

Х

				Page		
	1.2.4	Mixing a	nd Zone Overlap of SIA	18		
1.3	Iron			20		
	1.3.1	Physical	and Chemical Properties	20		
	1.3.2	Sources a	and Uses	21		
	1.3.3	Toxicity	and Limiting Concentrations	21		
	1.3.4	Determin	nation of Iron	22		
1.4	Erioch	nrome cyan	nine R	25		
1.5	Resear	rch Aims		29		
CH	CHAPTER II EXPERIMENTAL					
2.1	Instru	ments and	Apparatus	30		
2.2	Chemi	icals	AL UNIVER?	30		
2.3	Prepar	ation of St	andard Solutions and Reagents	31		
	2.3.1	Preparati	on of Standard Solutions and Reagents of FIA system	32		
		2.3.1.1	Iron stock solution 1000 mg L ⁻¹	32		
		2.3.1.2	Eriochrome cyanine R solution 0.03 mol L ⁻¹	32		
		2.3.1.3	Cetyltrimethylammonium bromide stock solut	ion 32		
			0.1 mol L^{-1}			
		2.3.1.4	A 0.1 mol L ⁻¹ of Acetate buffer pH 4.5	33		

xi

			Page
	2.3.2	Preparation of standard solutions and reagents of SIA system	33
		2.3.2.1 Iron stock solution 1000 mg L^{-1}	33
		2.3.2.2 Eriochrome cyanine R solution 0.03 mol L^{-1}	33
		2.3.2.3 Cetyltrimethylammonium bromide stock solution	33
		0.1 mol L ⁻¹	
		2.3.2.4 A 0.1 mol L^{-1} of Acetate buffer pH 4.5	34
2.4	Prelim	inary Studies of Spectrophotometric Determination of Iron (III) by	34
	Using	Eriochrome cyanine R as Complexing Agent	
	2.4.1	Absorption spectra	34
	2.4.2	Study of the composition of the Fe-ECR-CTMAB complex by	35
		Mole-ratio method	
2.5	Procee	lure	35
	2.5.1	Procedure for collection and treating drinking water samples for	35
		iron (III) determination	
	2.5.2	FIA spectrophotometric determination of iron (III) using ECR and	36
		CTMAB as complexing agent	
		2.5.2.1 Optimization of the flow system by univariate method	38
		2.5.2.2 Linearity of calibration graph	39
		2.5.2.3 Precision	40

xii

			Page
	2.5.2.4	Detection limit	40
	2.5.2.5	Accuracy of the proposed method	41
	2.5.2.6	Interference studies	41
	2.5.2.7	Validation method	42
2.5.3	SIA spec	trophotometric determination of iron (III) using ECR and	43
	СТМАВ	as complexing agent	
	2.5.3.1	Sequential injection method	45
	2.5.3.2	Optimization of the sequential injection system	47
	2.5.3.3	Linearity of calibration graph	49
Ţ	2.5.3.4	Precision	50
	2.5.3.5	Detection limit	50
	2.5.3.6	Accuracy of the proposed method	50
	2.5.3.7	Interference studies	50
	2.5.3.8	Validation method	51
APTER	III RES	ULTS AND DISCUSSION	

2.5.5.6 Validation method		51
CHAPTER III RESULTS AND DISCUSSION		
3.1 Preliminary Studies of Spectrophotometric Determination of Ir	on (III)	52
by Using Eriochrome cyanine R as Complexing Agent		

3.1.1 Absorption spectra

xiii

•	
X1	V

Page

53

58

	3.1.2 Mole-ratio method
3.2	FIA Spectrophotometric Determination of Iron (III) Using Eriochrome
	cyanine R and Cetyltrimethyl Ammonium Bromide as A Complexing
	Agent

3.2.1	Optimiza	ation of the Flow System by Univariate Method	58
	3.2.1.1	Optimum wavelength	58
	3.2.1.2	Effect of pH	60
	3.2.1.3	Effect of ECR concentration	61
	3.2.1.4	Effect of CTMAB concentration	63
Ţ	3.2.1.5	Effect of flow rate	64
	3.2.1.6	Effect of reaction coil length	66
	3.2.1.7	Effect of sample volume	67
	3.2.1.8	Summary of the studied range and optimum conditions	69
3.2.2	Analytic	al Characteristics of the method	69
	3.2.2.1	Linear range	69
	3.2.2.2	Calibration curve	72
	3.2.2.3	Precision of the flow injection system	75
	3.2.2.4	Detection limit S	e ₇₆ O
	3.2.2.5	Interference Studies	77

