TABLE OF CONTENTS

Page

1.5 Characterization techniques	9
1.5.1 Thermal analysis	9
1.5.1.1 Calcination	9
1.5.1.2 Thermogravimetric analysis	10
1.5.1.3 Differential scanning calorimetry	11
1.5.2 X-ray diffraction method	12
1.5.2.1 The advantage of X-ray diffraction method	13
1.5.2.2 Identification of crystal structure by XRD	13
1.5.2.3 Theoretical consideration	14
1.5.2.4 Particle size measurement by XRD	16
1.5.2.5 Sample preparation	18
1.5.3 Scanning Electron Microscopy (SEM)	19
1.5.3.1 Detection of secondary electrons	20
1.5.3.2 Detection of backscattered electron	21
1.5.3.3 Beam-injection analysis of semiconductors	22
1.5.3.4 Cathodoluminescence	22
Copyright [©] by ^{1.5.3.5} X-ray microanalysis University	-23
1.5.3.6 Resolution of the SEM	23
1.5.3.7 Procedure	24
1.5.4 Transmission Electron Microscopy (TEM)	25
1.5.4.1 Imaging in the TEM	27
1.5.4.2 Diffraction	29

	1.5.4.3 Analysis	30
· •	1.5.4.4 Procedure	30
1.5.5	The Brunauer-Emmett-Teller (BET)	32
	1.5.5.1 BET Theory	32
9.	1.5.5.2 BET plot	33
	1.5.5.3 Surface area calculation	35
Siz	1.5.5.4 Particle size (d_{BET})	35
1.6 Photod	catalyst	36
1.6.1	Semiconductors as photocatalysts	36
1.6.2	Principles	38
	1.6.2.1 Absorption of light	38
C .	1.6.2.2 OH radical appearance	39
	1.6.2.3 Mineralization of organic compound	40
1.6.3	Application of photocatalyst	42
ลิขสิทธิ์มหา	1.6.3.1 Anti-Bacteria 1.6.3.2 Deodorization	42 43
Copyright [©] by	1.6.3.3 Air purifacation a Universi	-43
All righ	1.6.3.4 Anti fogging and self-cleaning	43
	1.6.3.5 Water purification	44

X

Page

	1.7	Modified photocatalysts: enhancement of photocatalytic	
	0	activity	44
		1.7.1 Doping with transition metal ions	44
6		1.7.2 Matal ion deposition	45
S	•	1.7.3 Coupled semiconductors	46
		1.7.4 Application of nano-sized particles	46
	1.8	Literature review	47
5250	1.9	Objective of the study	56
Chapter 2	Expe	rimental	57
E	2.1	Chemicals	57
5	2.2	Apparatus and instrument	58
	2.3	Sample preparations	59
		2.3.1 Synthesis of pure CeO ₂ nanoparticles by the	
		homogeneous precipitation method	59
22	5	2.3.2 Preparation of Ag-doped CeO ₂ nanoparticles	
adana	5 IJ	by the impregnation method	60
Copyrigh	2.4	Sample characterization Mai Univers	61
	r i	2.4.1 Thermogravimetric analysis (TG) and Differential	d
		scanning calorimetry (DSC)	61
		2.4.2 X-ray diffraction (XRD)	61
		2.4.3 Scanning Electron Microscopy (SEM)	62
		2.4.4 Transmission Electron Microscopy (TEM)	62

	P	Page
2.	4.5 BET-Specific surface area analysis (BET)	62
0 2.	4.6 Photocatalytic activity measurements	63
20	2.4.5.1 Apparatus	63
S	2.4.5.2 Preparation of photocatalyst suspension and	
S.	operation	64
	2.4.5.3 Calibation curve measurement	65
Chapter 3 Results an	nd discussion	66
3.1 P	are CeO ₂ nanoparticles and Ag-doped CeO ₂	
na	inoparticles Characterization	66
3.	1.1 Thermogravimetric analysis (TG) and	
	Differential scanning calorimetry (DSC)	66
3.	1.2 X-ray diffraction analysis (XRD)	67
3.	1.3 Scanning Electron Microscopy (SEM) and	69
	energy-dispersive X-ray spectrometry (EDS)	
S. S. S. 3.	1.4 Transmission Electron Microscopy (TEM)	72
adansu	1.5 Brunauer-Emmett-Teller (BET) analysis	73
Copyrigh ^{3.2} P	notocatalytic activity measurement	-74
All rið	2.1 Calibration curve	74
3.	2.2 Photocatalytic activity of pure CeO ₂ nanoparticles	
	and Ag-doped CeO ₂ nanoparticles with oxalic acid	75
3.	2.3 Photocatalytic activity of pure CeO ₂ nanoparticles	
	and Ag-doped CeO ₂ nanoparticles with formic acid	76

