APPENDIX A

Table A.1 Bottled Drinking Water Quality Standard defined by pollution controldepartment, ministry of natural resources and environment (WHO 2006) [68].

ปราสรรั

	9			Maximum
	Properties	Parameters	Units	Allowable
	325			Concentration
	505	1. Colour	Hazen	20
	· ·	2. Odour) -	None
	Physical	3. Turbidity	Silica scale unit (SSU)	65
		4. pH		6.5-8.5
		5. Total Solids	mg/l	500
		6. Total Hardness as CaCO ₃	mg/l	100
		7. Arsenic (As)	mg/l	0.05
	<i></i>	8. Barium (Ba)	mg/l	1.0
6,	Bnê	9. Cadmium (Cd)	mg/l	0.005
q	Chemical	10.Chloride as Chlorine	mg/l	
Co	nvright ⁽	11.Chromium (Cr)	mg/l	0.05
	P7181	12.Copper (cu)	mg/l	1.0
Α	II r	13.Iron (Fe)	mg/l S	er 0.3 e 0
		14.Lead (Pb)	mg/l	0.05
		15.Manganese (Mn)	mg/l	0.05
		16.Mercury (Hg)	mg/l	0.002

Properties	Parameters	Units	Maximum Allowable Concentration	
5	17.Nitrate as Nitrogen (NO ₃ - N)	mg/l	4.0	
	18.Phenol	mg/l	0.001	
	19.Selenium (Se)	mg/l	0.01	
582	20.Silver (Ag)	mg/l	0.05	
505	21.Sulphate (SO ₄)	mg/l	250	
	22.Zinc (Zn)	mg/l	5.0	
E	23.Fluoride as Fluorine (F)	mg/l	1.5	
5	24.Aluminium (Al)	mg/l	0.2	
	25.Alkylbenzene Sulfonate	mg/l	0.2	
	26.Cyanida (CN)	mg/l	0.1	
	27.Coliform	$MPN/100 \text{ cm}^3$	2.2	
Bacterial	28.E.Coli	MPN/100 cm^3	None	
้งสิทธิ	29.Disease causing bacteria	MPN/100 cm ³	None	
Note 1 mg =	¹ = 1000 μg Chiai	ng Mai l	Jniversity	
MPN :	= Most Probable Number	rese		

Table A.1 (Continued).

APPENDIX B

n-1 number of degree of freedom

The Table B.1 gives the concentration of iron (mg L⁻¹) determined by the proposed FIA and ICP-MS methods for each eight test portions.

Water	Conce (m	ntrations g L ⁻¹)	Ā	^s d	xd	t calculated
samples	FIA [*]	ICP-MS*				
Amtech	0.007	0.007	0.007	0.000577	-0.000333	-1.001
Big Bell	0.015	0.017	0.015	0.000577	-0.001667	-5.004
Double Elephants	0.010	0.013	0.010	0.002550	-0.002667	-1.811
Mont Blanc	0.009	0.010	0.009	0.002646	-0.000333	-0.218
Nam Petch	0.006	0.006	0.006	0.001155	-0.000333	-0.499
Nasibee	0.016	0.018	0.016	0.001000	-0.002000	-3.464
Polestar	0.006	0.007	0.006	0.000707	-0.000667	-1.633
Wang Nam Kang	0.008	0.010	0.008	0.001527	-0.001667	-1.891
*average of triplicate results						
For example: Amtech						

Table B.1 Calculation of *t*-test for iron determination of FIA.

ลิขสิทธิ์ม[ุ]์หาวิเ^รุ่มาลัยเชียงใหม Copyright^C by= $C \frac{0.006 + 0.007 + 0.007}{3}$ University All righ=t 0.007 reserved

The iron content found in water sample by the proposed FIA procedure and ICP-MS was compared and then the results were given in Tale B 1. The *t* calculated values for samples Amtech, Big Bell, Double Elephants, Mont Blanc, Nam Petch Nasibee, Polestar and Wang Nam Kang are -1.001, -5.004, -1.811, -0.218, -0.499, -3.464, -1.633 and -1.891, respectively, for FIA and ICP-MS methods. The tabulated critical value of *t* at 95% confidence level and two degrees of freedom is 4.30, Since the calculated values is less than the critical value from the Table B.3, that here is no statistically significant difference between the two methods.

