
3.8	Reduced (η_{red}) and inherent (η_{inh}) viscosity-concentration plots of low	76
	molecular weight; (a) PCL_1-hexanol, (b) PCL_PTOL and (c)	
	PCL_macroinitiator ($\blacklozenge \eta_{red}$ and $\blacksquare \eta_{inh}$).	
3.9	¹ H-NMR spectrum of low molecular weight crude PCLs; (a) PCL_1-	80
	hexanol (b) PCL-PTOL and (c) PCL-macroinitiator recorded in CDCl ₃ .	
3.10	Comparison of the DSC thermograms first run of linear and star-shaped	84
	low molecular weight PCLs model compounds.	
3.11	Comparison of the DSC thermograms second run of linear and star-	84
	shaped low molecular weight PCLs model compounds.	
3.12	Comparison of the TG thermograms of PCL model compounds;	86
	(a) PCL_1-hexanol, (b) PCL_PTOL and (C) PCL_macroinitiator.	
3.13	Comparison of the DSC thermograms first run of linear and star-shaped high	91
	molecular weight poly(&caprolactone) homopolymers.	
3.14	Comparison of the DSC thermograms second run of linear and star-shaped high	91

molecular weight poly(*e*-caprolactone) homopolymers.

		Page
3.15	Comparison of the TG thermograms of homopolrmers;	91
	(a) PCL_1-Hexanol, (b) PCL_PTOL and (C) PCL_macroinitiator.	
3.16	Comparison of the stress-strain curve of homopolymer;	93
	(a) PCL_1- Hexanol, (b) PCL_PTOL and (C) PCL_macroinitiator.	
3.17	The viscosity and stress vs. shear rate (l/s) of linear and star-shaped PCL	95
	at 80°C.	
3.18	Polymerization of L-lactide using (a) 1-hexanol (b) PTOL and (c)	98
	pentaerythritol tetrakis(6'-hydroxyhexanoate) as initiators.	
3.19	Comparison of the DSC thermograms 1 st run of the linear and star-	101
	shaped PLLs homopolymer.	
3.20	Comparison of the DSC thermograms 2 nd run of the linear and star-	102
	shaped PLLs homopolymer.	
3.21	Comparison of % weight retention of linear and star-shape PLL during	109
	of the period of the in vitro biodegradation experiments.	
3.22	Comparison of the DSC thermograms 1 st run of the linear and star-	109
	shaped PLLs homopolymer.	
3.23	Comparison of the DSC thermograms 2 nd run of the linear and star-	112
	shaped PLLs homopolymer.	
3.24	Comparison of the DSC thermograms first heating run of PLL_1-hexano	117
	during of the period of the in vitro biodegradation experiments.	
3.25	Comparison of the DSC thermograms first heating run of PLL_PTOL	118
	during of the period of the in vitro biodegradation experiments.	

3.26	Comparison of the DSC thermograms first heating run	118
	PLL_macroinitiator during of the period of the in vitro biodegradation	
	experiments.	
3.27	Comparison of the DSC thermograms second run of PLL_1-hexanol	119
	during of the period of the in vitro biodegradation experiments.	
3.28	Comparison of the DSC thermograms second heating run of PLL_PTOL	119
	during of the period of the <i>in vitro</i> biodegradation experiments.	
3.29	Comparison of the DSC thermograms second heating run	120
	PLL_macroinitiator during of the period of the <i>in vitro</i> biodegradation	
	experiments.	
	41 UNIVERS	

ลิขสิทธิ์มหาวิทยาลัยเชียงใหม่ Copyright[©] by Chiang Mai University All rights reserved

Page

	٠	٠
XX	1	1

LIST OF SCHEMES

SCHEME

Page

SCE	NHE NHE NHE	Page
3.1	Retrosynthesis of pentaerythritol tetrakis(6'-hydroxyhexanoate)	61
3.2	Synthesis of pentaerythritol tetrakis(6'-hydroxyhexanoate) (7)	62
3.3	Translation of methyl 6-hydroxyhexanoate (2)	62
3.4	Protection of alcohol by using DHP and M-K10	63
3.5	Hydrolysis of compound 3	64
3.6	Esterification and deprotection of compound 7	66
	E NA S	

ลิขสิทธิ์มหาวิทยาลัยเชียงใหม่ **Copyright[©]** by Chiang Mai University All rights reserved

xxiii

ABBREVIATIONS

LL	L-lactide
DL	D-lactide
DLL	D,L-lactide
CL	<i>ɛ</i> -caprolactone
G	glycolide
PL	polylactide
PCL	poly(<i>ɛ</i> -caprolactone)
PG	polyglycolide
FDA	Food and Drug Administration
ROP	ring-opening polymerization
SnOct ₂	stannous octoate
Sn(OnBu) ₂	tin(II) <i>n</i> -butoxide
CDCl ₃	deuterated chloroform
THF	tetrahydrofuran
PTOL	pentaerythritol
ТМР	1,1,1-tris(hydroxymethyl)propane
O DPTOL ght	dipentaerythritol Mai University
DHP	3,4-dihydro-2 <i>H</i> -pyran e S e n v e c
DCC	N,N'-dicyclohexylcarbodiimide
DMAP	4-dimethylaminopyridine
DMF	N,N-dimethylformamide

PBS	phosphate buffer saline
Na ₂ HPO ₄	disodium hydrogen orthophosphate
NaCl	sodium chloride
NaOH	sodium hydroxide
FT-IR	fourier transform infrared spectroscopy
¹ H-NMR	proton nuclear magnetic resonance
¹³ C-NMR	carbon-13 nuclear magnetic resonance
HR-MS	high resolution mass spectroscopy
DSC	differential scanning calorimetry
TG	thermogravimetry
GPC	gel permeation chromatography
\overline{M}_n	number-average molecular weight
\overline{M}_w	weight-average molecular weight
\overline{M}_{v}	viscosity-average molecular weight
$\overline{M}_{w} / \overline{M}_{n}$, MWD	molecular weight distribution
Tg	glass transition temperature
ลิสลิทธิ์แห	crystallization temperature
T _m	melting temperature
Corright	decomposition temperature
A n l rig	intrinsic viscosity eserve
η_0	zero shear rate viscosity
h	hour
g	gram

xxiv

cm	centimeter
mm	millimeter
ml	milliliter
g dl ⁻¹	grams per deciliter
g mole ⁻¹	grams per mole
mmHg	millimeters of mercury
MHz	megahertz
MPa	megapascal
Pa	pascal
°C	degree Celsius
°C min ⁻¹	degree Celsius per minutes
rpm	round per minute
cm ⁻¹	wavenumber
calc.	calculated
conc.	concentration
S	singlet (spectral)
t	triplet (spectral)
admana	multiplet (spectral)
Co ^{dt} vrig	double of triplet (spectral)
ppm	parts per million (in NMR)
$\mathbf{A} \mathbf{I}_{\delta}$	chemical shift (ppm)
eq.	equivalent

XXV