		Page
Chapter 4	Conclusions	79
	4.1 Conclusions	79
	4.2 Suggestion for future work	80
References		81
Appendices		88
	Appendix A Images of instrument	89
S S S	Appendix B JCPDS information	94
505	Appendix C Calculation of particle size	98
Curriculum v	tae 1 4 4 1 UNIVERSI	100
ີລິບສີກຄິ Copyrigh AII ເ	รั้ <mark>มหาวิทยาลัยเชียงใ</mark> t [©] by Chiang Mai Univers	KIJ sity e d

LIST OF TABLES

Table	ુ ગગ્નાદાયલે ?	Page
1.1	Chemical and physical properties of CeO ₂	4
1.2	Chemical and physical properties of silver	6
1.3	Lists of common chemical oxidants in the order of their relative power	38
3.1	SSA, d_{BET} , d_{XRD} , and d_{TEM} of pure CeO ₂ nanoparticles and	
S	0.10-1.00 mol% of Ag-doped CeO ₂ nanoparticles	71
3.2	Calibration data of different concentrations of oxalic acid	73
3.3	Time of 50% mineralization of organic compound with 500 μ g	
	of carbon by using pure CeO ₂ nanoparticles and 0.10-1.00 mol%	
	of Ag-doped CeO ₂ nanoparticles under UVA-light irradiation	76
	AI UNIVERSI	

ลิขสิทธิ์มหาวิทยาลัยเชียงใหม่ Copyright[©] by Chiang Mai University All rights reserved

xiv

LIST OF FIGURES

Figure	ુ ગગાશમંદ્ય ?	Page
1.1	Electron mediation by metal in contact with a semiconductor surface	2
1.2	The Crystallograpic structure of CeO ₂ in cubic phase	4
1.3	thermogram of Thermogravimetric Analysis	11
1.4	(a) Heat flux DSC, (b) power-compensation DSC	12
1.5	Thermogram of DSC	12
1.6	The determination of indices of plane	15
1.7	Diffraction of X-ray by a crystal	15
1.8	Schematic diagram of X-ray line broadening effects	18
1.9	Schematic representation of the information resulting from the interactio	n
	between the electron beam and the specimen in an electron microscope	20
1.10	Schematic diagram of a scanning electron microscope	25
1.11	The approximate geometry of (a) microdiffraction and (b) convergent	
22	beam diffraction. The only significant difference is in the beam	=
ลขส	convergence angle at the specimen	29
	Schematic diagram of a transmission electron microscope	-31
1.13	Typical BET plot	33
1.14	Energy band diagrams for metallic, semiconductor, and insulator	37
1.15	Energy structures of various photosemiconductors	38
1.16	Simplified diagram of the mechanism for mineralization of photocatalyst	t 41
1.17	Electron mediation by metal ion in contact with semiconductor surface	45