Water	Concentrations (mg L ⁻¹)		Ī	s,	Χđ	$t_{\rm calculated}$	
samples	FIA*	ICP-MS*		d	Au		
Amtech	0.006	0.007	0.006	0.001155	-0.001000	-1.500	
Big Bell	0.016	0.017	0.016	0.001000	-0.001000	-1.732	
Double Elephants	0.012	0.013	0.012	0.001581	-0.000667	-0.730	
Mont Blanc	0.009	0.010	0.009	0.000707	-0.001333	-3.266	
Nam Petch	0.006	0.006	0.006	0.000577	-0.000333	-1.001	
Nasibee	0.017	0.018	0.017	0.001528	-0.000667	-0.756	
Polestar	0.006	0.007	0.006	0.000707	-0.000667	-1.633	
Wang Nam Kang	0.009	0.010	0.009	0.001528	-0.000667	-0.756	

Table B.2 Calculation of t-test for iron determination of S	IA.
---	-----

average of triplicate results

For example: Mont Blance

The iron content found in water sample by the proposed SIA procedure and ICP-MS was compared and then the results were given in Tale B 2. The *t* calculated values for samples Amtech, Big Bell, Double Elephants, Mont Blanc, Nam Petch Nasibee, Polestar and Wang Nam Kang are -1.500, -1.732, -0.730, -3.266, -1.001, -0.756, -1.633, and -0.756, respectively, for SIA and ICP-MS methods. The tabulated critical value of *t* at 95% confidence level and two degrees of freedom is 4.30, Since the calculated values is less than the critical value from the Table B.3, that here is no statistically significant difference between the two methods.

Degrees of	Confidence interval					
freedom	80%	90%	95%	99%		
1	3.08	6.31	12.70	63.7		
2	1.89	2.92	4.30	9.92		
3	1.64	2.35	3.18	5.84		
4	1.53	2.13	2.78	4.60		
5 5	1.48	2.02	2.57	4.03		
6	1.44	1.94	2.45	3.71		
7	1.42	1.90	2.36	3.50		
8	1.40	1.86	2.31	3.36		
9	1.38	1.83	2.26	3.25		
10	1.37	1.81	2.23	3.17		
15	1.34	1.75	2.13	2.95		
20	1.32	1.72	2.09	2.84		
30	1.31	1.70	2.04	2.75		
60 5	1.30	1.67	2.00	2.66		
α	1.29	1.64	1.96	2.58		

Table B.3 Values of t for various levels of confidence interval.

All rights reserved

CURRICULUM VITAE

Name	Miss. On-Anong Wechjan			
Date of Birth	November 10, 1982			
Academic status				
	- High school, Muang Suratthani, 2001			
	- B.Sc. (Chemistry), Prince of Songkla University,			
	Hat Yai, 2005			
	- M.Sc. (Analytical Chemistry), Chiang Mai University, 2008			
Awards/Scholarship				
	- Center for Innovation in Chemistry: Postgraduate Education			
	and Research Program in Chemistry (PERCH-CIC)			
Work Experiences				
	- Demonstrator in Chemistry laboratories for first year,			
	Department of Chemistry, Faculty of Science, Chiang Mai			
	University, 2006			
List of publications				

1. O. Wechjan, T. Pojanagaroon, S. Liawruangrath, "Flow Injection Spectrophotometric Determination of Iron using Eriochrome Cyanine R and Cetyltrimethylammonium bromide" *The 34th Congress on Science and Technology* of Thailand, Bangkok, 2008.

THE RELEVANCY OF THE RESEARCH WORK IN THAILAND

In the recent years, the development of science and technology and population growths leads to the ever-increasing demand for analyses in pharmaceutical, clinical, agricultural, industrial, process analytical control and environmental led to the development of automatic and user-friendly analytical method. An increasingly great demand for small and powerful analytical systems concerns, particularly application in field measurements of environmental analysis. In such analyses analytical tasks usually take up a lot of time owing to a large number of samples to be analyzed. Therefore, analytical techniques with high sample throughput and minimum consumption of reagent/sample are required. This research group has been terms " α -flow" group since 1990 as soon as most of our on-going researches are based on flow analysis which are greener analytical methods and application to real samples such as water, food and pharmaceutical.

The aims of this research are to develop a flow injection and sequential injection methods for determining iron in bottled-drinking water samples. In term of economic and environmental point of view, this research consume little reagent with minimum waste release and reduce cost of analytical instrumentation and sample analysis. This would be able to help the Thai Government to improve the economy and environmental problem of Thailand in the near further.