				Page
		3.2.2.6	Effect of masking agents and interference	83
		3.2.2.7	Determination of iron (III) in drinking water samples	84
3.3 S	SIA SJ	pectrophot	cometric Determination of Iron (III) Using Eriochrome	87
С	yanin	e R and	Cetyltrimethyl Ammonium Bromide as A Complexing	
A	Agent			
3	.3.1	Study asp	piration order	87
3	3.3.2	Optimiza	tion of the sequential injection system by univariate	88
		method		
		3.3.2.1	Effect of pH	89
	E	3.3.2.2	Effect of pH concentration	90
		3.3.2.3	Effect of ECR concentration	92
		3.3.2.4	Effect of CTMAB concentration	93
		3.3.2.5	Effect of aspiration volumes of acetate buffer	95
		3.3.2.6	Effect of aspiration volumes of ECR	96
		3.3.2.7	Effect of aspiration volumes of CTMAB	98
		3.3.2.8	Effect of aspiration volumes of sample	99
		3.3.2.9	Effect of flow rate	101
		3.3.2.10	Effect of holding coil length	102
		3.3.2.11	Effect of holding time	104

xv

		Page
3.3.2.12	Effect of reaction coil length	105
3.3.2.13	Summary of the studied range and optimum conditions	107
Analytica	al Characteristics of the method	108
3.3.3.1	Linear range	108
3.3.3.2	Calibration curve	110
3.3.3.3	Precision of the sequential injection system	113
3.3.3.4	Detection limit	115
3.3.3.5	Interference Studies	116
3.3.3.6	Effect of masking agents and interference	121
3.3.3.7	Determination of iron (III) in drinking waters	122
R IV CO	NCLUSIONS AND SUGGESTION FOR FURTHER	124
	3.3.2.12 3.3.2.13 Analytica 3.3.3.1 3.3.3.2 3.3.3.3 3.3.3.4 3.3.3.5 3.3.3.6 3.3.3.6 3.3.3.7	 3.3.2.12 Effect of reaction coil length 3.3.2.13 Summary of the studied range and optimum conditions Analytical Characteristics of the method 3.3.1 Linear range 3.3.2 Calibration curve 3.3.3 Precision of the sequential injection system 3.3.4 Detection limit 3.3.5 Interference Studies 3.3.6 Effect of masking agents and interference 3.3.7 Determination of iron (III) in drinking waters

REFERENCES128APPENDIX A133APPENDIX B135CURRICULUM VITAE141THE RELEVANCY OF THE RESEARCH WORK IN THAILAND142

WORK

xvi

ลิขสิทธิ์มหาวิทยาลัยเชียงใหม่ Copyright[©] by Chiang Mai University All rights reserved

xvii

xviii

LIST OF TABLES

Table		Page
1.1	A brief review of the methods for the determination of iron	22
1.2	A brief review of FIA and SIA for the determination of iron	25
1.3	A brief review of ECR reagent for the determination of some metals	27
2.1	Preliminary experimental conditions of FIA for studying optimum	38
	wavelength of Fe-ECR-CTMAB	
2.2	The studied range for the optimization of all parameters of FIA	39
2.3	The device sequence for one full cycle of the SIA system	46
2.4	The studied range for the optimization of all parameters of SIA	48
2.5	Preliminary experimental conditions of SIA for studying optimum pH of	49
	Fe-ECR-CTMAB	
3.1	Effect of ECR concentrations for mole-ratio of Fe-ECR-CTMAB complex	54
3.2	Effect of CTMAB concentrations for mole-ratio of Fe-ECR-CTMAB	55
	complex	
3.3	Effect of wavelength on the sensitivity	59
3.4	Effect of pH on the sensitivity	60
3.5	Effect of concentration of ECR on the sensitivity	62
3.6	Effect of concentration of CTMAB on the sensitivity	63
3.7	Effect of flow rate on the sensitivity	65