	Figure		Page
	2.1	schematic diagrams for synthesis procedures of pure CeO ₂ nanoparticles	59
	2.2	schematic diagrams for preparation procedure of	60
		the Ag-doped CeO ₂ nanoparticles	
	2.3	Scheme of the spiral photoreactor	64
	3.1	Thermal decomposition process for the cerium(IV) hydroxide	66
	3.2	Thermal decomposition process for pure CeO ₂ nanoparticles	
	S	with difference silver doping levels	67
	3.3	X-ray diffraction patterns of (a) pure CeO ₂ , (b) 0.10mol% Ag/CeO ₂ ,	
		(c) 0.25mol% Ag/CeO ₂ , (d) 0.50mol% Ag/CeO ₂ ,	
		(e) 0.75mol% Ag/CeO ₂ and (f) 1.00mol% Ag/CeO ₂	68
	3.4	(a) JCPDS file no. 34-394 of cubic phase structure of CeO_2	
		and (b) JCPDS file no. 4-783 of cubic phase structure of Ag	69
	3.5	SEM images of (a) pure CeO ₂ , (b) 0.10 mol% of Ag/CeO ₂ ,	
		(c) 0.25 mol% of Ag/CeO ₂ , (d) 0.50 mol% of Ag/CeO ₂ ,	
\$. 9	(e) 0.75 mol% of Ag/CeO ₂ and (f) 1.00 mol% of Ag/CeO ₂	70
a c	3.6	EDS analysis of (a) pure CeO ₂ , (b) 0.10 mol% of Ag/CeO ₂ ,	NU
Со	DVI	(c) 0.25 mol% of Ag/CeO ₂ , (d) 0.50 mol% of Ag/CeO ₂ ,	sitv
Δ		(e) 0.75 mol% of Ag/CeO ₂ and (f) 1.00 mol% of Ag/CeO ₂	71
	3.7	TEM images of (a) pure CeO ₂ , (b) 0.10 mol% of Ag/CeO ₂ ,	
		(c) 0.25 mol% of Ag/CeO ₂ , (d) 0.50 mol% of Ag/CeO ₂ ,	
		(e) 0.75 mol% of Ag/CeO ₂ and (f) 1.00 mol% of Ag/CeO ₂	72

Figure		
3.8	Calibration slope for conductivity probe	74
3.9	The rate of 50% mineralization of oxalic acid with 500 $\mu\mu g$ of carbon	
	by using pure CeO ₂ nanoparticles and 0.10-1.00 mol% of Ag-doped CeO ₂	2
	nanoparticles under UVA-light irradiation	76
3.10	The rate of 50% mineralization of formic acid with 500 μ g of carbon	
	by using pure CeO ₂ nanoparticles and 0.10-1.00 mol% of Ag-doped CeO ₂	2
S	nanoparticles under UVA-light irradiation	77
A.1	X-ray diffractometer, Siemens D500	89
A.2	Scanning Electron Microscopy, JEOL JSM-6335F	90
A.3	Transmission Electron Microscopy, JOEL JSM-2010	91
A.4	Surface area analysis, Quantachrome Autosorb 1 MP	92
A.5	Spiral photoreactor	93
	AT IMINER	

ลิขสิทธิ์มหาวิทยาลัยเชียงใหม่ Copyright[©] by Chiang Mai University All rights reserved

xvii

ABBREVIATIONS AND SYMBOLS

Brunauer-Emmett-Teller BET С amount of carbon С a constant, related to the free energy of adsorption speed of light С **Degrees** Celsius °C d_{hkl} interplanar distance between (hkl) planes the lattice planar spacing d CB conduction band e Electron Conduction band electron ecb eV Electron Volt E binding energy Energy Dispersive X-ray Spectroscopy EDS 10 M EG Ethylene Glycol Binding energy Eb Optical band gap of the semiconductor Eg Plank's constant $(6.63 \times 10^{-34} \text{ Js})$ h photon energy hν เชียงไหม hole valence band hole Joint Committee Powder Diffraction Standards JCPDS kelvin K absorption coefficient conductivity value k keV kilo electron volt kV kilo-volt milligram mg

xviii

min	minute
ml	milliliter
mS	millisiemen
nm	nanometer (10^{-9} m)
Na	Avogadro's number (6.02×10^{23})
•O ₂	superoxide radical
•ОН	hydroxyl radical
SEM O	Scanning Electron Microscopy
SSA	Specific Surface Area
SBET	BET surface area
TEM	Transmission Electron Microscopy
UV	Ultraviolet
VB	valence band
XRD	X-ray diffraction
Z	atomic number
λ	wavelength
μg	microgram (10 ⁻⁶ g)
μg C	microgram of carbon
μm	micron (10^{-6} meter)
μS/cm	microSiemens /centimeter
ລິມສິກຊິນ	the Bragg angle for the reflection
	frequency
Copyright [©]	^b by Chiang Mai University
All ri	ghts reserved