Table		Page
3.8	Effect of reaction coil length on the sensitivity	66
3.9	Effect of sample volume on the sensitivity	68
3.10	Univariate optimization of chemical and FIA variables	69
3.11	Peak height at various iron concentrations for linearity check of the	70
	calibration graph	
3.12	ΔPeak height for calibration curve	73
3.13	Precision verification using standard 0.1 mg L ⁻¹ iron	76
3.14	The blank signal resulting from 12 injections	77
3.15	Effect of interference study for 0.1 mg L ⁻¹ iron	78
3.16	Summary of the interference effects of some ions on the responses obtain	82
	from 0.1 mg L ⁻¹ iron	
3.17	Effect of masking agent for Al^{3+} the response obtained from 0.1 mg L ⁻¹	83
	iron (III)	
3.18	Determination of iron in drinking water sample by FIA method	85
3.19	Comparative determination of iron in drinking water sample by proposed	86
	FIA method and ICP-MS	
3.20	Sensitivity at various aspiration orders	88
3.21	Effect of pH on the sensitivity	89
3.22	Effect of concentration of acetate buffer pH 5.5 on the sensitivity	91

xix

37	37
- ^	л

Table		Page
3.23	Effect of various concentration of ECR on the sensitivity	92
3.24	Effect of various concentration of CTMAB on the sensitivity	94
3.25	Effect of various aspiration volume of 0.1 mol L ⁻¹ of acetate buffer	95
	pH 5.5 on the sensitivity	
3.26	Effect of various aspiration volume of 3.5×10^{-4} mol L ⁻¹ of ECR on the	97
	sensitivity	
3.27	Effect of various aspiration volume of 2.5×10^{-3} mol L ⁻¹ of CTMAB on the	98
	sensitivity	
3.28	Effect of various aspiration volume of sample on the sensitivity	100
3.29	Effect of various flow rate on the sensitivity	101
3.30	Effect of various holding coil length on the sensitivity	103
3.31	Effect of various holding time on the sensitivity	104
3.32	Effect of various reaction coil length on the sensitivity	106
3.33	Optimum conditions for ion determination 10	
3.34	Linearity of iron determination	108
3.35	Δ Peak height for calibration curve	111
3.36	Precision verification using various concentrations of iron standard	114
3.37	The blank signal resulting from 12 injections	115
3.38	Interference studies for 0.2 mg L^{-1} standard iron by SIA method	116

	Page
Summary of interference effects of some ions on the response obtained	120
from 0.2 mg L ⁻¹ by SIA method	
Effect of masking agent for mask Al ³⁺ the response obtained from	121
0.2 mg L ⁻¹ by SIA method	
Determination of iron in drinking water sample by SIA method	122
Comparative determination of iron in drinking water sample by proposed	123
SIA method and ICP-MS	
Comparison of the analytical characteristics between FIA and SIA	127
methods for iron determination	
	Summary of interference effects of some ions on the response obtained from 0.2 mg L ⁻¹ by SIA method Effect of masking agent for mask Al ³⁺ the response obtained from 0.2 mg L ⁻¹ by SIA method Determination of iron in drinking water sample by SIA method Comparative determination of iron in drinking water sample by proposed SIA method and ICP-MS Comparison of the analytical characteristics between FIA and SIA methods for iron determination

ลิขสิทธิ์มหาวิทยาลัยเชียงใหม่ Copyright[©] by Chiang Mai University All rights reserved

xxi

LIST OF FIGURES

Figure		Page
1.1	The Schematic diagram of the basic FIA system	3
1.2	The analog output has the form of a FIA peak	
1.3	General types of transport in closed tubes	4
1.4	Effects of convection and diffusion on concentration profiles of analyses	
	at the detector	
1.5	Dispersed sample zone in flow system	6
1.6	Relationship between the rollers of a peristaltic pump and the pump	9
	tubes	
1.7	Sequence zone of SIA systems	11
1.8	Structure of injected zones and concentration profiles as seen by	12
	the detector	
1.9	Structure flow diagram of a sequential injection analyzer	14
1.10	Dispersed sample zones of SIA system	16
1.11	Forward and reversal flow of SIA system	19
1.12	The structure of Eriochrome cyanine R	26
2.1	The experimental setup of the FIA system for the determination of	37
	iron (III) S n t s r e s e r v e	
2.2	The experimental setup of the SIA system for determination of iron (III)	44

xxii

Figure		Page
2.3	FIAlab 5.0 for windows software	44
2.4	Schematic diagram of the device sequence for one cycle of the SIA	
	system	
3.1	The absorbance spectrum of ECR, ECR-CTMAB, Fe-ECR and	52
	Fe-ECR-CTMAB complexes	
3.2	Mole-ratio study of Fe-ECR-CTMAB system; effect of ECR	54
	concentration.	
3.3	Mole-ratio study of Fe-ECR-CTMAB system; effect of CTMAB	56
	concentration.	
3.4	The reaction of Fe-ECR-CTMAB	57
3.5	Relationship between wavelength and sensitivity of the calibration curve	59
3.6	Relationship between pH and sensitivity of the calibration curve	61
3.7	Relationship between concentration of ECR and sensitivity of the	62
	calibration curve	
3.8	Relationship between concentration of CTMAB and sensitivity of the	64
	calibration curve	
3.9	Relationship between flow rate and sensitivity of the calibration curve	65
3.10	Relationship between reaction coil length and sensitivity of the	67
	calibration curve	

xxiii

Figure		Page
3.11	Relationship between sample volume and sensitivity of the calibration	68
	curve	
3.12	Relationship between net peak height and concentration of iron	71
3.13	The calibration signal of FIA spectrophotometric determination of iron	74
	0.01-0.35 mg L^{-1} and 0.50–0.80 mg L^{-1}	
3.14	The calibration curve of FIA spectrophotometric determination of	75
	iron: (a) iron 0.01-0.35 mg L^{-1} ; (b) iron 0.50–0.80 mg L^{-1}	
3.15	Relationship between various pH and sensitivity of the calibration curve	90
3.16	Relationship between various concentration of acetate buffer pH 5.5 and	91
	sensitivity of the calibration curve	
3.17	Relationship between various concentration of ECR solution and	93
	sensitivity of the calibration curve	
3.18	Relationship between concentration of CTMAB on the sensitivity of	94
	the calibration curve	
3.19	Relationship between various aspiration volume of 0.1 mol L^{-1} of	96
Copyr	acetate buffer pH 5.5 on the sensitivity of the calibration curve	
3.20	Relationship between various aspiration volumes of 3.5×10^{-4} mol L ⁻¹ of	97
	ECR on the sensitivity of the calibration curve	

xxiv

Figure		Page
3.21	Relationship between various aspiration volumes of 2.5×10^{-3} mol L ⁻¹ of	99
	CTMAB on the sensitivity of the calibration curve	
3.22	Relationship between various aspiration volumes of sample on the	100
	sensitivity of the calibration curve	
3.23	Relationship between various flow rate on the sensitivity of	102
	the calibration curve	
3.24	Relationship between various holding coil length on the sensitivity of	103
	the calibration curve	
3.25	Relationship between various holding time on the sensitivity of	105
	the calibration curve	
3.26	Relationship between various reaction coil length on the sensitivity of	106
	the calibration curve	
3.27	Relationship between net peak height and concentration of iron	110
3.28	Calibration signal of SIA spectrophotometric determination of iron	112
	$0.02-0.45 \text{ mg L}^{-1}$ and $0.45-1.0 \text{ mg L}^{-1}$	
3.29	The Calibration curve of SIA spectrophotometric determination of iron:	113
	(a) iron 0.02-0.45 mg L^{-1} ; (b) iron 0.45-1.0 mg L^{-1}	

xxv

ABBREVIATIONS AND SYMBOLS

		ABBREVIATIONS AND SYMBOLS
	AU	absorbance unit
	FIA	flow injection analysis
	h	hour Solar
	i.d.	inner diameter
	in.	inch
	L	liter
	LOD	limit of detection
	LOQ	limit of quantitation
	mg	milligram
	min	minute
	mL	milliliter
		millimeter mail and a solution of the solution
Copy	PC	personal computer ang Mai University
	PTFE	polytetrafluoroethylene
	x	mean
	P.H.	peak height
	RSD	relative standard deviation

xxvi

xxvii

ลิขสิทธิ์มหาวิทยาลัยเชียงใหม่ Copyright[©] by Chiang Mai University All rights reserved